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In the present paper we shall determine some propertices of the zeros of the
matching polynomial of a graph, which indicate a deeper parallelism between the
theory of the matching polynomial and graph spectral theory.

Let G be a graph with n vertices and m edges and let p (G, k) be the num-
ber of distinct selections of k independent edges in G, k=1,2,... . In addition,
let p(G,0)=1 for all graphs G. Then the polynomial

(1) 2 (G)=a(G, ¥)= 3 (— 1)*p(G, kyx»2*
K=0

is called the matching polynomial of the graph G. For a recent review on « (G)
see [6], where also the applications of this polynomial in several physical and
chemical theories are reported. In the mathematical literature « (G) was first
considered by Farrell [2] and, independently, by the present author [7] (see also
[3D. In [7] «(G) was named the acyclic polynomial.

The characteristic polynomial of the adjacency matrix of the graph G is
called the characteristic polynomial of G and will be denoted by @ (G)=® (G, x).
Some of its well known properties are the following (see for example [1], pp. 17—22).

la. All the zeros of @ (G) are real.

Let x; (G), i=1,..., n be the zeros of ®(G) and let us adopt the con-
vention x;>>X,>>- - - =>xn. The largest zero of ®(G) is called [I] the index of
the graph G and will be denoted by X (G).

2a. If v is an arbitrary vertex of G, then for i=1,..., n—1,
x(G)=x;(G~v) =X+, (G)-
In particular, X (G)=X (G—).
3a. If G is connected, then X (G)>X (G —v).

4a. If G is connected, then X (G)>x;(G), j=2,...,n

5a. If e is an arbitrary edge of G, then X (G)=X(G—e). If G is connected,
then X (G)>X (G —e).

6a. If H is a subgraph of G, then X (G)=X (H). If G is connected, then
X(@®>X (H).
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Ta. If G is connected, then X (Pn)<X (G)<X(K,), with P, and K, de-
noting the path and the complete graph on n vertices.

The properties la — 7a can be established immediately by using several
classical theorems of matrix theory. Since the definition of the matching polyno-
mial is combinatorial in nature, the methods of linear algebra are by no means
applicable in the study of ths properties of the zeros of « (G). Nevertheless it can
be shown that @ (G) and « (G) possess a number of analogous properties. In parti-
cular, in the present paper we would like to point out the statements 1b—7b,
concerning the zeros of «(G), which fully parallel the properties la—7a of the
zeros of @ (G).

Proposition 1b. All the zeros of «(G) are real.

Let y: (G), i=1,..., n be the zeros of « (G) and let us adopt the conven-
tion y;=y,>--->p,. The largest zero of «(G) will be called the matching
index of the graph G and will be denoted by Y (G).

Proposition 2b. Ifvisan arbitrary vertex of G, then for i=1,...,n—1,
Yi(G)2yi(G—v)=yi+1(G). In particular, Y(G)=Y (G —v).

Proposition 3b. If G is connected, then Y (G)>Y (G—v).
Proposition 4b. If G is connected, then Y (G)>y;(G), j=2,...,n.

Proposition 5b. If e is an arbitrary edge of G, then Y (G)=Y (G —é).
If G is connected, then Y (G)>Y (G —e).

Proposition 6b. If H is a subgraph of G, then Y (G)=Y (H). If G is
connected, then Y (G)>Y (H).

Propisition 7b. If G is connected, then
(2 Y(P)<Y(G)Y(K),
with Py and K, being the same graphs as in 7Ta.

Some further relations between « (G) and ® (G) which are worth mentic.
ning are the following [6].

8. a(G)=® (G) if and only if G is a forest.

9. Let C be a regular graph of degree two with p (C) components. Then

D (G) = (G) + g(—z)P(C)a(G~C), % (G) =D (G) + §(+2)v<0c1>(G—C),

with the summation going over all regular graphs of degree two which are as sub-
graphs contained in G.

10. Y(G)<X (G). If G is connected, then the equality sign holds if and only
if Gis a tree.

11. For every graph G there exists a forest F=F(G), such that a(G) is
a divisor of @ (F).

The results 1b and 2b are already known in the literature [8] and several
proofs of them are nowadays offered [4, 5, 6, 8]. (Note also that 1b follows im-
mediately from la and 11.)

The Propositions 3b—7b are reported here for the first time.
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Proof of Proposition 3b. First of all note that if 3b is true, then
from 2b we immediately deduce 4b. In order to prove 3b we shall use an induction
argument.

For all connected graphs with two and three vertices we can readily check
the validity of Proposition 3b. Suppose that 3b, and therefore also 4b, hold for
all graphs with less than » vertices.

Let the vertex v of the graph G be adjacent to the vertices Wi, Wa, ..., Wa.
Then the following recursion relation holds for the matching polynomial of G [6)],

3) oc(G)=xoc(G—v)—§oc(G—v—wj).

Jj=1

Let the matching index of G— v has algebraic multiplicity 5 (b=1). Let G—v be
composed of the components Hy, i=1,...,t (t=b). Then [6]

) «(G—v)= f_I o (H).

The components H; have, of course, less than n vertices. Every H;,
i=1,..., t is a connected graph. Then on the basis of the induction hypothesis
the matching index of every H;, i=1,..., ¢t has algebraic multiplicity one.
From eq. (4) is then evident that the matching index of exactly b components H;
is equal to the matching index of G — v, Let these be the components H;, i=1, ..., b.

If the vertex w; does not belong to any of Hi, i= 1,...,b, then G—v—w;
contains all the components Hy, i=1,..., b and Y (G—v) is the matching index
of G—v—w; and its algebraic multiplicity (with respect to « (G —v—wy)) is b.

If, on the other hand, the vertex w; belongs to one of the components H;,
i=1,..., b, then according to the induction hypothesis ¥ (G — v) is a zero of the
polynomial « (G —v—wj) with algebraic multiplicity 5 — 1.

d
Consequently, Y (G—v) is a zero of the polynomial > a(G—~v—w)) with

j=1
algebraic multiplicity b — 1. Because of eq. (3), ¥ (G—v) is also a zero of «(G)
with algebraic multiplicity 5 —1. (Of course if b=1, then Y(G-v) is neither
’ d

a zero of «(G) nor of 3 «(G—v—w))
j=1
Two cases are to be distinguished now. If b=1, then by setting x=Y (G-v)
in eq. (3) we obtain « (G, x)<0, from which the inequality Y(G)>Y (G—-v)
follows.
If b>1, then we differentiate eq. (3) b — 1 times with respect to the variable x.
Then by setting x=Y (G—v) we obtain

(5) (d=1{dxb=") o (G, x) <0,

since (d®~'/dx>') « (G—v—wj, xX) must be non-negative for all j=1,...,d
and must be positive for at least one j. From (5) we immediately conclude that
Y (G —v) is not the matching index of G and therefore the inequality ¥(G)> Y(G —v)
must hold.

This completes the proof of Proposition 3b.
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Proof of Proposition 4b. Combine 2b and 3b.

Proof of Proposition 5b. Let the edge e connect the vertices v
and w. Then [6]

6) 2 (G)=0(G—e)—a(G—v—w).
Since G—v—w=(G—¢e)—v—w, from Proposition 2b we have the inequality
) Y(G-o)>YG—v—w),

Therefore o (G—v—w, Y (G—-e))=0. Consequently, by setting x=Y (G —e) in
the eq. (6) we get a(G)<0, from which

8) Y (G)>Y(G-o)

follows immediately. Note that if the inequality (7) is strict, then also (8) is strict.

Hence in order to complete the proof we have to demonstrate that if G is
connected then (7) is a strict inequality. If G is connected then G—e is either
connected or composed of exactly two disconnected, parts, say H; and H,.

In the first case, because of 2b and 3b, Y (G—e)>Y (G—-)=Y (G—v—w).
If, on the other hand, G —e is disconnected, then Y (G —e)=max {Y(H), Y(H,)}
and Y (G —v—w)=max {¥ (H; —v), Y (H,—w)}. Because of 3b, Y(H{)>Y(H;—v)
and Y (H,)>Y (H,—w), which implies again the strict inequality (7).

Proposition 5b has been thus proved.

Proof of Proposition 6b. Apply 2b, 3b and 5b step-by-step to
those vertices and edges of G which are not contained in H.

Proof of Proposition 7b. If T is a spanning tree of G, then by
6b, Y(T)<Y(G). On the other hand, because of 8, the index and the matching
index of a tree coincide.

It is known [9] that among trees with n vertices, P, has the smallest index.

This proves the left inequaliyt in (2). Of course [1], Y (Pr)=2cos T I
n+

The right hand side inequality in (2) follows from 6b and the fact that every
graph with n vertices is contained as subgraph in K.

Note that a(Ky,) is equal to the Hermite polynomial of order n [6] and
therefore Y (Kp) is equal to the largest zero of the Hermite polynomial. Since the
equation « (Kz)=0 is not solvable by radicals [10], no explicit expression exists for
the matching index of the complete graph.

It is not difficult to see that equality on the left (resp. right) hand side of (2)
is obtained if and only if G is isomorphic to Py (resp. to Ky).

In the present paper we have shown that the zeros of the matching polynomial
possess the same fundamental algebraic properties as the graph spectrum. This
applies especially to the matching index. Our results suggest that there may exist
a more general connection between the two polynomials, which, however, remains
still to be discovered.
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