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SHAPE FIBRATIONS FOR COMPACT HAUSDORFF SPACES

Qamil Haxhibeqiri

1. Introduction.

In [10] S. Macdesi¢ has introduced the notion of a shape fibration for
maps between arbitrary topological spaces. The author in [4] gives two alter-
native definitions of shape fibrations and proves that they are equivalent to the
original definition. Some further properties of shape fibrations in the non-com-
pact case are established in [S].

In this paper we show that the definition of shape fibration between
compact Hausdorff spaces can be simplified in the sense that the approximate
homotopy lifting property (AHLP) is replaced by the homotopy lifting property
(HLP). The main results of this paper are Theorems 4.3 and 5.1. The first
one asserts that the pull-back of a shape fibration between compact Hausdorff
spaces is again a shape fibration. This generalizes the analogous result for
compact metric spaces due to M. Jani [7] and A. Matsumoto [15]. The second
one asserts that whenever p: E— B is a shape fibration of compact Hausdorff
spaces and x, yE B are points connected by an arc in B, then Sh(X)=Sh(Y)
where X=p~1(x), Y=p~1(y). This generalizes the analogous results for com-
pact metric spaces due to S. Mardedi¢ and T. B. Rushing [11].

The author wishes to thank Professors S. Mardesi¢ and S. Ungar for
their valuable help received during the writing of this paper.

2. Preliminaries.
In this section we give the definitions of the basic notions and we state
some known facts about them needed in the sequel

2.1. A map of inverse systems p=(p,, 7). E=(E,, > A)—=B=(B,, Iy, M)
in the category Top consists of a function 7 M— A between directed sets and
of a family of maps p,: E.—>B., WEM, such that for w<p' there exists a
AEA, A= (), © (1) satisfying

(1) Podnn="Tuw Py Dr e

2.2. If A is a singleton, then a map of systems p=(p,, M):E—B con-
sists of a family of maps p,: E—> B,, wEM, such that p,=ru, pw, p<p
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23. If M=A and =m=1,, then instead of (1) we can assume
Py Dv=Fwpv, AN,
in this case we say that p=(p,, 1a):E— B is a level map of systems.

2.4. The composition of maps of systems p=(p, ©).E—~B and
p’=(p;, n'):B—> C=(C,, sy, N) is the map of systems h=(4,, #): E—C, where
h=znn': N—- A and hv=p:,p,rf(\,):E,,(v)—> C,, v&N.

2.5. Two maps of systems p=(p,, 7). p =(pu, ™) E—>B are said to be
equivalent, p~p’, if for each u& M there is a AE A, A>=(u), ' () such that

Pulz@a=Pu 9dn' )2

We will denote by Inv-Top the category whose objects are inverse systems
in Top and whose morphisms are maps of systems. We will denote by pro-Top
the category whose objects are inverse systems in Top and whose morphisms
are equivalence classes [p] of maps of systems under the relation ~.

Definition 2.6. [10]. A resolution of a space E is a map of systems
q=(q A): E—>E=(E,, quv, A) satisfying the following two conditions:

(R1) Let P be a polyhedron, 94 an open covering of P and f:1E—~ P a
map. Then there is a ACA and a map f,:E,— P such that the maps f, ¢, and
f are Y-near, which we denote by (f; ¢, ) <.

(R2) Let P be a dolyhedron and let 9! be an open covering of P. Then
there is an open coverng 2 of P with the following property: If A€ A and
S, f i E,— P are maps satisfying (fq.,f ¢)<%V, then there is a A'>A such
that (fawe, £’ quw) <%

If for a resolution q:E —E all E, are polyhedra (ANR-spaces), we call q
a polyhedral (ANR)-resolution.

Definition 2.7. [4] A resolution of a map p:E—B is a triple

(g, r, p) which consists of resolutions q=(g,, A): E—~E and r=(r,, M).B>B=
=(B,, ryw, M) of spaces E and B respectively and of a map of systems
p= (pu, 7). E— B such that pq=rp, i.e. p, g, =r,p for each pEM.

If q and r are polyhedral (ANR)-resolutions of E and B, then (g, r, p) is
called a polyhedral (ANR) resolution of p. If p=(p,, 1n):E — B=(B,, nw, A)
is a level map of systems, then (q, r, p) is called a level resolution of p. In
this case we have p, ¢,=r, p for each ACA. .

In [10] the following two conditions were shown to be suificient in order
that q: E—E be a resolution:

(B1) For any normal covermg [/ of E there is a AEA and a normal
covering 7/, of E, such that gx ' ()/,) refines }/, which we denote by g ' (J/,) > }/-

(B2) For each AC A and for each open neighborhood U of cl (g, (E)) in
E, there is a A > such that g (E/)CU.

In [10] it was shown also that for normal Ej s conditions (B1) and (B2)
are necessary in order that q:E— E be a resolution. Consequently, every poly-
hedral resolution of a space E has properties (B1) and (B2).
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Theorem 2.8. If E is a compact Hausdorff space and E is an inverse
system of compact Hausdorff spaces, then q.E—E is a resolution of E if and
only if q:E—E is an inverse limit, i.e. lim E=(E, q). ([14], §6, Theorem 1 or
[10] Theorems 7 and 8).

Definition 2.9. [4]. A level map of systems p=(p, 1a):E=(E,
@, A)—~B=(B,, ro, A) is said to have the homotopy lifting property (HLP)
with respect to a class of spaces & if for each X&< and for each ACA
there is a A'>Xx with the following property: whenever #:X— Ey and
H:XxI-> By, are maps satisfying py h=H, then there is a homotopy
H:X x I E, such that guwh=H, and p, H=ry H. )" is called a lifting index
for A

Definition 2.10. [4]. A level map p:E—B has the approximate
homotopy lifting property (AHLP) with respect to a class < if for each AEA
and for any two normal coverings }/, 2 of E, and B, respectively, there is a
2 > and a normal covering 2 of B; with the following property: whenever
X& and h:X— Ey, H: X x I By, are maps satisfying (px h, H)<<ZU then
there is a homotopy H:X x I-E, such that

R ﬁo)<l[ and (p, H, v H) <.
AN and 9 are called lifting index and lifting mesh for A, /, 2, respectively.

Definition 2.11. [4]. A map of topological spaces p:E— B is called
a shape fibration provided there is a polyhedral level resolution (q,r, p) of p
such that the level map of systems p:E-—>B has the AHLP with respect to the
class of all topological spaces.

3. On resolutions of spaces and maps

In this section we establish some facts about resolutions of spaces and
maps, which are needed in the next sections of this paper.

Similarly as in [4], Theorem 2.3, we can prove the following theorem.

Theorem 3.1. Let p:E—~> B and f:C—> B be maps of topological spa-
ces. Then there are polyhedral resolutions (g, r,p) and (s,x,f) of p and f res-
Dpectively.

Proof. Let T be the set of all normal coverings v of B. For each
vET we choose a locally finite partition of unity (¥, Vey) subordinated to
v. Let N(y) denote the nerv of y and let B, =|N(y)| be the carrier of N(y).
Let #,: B— B, be the canonical map determined by (¥, V&y) ([3], VIIL
Theorem 5.4). It maps y< B to the point ry(y) whose barycentric coordinate
with respect to the vertex V equals ¥, (»).

For each yET, p~' (y) = {p~ ("):VEx} and /7 ()= {f ' ("):VE ) are
normal coverings of E and C respectively. Let Ey=|N(p7'(y))|, Cy=
=‘N(f_1(Y))la op="Tp,p and ¢, =Y, f. Clearly, (py» VEY) and (¢y, VEY)

3=
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are locally finite partitions of unity subordinated to the coverings p~l(y) of E
and f~' (y) of C, respectively. These partitions determine, as above, canonical
maps gy.E—Ey and s}:C— C, respectively. We define a simplicial map
Py Ey— B by sending a vertex ¥Ey of N(p~'(y)), p~1 (V) # &, to the vertex
V of N(y). The simplicial map f%:Cy— B, is defined similarly. One readily
sees that

Pyqy=ryp and fy s\ =rlf.

Let 4 denote the set of all normal coverings of E not of the form
P71 (), YET, and let P’ be the set of all normal coverings of C not of the
form f~'(y), yEI. For each a4’ and eacy BEP’ we choose a locally finite
partitions of unity (¢y, U€a) and (@, WEB) subordinated to o and B respec-
tively. We now put 4=4"UI" and P=P"UT'. A and P are the sets of all
normal coverings of E and C, respectively. We define =’ I'—> A and ¢ '>P
to be inclusion maps.

Now let 7 denote the set of all finite subsets of I' ordered by inclu-
sion. Clearly, I is a directed and cofinite set. For i={y,, Yo - - Yu} W€ put
B:'=IN(Y1/\Y2/\ “+ A¥,) !, where YiAY A - /\Yn“{Vlszm Wi (Vs
Vioo s VDEY, XY, + Y.} i a normal covering of B. If I<U={y,Yps---»
Yns--+> Ym}> DY riy:Bi— B; we denote the simplicial map which sends the
verteX (V, Vs, .o Vs oo o5 V) Of N(y,AYaA s s Ay A - - - AYmr N V;# @,

j=1
to the vertex (V,V,, ..., ¥,) of N(y,Ay,A ---A¥y,). For I={Y01 Yo - -+ s Yn}
let r;:B—B; be the canonical map tetermined by the partition of unity
Yoivy oovys P Voo oo, V) E v, %Xy, - -v,) subordinated to the cover
Y1 /\ Y2/\ .. /\ Yns where lF(Vl, Vay oo, V) = lFVl . lFVZ- .. lFVn. Then one has

.o .

i

Pir Ty = Firy ISE K
’ ’ ’

P rp=1ry, l<l .

Let J and K denote the sets of all finite subsets of A4 and P, respecti-
vely, ordered by inclusion. For each j={a, a, ..., ®}EJ and for each
k={B B BIEK we put E/<|N( Ao/ -+ A)| and Ci=| N (@A
ABA -+ AB,)|. The maps g, : E;—Ej, j<j', q;: E—~ E; jEJ, Sk L C—>Cry
k<k', and s;:C—Cy, k<K, are defined similarly as the maps r;» and r.
Then one has

’ 4 ’ . o ert
Qi Q=9 JS<J<j",

’ ’ 7’ k kl k/l
Skt Sk kr =Sk, K<Kk'<<k",

s ’ ’ . .t
4 4ir=9; J<J',

’ ’ ’
Sk’ Sk'= Sk, k<ki
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The inclusions =’ and ¢’ aie extented to increasing functions =" 11— J
and ¢':I— K, respectively, by puting =’ ()=/ and ¢ ({)=i for each z—{yl,
N ETII Y,,}EI Also for each i={y;, v, .-, v }EI we defme a simplicial
map p;. En/(,)_E — B, by assxgnmg to each vertex (V, .. V) of
Np'(y)A-- Ap‘l(yn)) prWV,NV,N - NV,)# &, the Vertex( e V)
of N(Yl/\Yz/\ - Av,). Similarly, one defines the simplicial map f,. Coy=
=C; _» B, for each i&I Then one has

le‘q;:’(i)n’(i’):r:'i’p;’» i<i’;
fisewem=ri fr, I<i’;
p;q;r’(i):r;'ps icl,
fisoa=rifo i€l

We have thus defmed inverse systems of polyhedra E' = E,, q,, »J), B =
—(B Fiivs D, C' =(Cx, Skk' K) and maps of systems q’ —(q,, J)E-E, r
-(r,,l) BB, s —(sk,K) C—>C, (P:,ﬂ:) E->B,{'=(f/, ¢):.C—B for
which one has

pPq=rpand f' s=rf.

As in the proof of [4], Theorem 2.3. it is shown that q', r’ and s’ satisfy
condition (B1). In order to odtain also condition (B2) the systems E', B’, C'
are replaced, as in the proof of [4], Theorem 2.3, by some larger polyhedral
systems E=(E,, g, A), B=(B,, ruw, M),C=(C,, s\, N). These systems con-
tain beside the members E' of E, B; of B’ and C;( of C, also closed poly-
hedral neighborhoods of cl(g; (E)) in E;, of cl(r (B)) in B;and of ¢ (sk ©)
in Cy, respectively. Furthermore maps of systems q=(g,, A):E—E, r=(r,,
M):B-—>B,s=(s,, N):.C—~C, p=(p,, ). E— B and f=(f,, ¢):C—B for which
pq=rp and fs=rf hold are obtained as in the proof of [4], Theorem 2.3.
Now q, r, s satisfy both conditions (B1) and (B2). Consequently, (g, r, p) and
(s, r, f) are polyhedral resolutions of p and f respectively.

It is well known that every open covering of a compact Hausdorff space
is a normal covering of that space. Also, every open covering of such a space
admits a finite subcovering which 1efines it. In view of this and by the proof
of Theorem 3.1 we obtain the following theorem.

Theorem 3.2. If p.E—~> B and f:C— B are maps between compact
Hausdorff spaces, then there are compact polyhedral resolutions (q, r, p) and (s,
r, f) of p and f, respectively.

Indeed, if in the proof of Theorem 3.1 we take for I' the set of all finite
open coverings of B, then By=|N(Y)|, Ey=|N(p~'(1))], Cxy={ N (/' (V)|
are compact polyhedra for each yEI'. Also, in that proof for 4 and P’ we
take the sets of all finite open coverings of E and C respectively, not of the
form p~'(y) and f~'(y), yE€T. Then A=A4'UT and P=P T are the sets of



38 Qamil Haxhibceqiri

all finite open coverings of E and C respectively. Thus, for j={a, o, ,..., 0} EJ,
ilz{Yl’Yz,""Yn}EI and kl={(31, By-oos B} EK, Ej = |N(y A=+ N o)),
B;={N(H;A---Av)|and Ce=N(B, A - AB,) are compact polyhedra. Now
E,B,C, are compact polyhedla because they are closed polyhedral neighbor-
hoods in E,, B,, and By respectively. Consequently. E, B, C are compact poly-
hedral systems and (q, r, p), (s,r, f) are compact polyhedral resolutions of p
and f respectively.

Similarly as in [4], Theorem 4.8 and [4], Lemma 4.9, we can prove the
next theorem and lemma.

Theorem 3.3. Let p =(p,, n):E=(E,, g, A)—> B=(B, Fup!s M)
and f=(f,¢):C= (Cv, sW,N)—>B be maps of systems. Then there are inverse
systems E' —(Ea, Goy'» A), B’ = (Ba, rm/, A) and C' = (C,,, saaf, A) over the same
cofinite index set A, there are level maps of systems p'=( pa, 1,):E —B and
f’ =(f;, 1,):C’'— B’ and there are isomorphisms i, j, k in pro-Top such that the
following diagram commutes in pro-Top

E—B<«<—C

i) ~i) ~ |
E—s B<«—C(C

P P

Lemma 3.4. Let p.E— B and f.C— B be maps of topologica! spaces.
If (q, r, p) and (s, r, f) are resolutions of p and f respectively, and i, j, k, p’, '
are as in Theorem 3.3, then (q', v, p)=(q,jr,p) and (s', ¢, t)=(ks,jr, )
are level resolutions of p and f respectively.

From Theorem 3.2 and Lemma 3.4 we obtain the follwing corollary:

Corollary 3.5. If p.E—~B and f.C— B are maps between compact
Hausdorff spaces, then there are compact polyhedral level resolutions (q, r, p)
and (s, r, f) of p and f, respectively.

The following fact is needed in the sequel.

Theorem 3.6. Let r=(r,, A).B— B=(B,, rw, A) be a locally compact
polyhedral resolution of a topological space B with A cofinite and let B, be a
compact and P-embedded subset of B. If r,=(r, | By, A): B,— By=(B,, ru | Bo).’ , )
is a resolution of B, such that each By is a compact subset of B, with
r(B,)CB,,, then for each N\E A there is a closed polyhedral neighborhood B,’
of By, in B, such that

(1) raov (Bx)C Int By, A<X,

and such that v'=(r,|B,, A):B,—~ B'=(B;, m\f!B;r, A) is a locally compact
polyhedral resolution of B,.

Recall that a subset B, is P-embedded in B if for every normal covering
U/, of B, there is a normal covering )/ of B such that }/|A={UNA:UE}/}
refines //, ([1], Theorem 14.7, p. 178).
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Proof of Theorem  3.6. For each A& A, B, is a locally compact
polyhedron and therefore a metric space (in fact an ANR space) ([2], p. 80, 81).
Thus, for each A€ A, By, is a compact subset od a metric space B, and con-
sequently it admits a decreasing secuence of open neighborhoods

UZ,IQUA,ZQ Tt QUA,,:Q tt

in B, such that for every open neighborhood U of B,, in B, there is a number
n with U, ,CU.

Using induction on the number of predecessors of x different from 2,
one can assign to each A& A a closed polyhedral neighborhood B; of By, in
B,. Indeed, let A, be the set of all A& A with exactly & predecessors different from
A If A=A, we take for By an arbitrary closed polyhedral neighborhood of B,
in B, such that B, CU, ([14], §6, Lemma 7). Now assume that we have al-

. k—1
ready defined B, satisfying (1) for all A, A< | ) A; and such that

ji=0

’ _ ’ k—1
By Craw (Int BaNU, ), A<N, NE U A,.

i=0
Let A€ A, and let A, A,, ..., 2<% be all the predecessors of A different from
k-1
A Then 2, € | JA, for each i=1,2,..., k, and the closed polyhedral neigh-
j=0
borhoods B;; have already been constructed. Notice that for each i=1, 2, ..., k,
r {,.{ (Int B»;NUs;, k+1) is an open neighborhood of By, in B,. Hence, the same

k
is true of M r;i)l\(lnt B;\imUli,k+1)~ Therefore, there is a closed polyhedral
i=1

neighborhood B; of B,, in B, such that

k
) B, C My rypl(nt B, M\ Usyier).

i=1

From (2) it is clear that (1) holds for '€ A,, and so the inductive construc-
tion of the neighborhoods B is completed.

We .now prove that r’': Bj— B’=(B;, e ,‘B}, A) is a resolution of B,
To do this it is sufficient to verify that conditions (B1) and (B2) are fulfilled.

(B1). Let )/, be a normal covering of B,. Since B, is P-embedded in B,
there is a normal covering // of B such that }/|B, refines //,. r: B— B being
a polyhedral resolutions of B has property (B1), and thus, theie is a AEA
and an open covering }/, of B, such that r; ' (})/,) refines }/. Then }/,=
=)/, | B, is an open covering of B, and (r,|B,)~' (/) refines 2/,.

(B2). Let ¥ be an open neighborhood of ¢/ (r,(B,)) in Bj. Then VN B,,

is an open neighborhood of ¢/(r,(B,)) in B,,. Since each B, is a normal
space, the resolution r;:B— B, has property (B2). Consequently, there is a
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A" >\ such that raw (Byx) VN B, CV, ie. By Cria (7). Then ri (V) (N Int By
is an open open neighqorhood of By in By. Hence, by the choice of the
decreasing sequence of neighborhoods {Uy,,}, there is a number n such that

Us.aCrin (V) (Int By.

Let now A" >2" be an index with at least (n—1) predecessors different from
A’. Then, by (2), Ba»Criy (Int Bv\Uy, ), which implies that

Fawr (B ) CUw o nCrim () NInt By Crins (V)

ie. raw (By)CV.

Since every closed subset B, of a compact Hausdocff space B is
P-embedded in B and since (2.8) holds, we immediately obtain, by Theorem
3.6, the following fact:

Theorem 3.7, Let B be a compact Hausdorff space and let lim B= (B, r),
where B=(B,, rna, A) is an inverse system of compact polyhedra with A cofinite.
If B, is a closed set of B and lim B,=(B,, r,) where each B, is a closed subset
of B, with cl (r, (B))CB,, and ry,=r,| B,, then for each A& A there is a closed
polyhedral neighborhood By of B,, in B, such that

rav (By)ClInt By, A<V,
and such that lim B'=(B,, r"), where v'=(r,| B,, A): B,—~ B’=(B;\, roe | By, A).

Proposition 3.8. If q=(q\, A):E—~>E=(E, gu, A) and r=(r,, A):
:B>B=(B,, rnw, A) are resolutions of compact Hausdorff spaces E and B res-
pectively, then

qxr=(q,xr, A):Ex B—>ExB=(E, x B, ¢ xruy, \)

is a resolution of E xB.

Proof. It is sufficient to verify conditions (Bl) and (B2) for q xr.

(B1). Let %4 be an open covering of Ex B. Then there are open cover-
ings // and 2 of E and B respectively, such that }/ x A={UxV.U&}/; VEY}
refines %Y (see the proof of [8], Theotem 8, p. 233). Since q and r have pro-
perty (B1), there are A’, A& A and open coverings }/», P~ of Ey, By res-
pectively, such that gx' (J/x) refines }/ and ry' (2h») refines 0. Let A> N,
A’. Then 9 =qur (/) rin (D) is an open covering of E,x B, which
refines .

(B2). Let W be an open neighborhood of ¢/ ((g, x r,) (E x B)) =cl (g, (E)) x
xcl(ry(B)) in E, x B,. Then there are open sets U and V in E, and B,, res-
pectively, such that c/(q, (E)) x ¢! (r,(B))CUxVCW. By property (B2) for q
and r, there are A’>X and A" >A such that g (Ex)CU and ro (Ba)CV.
Then for A"’ =", A" one has

(grum X raym) (Byen X B ) CUX VO W.

The next lemma states that the AHLP for level maps of compact poly-
hedral (and thus, compact ANR) systems can be expressed in the ,,c — § language*.
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Lemma 3.9. Let p=(py 1a):E=(E, g, A)=B=(B,, ru, A) be a level
map of compact polyhedral systems. Then, p has the AHLP with respect to a
class of spaces L if and only if for every ¢>0 and every NEA there is a
N>n and a 8>0 such that for each X&<U and any two maps h:X—E,,
H:X x I— By with

3) d(pwh, Hy)<8,

there is a homotopy H:X xI— E, such that

“ d(qw h, 1~10)<a

&) d(p, H, rv H)<z.

(A and § are called lifting index and lifting mesh for (A, e) respectively).

Proof. Necessity. Let p have the AHLP with respect to A and let
e>0 and A& A. Then Z[=[B(x, ;):XEE,\] and @:[B (x, ;)ZXEB)\; are

open coverings of E, and B, respectively. (Here B(x, ;) denotes the open ball

. . € , e
with centre x and radius S5 Let ' be a lifting index and let an open cov-

ering 2 of By be a lifting mesh for 2, // and Y. Let 3>0 be a Lebesgue
number of the covering 2¥ ([3], X1, Theorem 4.5). We claim that 2 and &
are a lifting index and a lifting mesh for (A, ). Indeed, let X< and h: X—E;,
H: X x I-> By be maps with d(ps h, H)<3$. By the choice of 3, this means
that (px h, H)<?'. By the choice of 2" and ' it follows that there is a
homotopy H: X x I— E, such that (g h, Ho)<</{ and (p, H, H)Y<9. Since
]/ and 9 are e-coverings, we conclude that

d(gwh, Hy<e and d(p, H, ry H)<e.

Sufficiency. Let A& A and let // and 7 bte open coverings of E, and B,
respectively. We put e=min {¢, &,}, Where ¢,, g, are Lebesgue numbers of //
and 2 respectively. Let 2’ > A and §:-0 be a lifting index and a lifting mesh for

(., ). Then it is casily seen that 7" and 6&0"[3 (x, z>:xeB~,.f] are a lifting

index and a lifting mesh for %, // and ¥ (in the sense of (2.10)).

Remark 3.10. Note that Propositions | and 2 from [11] remain true
if instead of a level map p:E— B between compact ANR sequences we take
a level map between compact polyhedral (i.e. compact ANR) systems. Therefore,
we conclude that the statemant of Lemma 3.9 remains true if ¥ is the class
of all metric spaces and if (3) and (4) are replaced by

39 prh=H,

(4') qxllh: HO
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respectively. Moreover, without loss of generality, we can assume “# to be the
class of all topological spaces, because, similarly as in the proof of [13], The-
orem 3, we can justify the following statement: If p:E—B is a level map of
compact polyhedral (and thus compact ANR) systems, which has the AHLP
with respect to the class of all metric spaces, then p has the AHLP with res-
pect to the class of all topological spaces.

4. The pull-back of a shape fibration.

We say that a map p:E— B is induced by a level map of inverse systems
P=(P 1) E=(E,, g3, A)>B=(B,, r;», A) if lim E=(E, q), limB=(B,r)
and p, q, - r,p for each 2= A. In that case we write lim p=p.

Note that from Theorem 3.2 and Theorem 2.8 it follows that every map
of compact Hausdorff spaces p: E— B admits a level map of a- compact poly-
hedral systems p:E— B which induce it. Also, from Theorem 2.8, Remark
3.10 and Definition 2.11 the next theorem immediately follows: '

Theorem 4.1. A map p.E-> B between compact Hausdoff spaces is a
shape fibration if and only if there is a level map of compact polyhedral (com-
pact ANR) systems p.E->B which induces p and such that it has the AHLP
in the sense of Remark 3.10 with respect to the class of all topological spaces.

The next Proposition is needed in the sequel.

Proposition 4.2. If lim B=(B,r) and x, y& B, then r,(x)=r, (y) for
each W&z A implies x=y.

Proof. Since the inverse limit B is a subset of a product H B, and

A
since r,:B-— B, are projections ([3], p. 427), r,(x)-r.(¥) for each A€ A
means that each coordinate x, of x is equal to the corresponding coordinate
v, of a point y, i.e. x=y.

Now we can prove the main Theorem of this paper, which generalizes
the analogus result for compact metric spaces ([7], Theorem 2.1 or [5], The-
orem 3.3).

Theorem 43. Let p.E—>B, p:E'—B', f:B—~B and g .E'—~E be
maps of compact Hausdorff spaces. If (E', p’, g') is a pull-back of (B, p,f) and
if pis a shape fibration, then p' is also a shape fibration.

Proof. First notice that, by Theorem 2.8, one can conclude that (q, r, p)
is a compact level polyhedral (comact ANR) reso'ution of a map p:E— B
between compact Hausdorff spaces if and only if lim p-=p. Therefore, by
Corollary 3.5, for maps p: E— B and f: B'— B there are level maps of compact
polyhedral (compact ANR) systems p=(p,, 15):E=(E,, g, A)— B=(B,, rs;, A)
and f - (f,, 1.):B'=(B;, s, A)—>B with lim p=p and lim f-f.
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Let
FH(E)={(x, YEB x E:f(x)=p(»)} B < E;
7 f* (E)— B’ —the first projection; '

g.f* (E)— E — the second projection;
FEE)={(x, )EBrx B f5 () = ()} Ba By 1EAS
'n:xif;k (E,)—> B; — the first projection;

& S (E,) -~ E, — the second projection.
Let q;:f* (E)—>f;’_k (E,) be given by q;\:(s%n, g, 2). i.e.
506 9 = (5,0, 4. 0)) and gue f7 (Ex)—f7 (B), AN, by

Gon = (S0 7005 Qaw 81), L€ g (%, )= (S0 (X), qrr ()
(See the diagram below).

E, 2 Ey 2y
9 2 Sy 2!
¥ ' % ‘ ‘
tMEN M_fEy) A1E)
lPA X
70\ Sy , ’7(
By <2 By /B
% , f}\' , \L/ f
B, Sa BYy SY . B

It is well known that (f*(E),w, g) is a pull-back for (B, p,f). It is
known also that the pull-back in each category is determined uniquely up to
an isomorphism in that category ([6], p. 60). Hence, f*(E) and E’ are home-
omorphic spaces, and thus, we can identify E’ with f*(E), p': E'— B’ with
n.f*(E)~ B and g':E'— E with g:f* (E)— E. Therefore, it is sufficient to
show that = is a shape fibration.

From the above diagram it is clear that f* (E)=(f; (£)), t/;:,/, A) is an
inverse system. We see that

M lim f*(E)=(f*(E). q)

Indeed, (x, Y)Sf*(E) implies f(x)=p(y), and thus, r,[(x)=r,p(y), ie
£, 8, (X)=ps ¢, () for each A& A. This means that ¢ (x. »)=(5(x), 4, (»)) & fr.(E)
for each A& A. Hence, (x, y)&lim £* (E). Conversely, let (x, y)<lim f* (E). Then
¢ (x, ¥) = (5, (%), . ) f2(E,) for each A=A, which implics that f; s, {(x)
=p, 4, (), Le. rf(x)=r.p(y) for each v&A. By Proposition 4.2 this implies
f@)=p®), ie. (x, ) f*(E). :
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Furthermore, from the above comutative diagram it follows that
w=(m, 1a):f*(E)—>B" is a level map with lim z==. Since B’ and E are
inverse systems of compact polyhedra and lim B'= (B, s), imE = (E, q) from
Proposition 3.8 and Theorem 2.8 we conclude that lim (B’ xE)= (B x E, s xq).
If we now apply Theorem 3.7 with B’ x E instead of E x B, f*(E) instead of
B, and f*(E) instead of B, we conclude that tor each A€ A there is a closed

polyhedral neighborhood E;, of f; (E,) in B x E, such that
gu (Ex)CInt E; | a<¥,

where ¢ " = (5207 < quar) | E;., and

) lim E” = (f*(E), q"),

where q"'=(s xq) | /* (E):f* (E)~E" = (E3., gir, A).

There is no loss of generality in assuming that A is a cofinite set without
maximal element. By this assumption we can always assume that j(3)>x for
each A& A, where j()) denotes a lifting index for ». Now using induction on
the number of predecessors of A different from A, we can assign to each A& A
a closed polyhedral neighborhood E; of f;(EA) in B;\xEA, positive numbers
&, 9, and an index j(A)&A such that j(A) is a lifting index and 3, a lifting
mesh for (2, &) with respect to p (in the sense of Remark 3.10) and the
following conditions are fulfilled:

3) G (Ex)C En, n<),

where gy (x, ¥) = (5w (%), oo (»)) for each (x, Y)EEy;

e FH(E)C ExCEy, nEA:
(5) d(f100 00 Eion Pyow & | Ejy) <8,
(6) For (x, WEBw x E,, d(f,(%), p,(0)) <&, = (x, ) = Ey.

Let Ay be the set of all A~ A with exactly k predecessors different from X.
If x&A,, we put E;=E,. The number ¢, is determined in this manner: con-
sider the map h,:B; < E,— R+ {0} given by

hy (x.9) —d(fi(x), P, (1), (x,»)EBsxE,,

where d is a metric in B,. Then 4, is a closed map and /; ' (0) =f (E,). Since
Int E, is an open neighborhood of f; (E) in BjxE,, by [5], Proposition 2.6,
there is an open neighborhood of 0 in R* (J{0}, i.e. there is an g, >0 such
that /1{‘([0, &))C Int E3CE;. It is readily seen that for such an g, (6)
holds. Now let j(3) & A and 8, >0 be a litfting index and a lifting mesh
for (Az). Since j(3) > 1 (i.e. J(W) & A,) the conditions (3) and (5) need
not be verified. Condition (4) is evidently fulfilled.
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k-1
Now suppose that for each A& | J A, we have already defined closed
m=0

polyhedral neighborhoods Es, positive numbers ¢,, 3, and indices j(A)EA for
k-1
which (3), (4) and (6) hold, while (5) holds for those A& (J A, for which

m=0
k—1
]()\)6 U Am'
m=0
Let A€ A, and let A, A, ..., A, <<\ be all the predecessors of A. Let

PR)={NcA:XN<r, jN)=r}

For each A’&P(2) we put Oj(y)=h{l([0, -)). Then O;ov) is an open neigh-
borhood of f; (E,) in B, x E,. Furthermore

tr k ’
Int (Ex 1M qi.?xl BN N Oj“‘,))
i=1 NP
is an open neighborhood of a closed set f; (E) in B;xEA. Consequently, there
is a closed polyhedral neighborhood E, of f5(E;) in B x E, such that

k
() E;_C Int (E;: e q;?,l (E;.i) M Oj().'))
i=1

NEPM)

([14], § 6, Lemma 7). The number ¢, for which (6) holds is defined similarly
as in the first stage of the induction. Now, j(2) and 3, are taken to be a li-
fting index and a lifting mesh for (&, ¢,) respectively. From (7) it is clear that
(3) and (4) hold Condition (5) must be verified only for X’€P(2). Since

NP () implies j () =AE Ay by () Eay C 0500 =hi ' (10, 85)). This means
that for each (x,y)&E;q ) one has

hy(x, y)= d(fm (%), Pa (J’)) = d(ij-') (%), p;ony (y)) =
=d(f;0n ;00 (% ¥), Pjon & 00 (%, ¥))<dv,

i.e. (5) hold. Thus, the inductive construction of neighborhoods E,” is finished.
Now from (1), (2) and (4) it follows

8) limE’z(f* (), ¢),
where ¢ = (g5, A): f*(E)—> E’'=(Ex; g, A).

For each AEA let 7 E»— B, be the projection to the first factor.

Then 7'=(m, 1o):E'—B’ is a level map of systems of compact polyhedra
(compact ANR’s) and limn’ = = f*(E)->B'. We will show that = has HLP
with respect to the class of all topological spaces, and thus Theorem 4.3 will
be proved.

We claim that j(A) constructed as above is a lifting index for A (with
respect to 7'). Indeed, let X be a topolgical space and let 4. X —>E,'~(;\), H: XxI—>
—B; be maps satisfying

) Hy=m 0 h.
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Then, for maps g;u)h:X—> E,q) and f;o) H:X x1-> B, one has (by
(5) and (9))
d(‘/.j\l) H,, Pioy &t hy < 3,.
Since j(1) is a lifting index and §, is a lifting mesh for (A. ¢,)
(with respect to p), we conclude that that there is a homotopy H:Xx1->E,
such that

(10) 950 85 0) h:-ﬁo,
(1 d(p;_if, ryofio H) <z,

Now define H:X x I— E; by
(12) Hx, )=(s,;0 H(x, 1), Hx, 1), (x, DEX <.

Since for each (v, NEX <1,

d(.f)\ S)\j\)\) H(xa t)’ pliI(xa ’)):d(pkﬁ(xa ’)’ r?xj(?x)fj(l) H(X, t))<€)\,

(6) implies
H(x, )= (50,00 HE, 1), H(x, 1))EEs.

Hence, H is well defined. Furthermore, by (12), (9) and (10) we obtain
H(x9 0)= (ij(m Tfjl'(?») h(x), dr;j0 8 h (x)) = q;xj(l) h(x),
ie. Hy=gqwmh. Also, by (12), we have m; H =s,;0) H.

Hence, Theorem 4.3 is proved.

If in the proof of Theorem 4.3 we take identity 1z:B->B instead of
/2 B'— B, then that proof shows that the following theorem holds:

Theorem 4.4. Let p=(p,, 1a):(E, gue, N)—>B=(B,, ra, A) be alevel
map of compact polyhedral systems which induces a map p. E—~ B between compact
Hausdorff spaces. If p has the AHLP with respect to the class of ull topological
spaces ¥ (in the sense of Remark 3.10), then there is a level map p:E—Bof
compact polyhedral systems which induces the same map p and has the HLP
with respect to L.

Theorem 4.4 is a generalization of [11], Theorem 2.

From Theorem 4.1 and Theorem 4.4 we obtain the following theorem.

Theorem 4.5. A map p: E— B between compact Hausdorff spaces is a
shape fibration if and only if there is a level map of compact polyhedral systems
p.E— B which induces p and has the HLP with respect to the class of all topo-
logical spaces.
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. 5. The shape equivalence of fibers

In this section we show the following theorem:

Theorem 5.1. Let p:E-> B be a shape fibration between compact
Hausdorff spaces. If x, y& B are points which can be joined by a path in B,
then Sh(X),=Sh(Y), where X=p~1(x), Y=p~1(»).

Note that this theorem is a generalization of [11], Theorem 3. The proof
is patterned after the proof of [11], Theorem 3.

Since p:E— B is a shape fibration of compact Hausdorff spaces, by
Theorem 4.5, there is a level map of compact polyhedral systems p=(p,, 14):
E=(E,, ¢p», A)—>B=(B,, nuw, ) with lim p=p, which has the HLP with respect
‘to the class of all topological spaces. Without loss of generality we can assume
that A is a cofinite set. Let w:7/— B be a path in B with w(0)=x, o (0)=y.
For each A& A we put o, =r,0.l—> B, x,=r,(x), y,=r Q). XK:p;T](xA), Y, =
=p ‘(). Then o, is a path in B, connecting x, with y,. We obtain, thus, a
map of systems q ! X: X— X=(X,, g | Xov, A)and qY: Y= Y=(Y,, ¢! Yor, A)
Since p.E— B is a closed map and X,, Y,, X and Y are compact Hausdorff
spaces, it follows from Theorem 2.8 and [5], Theorem 2.5 that

lim X=(X, q| X) and limY=(Y,q Y).

By a tracing of a path «:/— B we mean an increasing function g:A—> A
together with a family of homotopies G,: X, x I— E, of the form

() G, =g Hig oy,

where A is the lifiing index for % such that g (3)< 2, and
I?;gm:Xgm x [— E; is a homotopy satisfying

@ Hig o (%, 0)=qig 0y (%)
@) : Pr Higoy(x, ) =wr (1),
for all r& 1, x& X, ;). We denote this tracing of o by (g, G,).

Lemma 5.2. Every path :.[—> B admits a tracing (g, G,).

Proof Let A be a lifting index for A€A and let g’ :A—> A be the
function which assigns to each A&A a lifting index g’ (x) for A. Since A is
cofinite, there is an increasing g:A—~>A with g(A)>g (») for each A&A([9],
Lemma 2, p. 1.7). Since g’ (A) is a lifting index for A, we conclude that g(3)
is also a lifting index for A. Thus, g(A) > 2. Let H: X, xI— B, be given by

H(x, 1) =0, (t),and let 41 X, ) —E,(, be the inclusion map. Then H = p, ) h. By

the choice of g()), we conclude that there is a homotopy Hig oy Xgoy x I—E3
satisfying (2) and (3). We define G,: X, xI— E by (1). Hence, Lemm 5.2
is proved.

~ Similarly as Lemmas 3, 4, 5, 6, 7, of [I1] we can prove the following
lemmas, _
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Lemma 5.3. Let (g, G,) be a tracing of o and let g,: X,y Y, NEA,
be defined by

g)\(x)='G7\(x9 1)5 xEXg()\)'
Then for all \<<)\' one has
Qv 81 28 dging)-

Lemma 5.4 There is a unique shape morphism g.X—Y such that
S([glqgméX])=S([qA] Y]) g, where S is a shape functor ([9], p. 2.6).

(The tracing (g, G,) of w is said to induce g).

Lemma 5.5. If e~w (re'{0, 1}) are paths from x to y and g, g': X—Y
are shape morphisms induced by tracings (g, G,) and (g', G») of o and ' res-
pectively, then g=g'.

(In view of Lemma 5.5, we say that the shape morphism g:X—Y is
induced by [w]).

Lemma 5.6. If o is a constant path at xEB, then [w] induces the
identity shape morphism 1, on X,

Lemma 5.7. If o is a path from x to y, o' is a path from y to z,
g: XY is the shape morphism induced by [w] and g Y—Z= p~1(z) is the
shape morphism induced by [w'], then g' g:X—Z is the shape morphism induced
by [o*w].

From the above lemmas the proof of Theorem 5.1 follows just as the
proof Theorem 3 of [11].
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