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ON GRAPHS WHOSE SECOND LARGEST EIGENVALUE DOES NOT
EXCEED 1

Drago$ Cvetkovic

Abstract: Graphs with second largest eigenvalue not greater than 1 are partially
characterized in this paper. Some properties of these graphs are described.

A.J. Hoffman posed the problem of characterizing graphs with the second
largest eigenvalue not greater than 1. We shall partially solve the problem in this
paper. As it will be seen, such graphs are, roughly speaking, complements of graphs
with the least eigenvalue not smaller than —2. Since the latter graphs have been
treated extensively in the literature (see [4], pp. 168—198), the present investigation
seems to be of some interest.

Let A4, 45,..., An a;nd }Tl, 72, ..., n be the eigenvalues of a graph G
and of its complement G, respectively, both in non-increasing order.

Theorem 1. For any graph G the following inequalities hold:
(1 NEN= — 1408, ,,,
93] )\n——i+1+)Tn-j+1<_1+n8n+1,i+1"

where 2<i+j<n+1 and 6, , is the Kronecker 3-symbol.
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Proof. We shall use the well-known Courant-Weyl inequalities. If X, Y
are real symmetric matrices of order n and if Z=X+7Y, then

3 Nrj1 @D <1 (X)) + 2 (Y),
C)) Miijra D20 i X) +2 i (X)),

where 2<i+j<n+1, and Az (M) denotes the k-th largest eigenvalue of the matri-
rix M.

Let 4 be the adjacen(f_)' matrix of the graph G and let A be the adjacency
matrix of the complement G of G. If X=4 and Y=4, then Z=J—I, where J is
a matrix whose all entries are equal to 1 and I is a unit matrix. Since the largest
eigenvalue of J—I is n—1 and the remaining eigenvalues are equal to —1, we im-
mediately get (1), (2) from (3), (4).

This completes the proof.

Corollary. Putting i=j=1 in (1) and (2) we get the inequality

NS,

which is noted in the literature (see [4], p. 112).
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Theorem 2. Let G be a graph with A,<1. Then G belongs to one of the
Sollowing classes:

a) the smallest eigenvalue of G is greater than or equal to —2;

b) exactly one eigenvalue of G is smaller than —2.

In addition, if G belongs to a), then 2,<(l.

Proof. Putting i=2, j=n—1 in (1) we get
) A+ h,_ = — L.

Now, k<1 implies A,_; < — 2, which proves the first part. Putting i=n— 1,
J=2in (2) we have

(6) LA -1
Hence, Ap<<~2 implies A,<Cl,

This completes the proof.
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As it can be seen from the tables of graph spectra from [4], there are no graphs
with 2,>>1 among graphs with at most 5 vertices. A list of spectra of 6 — vertex
graphs, produced by M. Doob and the author by means of a computer, shows that
there are exactly 23 out of 112 connected graphs on 6 vertices with 2,>>1. They
are displayed in Fig. 1.
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All graphs from Fig. 1 are complements of graphs with exactly one eigen-
value smaller than —2. On the other hand, there are graphs with A, <1 which are
complements of graphs with exactly one eigenvalue smaller than —2. One such
graph is represented in Fig. 2.

According to Theorem 2 if G has all eigenvalues
greater or equal to —2, then we have <1 or 2,=1 for
G. We shall discuss now when each of these two alternati-

ves occurs. Fig. 2

L (G) denotes the line graph of G. Let CP(n)=nK;, be the so-called cock-
tail party graph. If G has vertices x1, X3, ..., Xn and if ay, ay, ..., an are non-
negative integers, then the generalized line graph L(G; ai, a,. .., ay) consists
of disjoint copies of L(G), CP(ay),..., CP(as) plus edges joining vertices of
CP (a;) with all vertices of L(G) corresponding to the edges incident with Xx;.

Graphs with A,> —2 are known to be either generalized line graphs or
graphs which can be represented by the root system E; [1]. The latter graphs will
be called exceptional graphs.

Following [2], an eigenvalue of a graph is a main eigenvalue if its eigenspace
contains a vector with the coordinate sum different from zero. If 1 is an eigenvalue

of G which is not main, then G contains —A—1 as an eigenvalue of the same
multiplicity as G.

Theorem 3. Complements of graphs, whose smallest eigenvalue is greater
than —2, have the second largest eigenvalue smaller than 1.

Proof. The inequality A,> —2, together with (6), yields A <1.
This completes the proof.

All graphs with the least eigenvalue greater than —2 have been determined
in [7). According to this paper for a connected graph G with the least eigenvalue
greater than —2 one of the following holds:

a) G=L(T,1,0,...,0), where T is a tree,
b) G=L(H), where H is unicyclic with an odd cycle,
¢) G is one of 573 graphs that arise from the root system E,.

Corollary. Complements of graphs, whose all components satisfy a),
b), or c), have the second largest eigenvalue less than 1.

Let now G be a graph with the least eigenvalue — 2. If the multiplicity of —2
is greater than 1 a non-main eigenvalue of G is equal to —2 and G has ap=1. If
—2 is simple eigenvalue of G, it will be maped onto ;= — 1 of G if and only if it
is a non-main eigenvalue.

Therefore we have the following theorem.

Thorem 4. Let G be a graph with the least eigenvalue —2. Then G has
M <l if —2 is a simple main eigenvalue of G. Otherwise, we have 2=1.

Using results of [6] we can describe generalized line graph with a simple main
eigenvalue —2.
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Theorem 5. Let G=L (H;ay,ay,...,a,) be aﬂconnected generalized line
graph with the smallest eigenvalue —2. The complement G of G has the second lar-

n

gest eigenvalue less than 1 if either H is a tree, > ai=2 and there exist vertices
i=1

iand j in H which are at an odd distance with a;#0, a;#0 or H contains an odd

cycle with 3 a;=1. Otherwise G has the second largest eigenvalue equal to 1.
i=1

Proof We shall find connected generalized line graphs G with —2 being
a simple main eigenvalue. The eigenvalue —2 in line graphs is always a non-main

eigenvalue. Therefore we have > a;>0. In that case the multiplicity of —2 is

i=1

given by 3 ai+m—n, where m and n are the number of edges and the number of

i=1

vertices of H. Therefore H is a tree with > a;=2 or H is a unicyclic graph

i=1

n

with > a;=1. Now we should construct an eigenvector of —2 with coordinate
i=1

sum different from 0.

1° H is a tree with > a¢=2. Suppose a;=2, other a;’s being equal to O.

i=1
Then G contains induced subgraph displayed in Fig. 3. The only (up to a multi
plicative constant) eigenvector of G belonging to —2 has coordinates different
from 0 only on vertices of the mentioned subgraph. Consequently, the coordinate
sum is equal to 0 and —2 is a non-main eigenvalue.

1 11 -1
Z>1 2 2 -2<:1 :F 222 2<Z_1
Fig. 3 Fig. 4

Suppose now that @;=1, a;=1 and all other ai ‘s are equal to 0. The sub-
graph of G induced by vertices with non-zero coordinates of the eigenvector be-
longing to —2 is displayed in Fig. 4 for two cases (when the distance between
vertices i and j in H is 3 and 4). Obviously, the coordinates add up to zero when
this distance is even and the coordinate sum is different from zero if the distance
is odd.

2° H is unicyclic with > ai=1. The characteristic subgraph depending on
i=1
whether the cycle is of an even or of an odd length and depending on whether
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the vertex i of H with a;=1 lies on or outside the cycle, is displayed in Fig. 5.
Hence, the cycle must be of an odd length.

This completes the proof.

Let now G be an exceptional graph with the least eigenvalue —2. As earlier,
we have A,<1 for G. We have 2,<1 if and only if —2 is a simple main eigen-

Fig. 5

value of G. A connected exceptional graph with a simple eigenvalue —2 has 7,8
or 9 vertices. Hence, there is a finite number of such graphs. It remains to esta-
blish which of them have —2 as a main eigenvalue.

Concerning graph G with G having exactly one eigenvalue less than —2, let
us note the following observations:

1. If 4,<l1, then Ap—q >—2.
2. If A, is not a main eigenvalue, then A;>1.
We conclude with the next theorem showing some properties of graphs with 4,<1.

Theorem 6. If G is a graph with 3,<1, then the girth of G is at most 6
or G is a forest and the diameter of G is at most 4.

Proof. A circuit of length more than 6 and a path of length more than 4
have at least two eigenvalues greater than 1. By the interlacing theorem G cannot
contain such graphs as induced subgraphs.

This completes the proof.

Upper bounds for the diameter and for the girth mentioned in Theorem 6,
have been derived in [5] for complements of line graphs using forbidden subgraph
techniques. Now they are extended to all graphs with 4,<1 including, of course,
generalized line graphs and exceptional graphs.

pid
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Graph spectra can be used in solving graph equations (see, for example, [3]
where this is recommended as one possible direction of further investigations of
graph spectra). The strong restriction, that complements of line graphs have 1,<1,
enables immediately to solve the following graph equations:

0 L(G)=G;xG,,
(®) L(G)=G1+G,,
® L(G)=G %G,

where L (G) denotes the line graph of G and symbols %, 4+, * denote product,
sum and strong product of graphs respectively.

It is well known that eigenvalues of G| x G, are all possible products A; u;
where 1; is an eigenvalue of G, and 45 an eigenvalue of G,. If G; and G,,
are not trivial and not totally disconnected, then all solutions of equation (7) are
given by G =Kn,n, G, =Kn, G,=K, for if G; or G, would not be complete, G| x G,
would have two eigenvalues greater than 1.

Equations (8) and (9) can be treated similarly.

Equations (7)—(9) have been completely solved by non-spectral means [9].

Some characterizations of graphs with the second largest eigenvalue bounded
from above have been given in [8]. It would be interesting to find connections
between [8] and results from this paper.
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