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THE SPECTRUM OF LINE GRAPHS OF SOME INFINITE GRAPHS

Aleksandar Torgasev

Abstract, We introduce the notion of D-spectrum of an infinite graph,
we prove some of its properties, and in particular we prove an exstension to
the infinite case of a theorem by M. Doob concering the value —2 in the spec-
trum of line graph of finite graphs. In addition, we determine the D-spectrum
of line graphs of almost all complete k-partite and infinite graphs,

0. Introduction

Our original aim was to determine the usual spectrum (as defined in -[4])
of the line graph of some complete multipartite infinite graphs in some simple cases,
assuming that suitable labellings of their vertex sets are chosen.

But we immediately observed that this desire encounters with great difficulties.
That motivated us to introduce a second kind of spectrum, the so-called D-spec-
trum, which is more easy to determine in these situations.

This notion is, also, much more adopted to line graphs because now we can
attain the value A=—2 in the spectrum of line graphs. It is not possible for the
usual spectrum because A>>—2 for any eigenvalue A of L(G), as was proved in [4].

Throughout the paper, we adopt all definitions, notations and results con-
cerning spectra of infinite graphs from our earlier papers [4] and [5].

By an infinite graph, we always mean a denumerable connected (undirected)
infinite graph, without loops or multiple edges, whose vertex set V(G) is labelled
by the set N of natural numbers.

Its adjacency matrix A=J[ay] is an infinite N x N matrix where

. a'*i=2, if i, j are adjacent]
Y10, otherwise '

and @ is a fixed positive constant (0<a<C1).

The spectrum o(G) of a graph G is the spectrum of this infinite matrix,
regarded as a symmetric Hilbert-Schmidt operator in a correspondlng Hilbert
space H, with a fixed orthonormal basis {e;} (i EN).

14 Publica tions de PInstitut Mathématique



210 Aleksandar Torgasev

The spectrum o(G) of a graph G is always real and it consmts of a coun-
table sequence of eigenvalues and the zero.

For any connected infinite graph G we define the D-spectrum of G as the
spectrum of the eigenvalue problem Ax=XxDx, with D=diag (1, a% a*, ...).
This spectrum is denoted by o¢p(G).

Since the multiplicity is not essentional for our aims, we discuss only
the set of all distinct D-eigenvalues of graph. We only note the fact that the
multiplicity of an eigenvalue A& o, (G) can be infinite, too.

1. General properties of D-spectrum of an infinite graph

Since D is a non-negative operator, the D-spectrum is always real, but as
the example of an infinite path shows, it can be empty. Moreover, it need not
be bounded. _

Obviously, the D-spectrum of a graph G is determined by the system of
equations

[\%E:

¢y byyi=xy;  (EN),

]

j=1

where b”—l if i,j are adjacent and 0 — otherwise, and y;=a'x; (iEN) is the
»weight”” of x at vertex i. Evidently, a vector {y;} which satisfies (1) is an eigen-
-vector -if and only if ,

s &
3 yifai=3 wi=|al<oo.

Examples. (1°) If G is an one-sided infinite path, then ¢p(G)=9.

(2°) If G is complete infinite graph K,, then it can be shown that op(G)=
={—1}.

(3°) If G is a complete bipartite infinite graph K(Ny, N,), then it can be
shown that 6p(G)={0}

(4°) Let G=K(Ny, N, N;) be complete tripartite infinite graph. Then it
can be proved that ¢p(G)={0} if at most one of N; is finite or Ny, N, are finite
but | N; | #|Ny|, and op(G)={0, —n} if |N;| =|Ny| =n< o (thus N3 is
infinite).

The example of an infinite path shows that the D-spectrum of a line graph
can be empty, too.

An important question is whether D-spetrum of a graph G is invariant under
relabellings of its vertex set. In a general case, we conjecture that it is not, but so
far we have not come across such an example. So we have:

Problem. Does there exist any infinite graph G whose D-spectrum is
dependent on labellings of .its vertex set?

Neverthless, we can note a characteristic case when ¢p(G) is invariant under
relabellings of V(G).
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. Proposition 1. If in each labelling of the vertex set V(G) of a graph
G, a finite (i.e. with finitely many non-zero coordinates) eigenvector x=0 corres-
ponds to each ACop(G), then the spectrum op(G) of G is invariant, under rela-
bellings of V(G).

Proof. If":Ax=2Dx (x=Zxie;#0 is finite) in a labelling of the set
V(G)=N, then

_Zl bijyj"—" Ay (ienNy,
i=

where y;=a'x;0 for at most finitely many i EN. o
In any other labelling . of V(G) (w is a permutation of N), relation A4, x=

=X Dx takes the form -
2 bizey=2zsq (iEN),
. :=1 '

where z;=y,-1q),

o

But then z;£0 for at most finitely many jEN, so that z* % < o0,
j=t
which means that A& op (G,,). The corresponding eigenvector is then {%,} = {z,/a).

Since the converse statement is also true, we get that op(G,)=0p(G). [

Next let G be any infinite graph, and Ny, N, . .. (finitely or infinitely many)
the equivalence classes in V(G) with respect to the equivalen cerelation ~ deti-
ned by: x~y iff vertices x and y are non-adjacent and have the same neighbours.

. Then it can be easily checked that for 2:£40, y;=const for i €N, what in view
of condition X y?2/a*’< co, if N, is infinite, implies that y;=0 (i EN,). Hence;,
if there are only finitely many finite subsets N,, then Proposition 1 implies that
op(G)\{0} is invariant under relabellings.

The last observation has the following consequence.

Proposition 2. Ifagraph G has a finite spectrum o(G), then:

(1°) 0Son(G) in any labelling of the vertex set;

(2°) 60(G) is invariant under relabellings of its vertex set;

(3°) 60(G) has at most m elements where m is the number of finite subsets

Ny which are finite.

Proof. Indeed, if G has a finite spectrum o(G), then as it was proved: in
[5], 0&€0(G), so that 0o p(G), and G is of “finite type”, i.e. there are only finitely
many subsets Np in V(G) (say m), so that op(G) is invariant under relabellings.

To prove (3°), let Ny,..., Ny be finite and Npyq, .. ., N, be infinite sub-
sets of V(G), and let A40. A . ;

14*
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Then we easily f ind that for each N, yi=const (i € Np), and substituting vp,=
=y,INp| (IEN, ., k), we get that system (1) is equivalent with the finding
non-trivial of solutlcns 21, . .- » Um Of the linear system of the type k xm

> 8y v =n0,/|N}] G=1,...,m j#£i)

j=1
> 3;0,=0 @=m+1, , k),
=1

where 3;;=1 if N;, N; are adjacent, and 8;;=0 itherwise.

But since G is connected, we get that §;;70 for at least one i>m+1 and
]<m, so that an easy argument of linear algebra shows that there are at most m—1
real solutions of this system (taking in account their multiplicities, too). This proves
(3% «

We note that the bound is achieved in (3°), for instance, in the case of the
graph from Example 4°.[]

We note that if all characteristic subsets Ny of a graph G are infinite, then
immediately op(G)=g, so that it is trivially invariant again.

2. D-spectrum of line graphs

' Concerning the D-spectrum of line graphs, we have at first the following theo-
rem.

Theorem 1. For any infinite graph G we have 7>—2, for arbitrary
AEop(L(G)), in any labelling of the vertex set of the line graph L(G).

Proof. As it was proved in [4], we have
R'R=A(L(G))+2D,

where R is the vertex-edge incidence matrix of graph G.
But since R'R is a positive operator, we find

(AL(G) x, xy+2{Dx, x) ;0 ( (xEH).r/

Now A(Z{G))x=x Dx implies (A\+2) {Dx, x) >0 which, since D is strongly
positive operator, means that A+2 >0.]

The problem which we consider is when A= ——2 isa D—elgenvalue of the line
graph of a graph G. Then we say that G has (D;—2) property.

" As in the finite case, it is easy to see that G has (D; —2) property 1f and only
1f there is an x=0 such that Rx=0 ([2, p. 169]).
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Moreover, if the indices of G are v;=i (i&N) and the vertices of L(G) are
Ji (i €EN), and if fj(i) means that the edge /7 is incident with vertex v;, then Rx=0
is equivalent to ;

) : Z alx;=0

for each »;€V(G).

We also notice that the last series is always absolutely convergent so that its
sum is independent of the order of its members. Here, oy=a’/x; is the welght of x
at the edge f;. :

The following theorem extends a result of M. Doob (cf. [2, p. 169] or
[1D. :

Theorem 2. If G is a connected infinite graph, then it has (D; —2)
property if and only if graph G has at least one even cycle or two distinct odd
cycles.

Proof. Asin finite casey, one part of this claim is trivial ([2, p. 168]). Namely,
if G has at least one even cycle or two distinct odd cycles, then easily it has (D;—2)

property.

Next we want to prove that if G is a tree or -if it has exactly one odd cycle
and no even cycle, then it does not have the above mentioned prorerty.

1. Assume at first that G has (D; —2) property and that it is a tree.

Then if B is the adjacency matrix of graph L(G) in some fixed labelling of
its vertex set, then Bx=-—2 Dx is equivalent to

Z @ x=0  (iEN),
Yy10]
or to Zoy;=0 for each iEN. :
Consider an arbitrary edge fj=f,, and denoting oy,=«, prove that «=0.
The following elementary inequality will be used in the proof :

Let &y, ag,... and pi, pa, ... be twa finite or infinite sequences of positive
numbers such that (if they are mfznlte ) the series Z o, Z pi converge. Then:

(3) 7 zl “iz/Pi>‘(§ “i)z/ (2 Pi)-

Equality holds true in (3) if and only if wj=cp: (for every iCN) where
c>0. : ‘

Now let for every jEN, edge f; joining vertices p(j) and ¢(j) of G (p(j)<
<q(j)). Then there is at least one edge fCE(G) which is incident to a vertex of fi
(say p(j)), and let

={EN|filp(j)), i#j}-
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Let next M), be the set of all indices i, €N where fi, is adjacent to some fu
(1 EM,, i, M) and i, #j.

Similarly, the sets of indices M3, My, ... are defined.

Certainly, if some of the sets Mi(k=2,3,...), say M, is empty, it can easily
be concluded that a;=0 ({©SM,_,), upon that ;=0 (f€M,_)), and so on, finally
a=aj;,=0.

Hence, we suppose that all sets M;, M,, . .. are non-empty, and consequently
the sequence {My, M,, ...} is intinite. . ,

Here each of the sets M; (i>1) can be finite or infinite.

To abbreviate the next notations, denote for any v&N:

Sv= z O(1'2/0(‘2’.9 Qv= z aZi:

icM, ieMm,
P,= > o], Py= Z ;.
iEM, €M,

Now applying inequality (3) we obtain at first

S = 21:\4 °‘i2/42i>ﬁ12/Q1>P12/Q1-
icM;

But since in view of (2) Py=—a, we obtain inequality
“ S, =a?/Q,.

Next devide the set M, into subsets M, (1), My(2), ... in a natural way and
apply (4) to vertices v; (iEM;). We obtain:

S, (1) = 'GME( ) alla* =020, (v),
i 2{(T

and therefrom:
Sz = Z Sz (T)> z OC'|.-2/Q2 (T)
Now (3) yields

©) S,= (TZ | )2/ (TZ 0, (1) = /Q,.

Next by applying inequality (5) to vertices kw ({&M>), we similarly conclude
that S3>a2/0;.
- In a general case, we obtain:

(6) S;= 2 a2a*>a?Q . (I=12,..).

ieMy
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Theretrom it follows:

S=28= 2 a2a>2 a0,
I=1 ic UMy v=1
v
thus
@) S>o? 211 /0,.
v
But since for every n=1,2, ... the following is valid:

n n ) —1
S oz (3, 0) =a-amia,

assuming that a0 we get a contradiction from (7).

Hence a=a;,=0, for every edge f;E(G), and thus x=0.

Consequently, graph G cannot have (D; —2) property.

2. Now assume that G has (D; —2) property, there is exactly one (odd)
cycle iy, iy, ..., iap+1 in G, and x5~0 is any D-cigenvector of B corresponding to
the eigenvalue A=-—2.

Thus graph G consists of this cycle and of 2 p+ 1 subtrees T3, . .., Top+1, SO-
me of which may be degenerate. :

But then using the previous part of the statement for trees, one can easily
infer that for every fiEV(Twm) (m=1,...,2p+ 1) the corresponding coordinate
x;=0, and oj+oy43=0 (j=iy, ..., ipt1; bp+2=11). This obviously implies o=
=...=0p+1 =0, thus x=0, which is a contradiction.[]

3. D-spectrum of line graphs of .complete multipartite infinite graphs

Consider now any complete k-partite infinite graph K=K(Ny,...,N) (g=1)
or complete infinite-partite infinite graph K(Ny, Ny, . . .). We briefly call the subsets
N, ”parts” of K and index the vertices of each part N, by numbers p; r=12,...,
, | NI <+ ).

Next, label the edges of K by non-negative integers 1,2,... in an arbitrary
way. Let j(m, I; p;, pm)=i(m, I; pm. p) (A<pi<|Ni| <+ 005 i=1, ..., q; I#m)
be the label of the edge joining vertex p,&N; with py ©Np.

If then x(I, m; p,, pm) are the coordinates of an arbitrary vector x CH in an
orthonormal basis {e(l, m; p, pm)} of space H, we denote for brevity:

al U m 2 P x (1, m; py, )=y, m; Ppy Pu)s

| Nm |

Xl,m(pl)= z y(ls m; Py pm)a
pm=1

and Xl,m:: ;Xl,m(pi):'Xm,l (lim)
{
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Assuming next that the subset N, is infinite, we have ‘that the series
> X, 1, m(py) is obviously absolutely convergent, so that X; » (p)—0 if p~O0.
. ; -

In the sequel, we shall use this fact several times.

We shall also often use the fact that any infinite sequence of natural numbers
must converge to infinity. So, if for instance the subset N, is infinite, we shall
always have thati(/, m; p, pm)— 00 as pm— co, and consequently y(/, m; p, ppm)—0.

Theorem 3. Let G be the line graph L(K,) of the complete infi-
nite graph K,,. Then in any labelling of its vertex set, ‘

op(G)={—2}.

Proof. Of course, —2&op(G) by Theorem 2.

Consider now an arbitrary indexing of the vertex set V(L(K..))=N by lndlces
ip, )=iq.p) (p,qEN; p#9g).

Let A—2 be any D-eigenvalue of graph G and x#0 be a corresponding
eigenvector. If x(p, q) are the coordinates of x in a basis {e(p, ¢)} (p<gq) of H,
we have that the relation Ax=»X Dx is equivalent with relation

(8 rgp a(p, r)x(p, r)+ ;q a(g, )x(@, =aa(P, O)x(p, 9 (P#q)

where a(p, ¢)=a'®»? (p#£q), and a=nr+2.

Now write (8) in the form
® X+ Xy=ca(, )x(p,q9)  (W#9),

where X, = > a(p,r)x(p,r), and let g—co. Then X,— 0, i(p, g)—>oc and
r#p

a(p, 9) x(p, 9— 0, so that necessarily X,=0, for every p&N.

Hence, for «#0 relation (9) yields x(p, g)=0 for every ps#q, thus x=0,
which is a contradiction.lj

Theorem 4. Let G be the line graph of complete bipartite graph
K(Ny, Ny). Then in any labelling of its vertex set:

@) op(G)={-2}, if both N,, N, are infinite;
(b) 6p(G)={—2,a,—2}, if N, is finite and |N,|=a,>1;
(© op(G)={—1}, if N, is finite and |N,|=1.

Proof. In view of Theorem 2, we obviously have that —2&0p(G) in the
first two cases (a) and (b).
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Consider an -arbitrary indexing i(1, 2; p, 9)=i(2,.1; ¢, p) of the vertex set
V(G)=N (p<| Ny |+ >, ¢&N) and a corresponding orthonormal basis {e(1,2;
p, q)} of H.

Case (a).-If
X, (= Zly(l, 20,9, X, ,@= Zly(l, 2; p, 9),
qg= =

where y(1,2; p,q)=a’:% 2D x (1,2; p,q), then relation Ax=»x Dx is equix;alent
to relation

(10) X, , D)+ X, @=0y (1, 2% pd) (2 gEN).

Assuming that As%—2 (i.e. a£0) and x#0, let g— oco. Then i(l, 2; p,q)— ©
and X, ,(¢)—0, so that (10) gives X7 2(p)=0. Similarly X, ,(g)=0, which implies
x=0 (a contradiction). ‘

Cases (b), (c).-We similarly find that relation Ax=2A Dx (x=x+2540, x5£0)
is equivalent to

an X,,»+X, ,@=ey(1,2; p,9) (p<|N,|, gEN).

Letting g— oo we have that i(1,2; p,g)— o0, so that from (11) Xy,2(p)=0. This
yields '

(12) X, (@ =ay(1,2; p,q) (gEN).

Hence if |N;| =1 (p=1), we obtain that Xi,,(¢)=« X;,2(¢) and conse-
quently a=1 (because x(1,2; p,q)+~0 for at least one ¢ ©N). Thus A=—1.

Moreover, it is easy to see that any vector x=£0 satisfying relation

00

2 du 1,4)x(l, 2; 1, Q)=09

g=1

is a D-eigenvector corresponding to this D-eigenvalue. k

' Let now | Ny |>1. Then since x(1,2; p, 9)70 for some p, g, assuming that
«#0 we find from (12) that X;,,(q)#0 (for @ ¢EN). But then immediately «=
= IN} l =d, thus 7\=(11——2.

- Finally, construct at least one D-eigenvector cofresponding to this D-eigenvalue.
Take: x(1,2; p, ¢)=0 (¢>2), x(1,2; p,1)=a— 22D x(1,2; p,2)=—a" 02 P2
(p=1,2,...,a;). Then (11) is obviously satisfied with «a=A+2=ay, and since x
is obviously finite, we get the statement.[] ’ ’
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Theorem 5. Let G be the line graph of complete. k-partite infinite
graph (k=2), whose all parts are infinite. Then in any labelling of its vertex set

op(G)={—2}.

Proof. We have that G=L(K), where K=K(Ny, ..., Ni) and all N, are
infinite.

Index the vertex set V(L(K))=N by an arbitrary indexing i(J, m; p;, pm)=
=im,l; pm,p) (, m=1,...,k; I m; p,pnSN) and choose an orthonormal
basis {e(/, m; p,, pm)} of H. .

Then relation 4x=x Dx is equivalent to the following relation:

(13) g X,,.(p) + ;tx,, A(P)=ax(r, t; p,,p)  (r#1).

Putting in the above relation p— co we have that i(r, ¢; pr, pr)— o, so that
the first summand in (13) must be zero. Similarly, the second summand in this
relation must be zero too, whence immediately a=0, i.e. A=—2.

Since obviously —2Cop(G), the theorem is proved.[]

In a quite similar way, we get the following.

Theorem 6. If G is the line graph of a complete infinite-partite graph
whose all components are infinite, then in any labelling of its vertex set, ¢p(G)=
={—2}. '

Theorem 7. Let G be the line graph of a complete k-partite infinite
graph (k>3) with exactly one finite component. Then in any labelling of its vertex
set, op(G)={—2}. ‘ :

Proof. Let G=L(K), where K=K(Ny, N,,...,Nr) and only N is
finite. Then in view of the presence of N,, N3, obviously —2 Eop(G).

Now choose an arbitrary indexing of the vertex set ¥(G)=N by indices
ir,t; propy) (nt=1,...,k; r#t; p1<|Ny|, piEN, i=2).

Then relation Ax=A Dx (A#—2, x£0) is equivalent to the following two
kinds of relations:

k
(14) ZZXL s(p1)+ ng, s(p,)=ocx(1, r, pl’ pr) (’.>2),

(15) g X, (p)+ ;tx,s(p,)=«x(r, t; b p)  (EL o £22).

Now letting p,—co in (15), we immediately have that all x(r, #; p,, p)=0
(r##t; r, t=2).
Hence X, (p)=0 (2<r, s<k), and since 2, X, ,(p,)=0 we obtain that
sFEr

X1 (D=0 (r=2).
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Therefrom (14) becomes:
(16) 2 X () =ax (L1 21, P
Letting now p— oo, we find from (16):
2 X, (p)=ax(l, 75 By, 2)=0,

thus since a5=0, x(1, r; p1, pr)=0 (r>2) and consequently x=0. ]
Similarly, we have the following.

Theorem 8. Let G be the line graph of a complete infinite-partite in-
inite graph with exactly one finite component. Then in any labelling of its vertex
et, op(G)={—2).

Theorem 9. Let G be the line graph of a complete k-partite infinite
graph (k> 3) with exactly one infinite part. If these parts are N;, Ny, . .., Ni (N] —
~— infinite), then in any labelling of its vertex set,

sp(@)={—2,a,+ ... +ar—2},
where a;= | Ny | (i=2,...,k).
Prof. Obviously —2Eep(G) due to the presence of sets Ny, N,, Nj.

Next, as in previous theorems, we get that relation Ax=2A Dx is equivalent to
the following two kinds of relations:

(17) éle,s(pI)'{_ Z Xm,s(.pm)=°('x(la m; pls pm) (2<l: m<ka l;ém),

(18) ‘%Xz,s(l’z)'f- ;Xl,s(p1)=ocx(l, L p, py) (I=2).
Letting p,—oo in (18), we find
> 5. ()=0  (=2,...,h),

so that (17) implies x(/, m; p, pw)=0 (I, m>=2;1%m), thus X;,m(p)=0.
Consequently, (18) becomes

(19) ,§1X,,(p1)=ax<l, 15 p,p) (1>2).
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By summing the last relation in p;=1, ..., = | N;|, we find

(20) S X, () =—X,,,(p) (=2,...,k).

s#1 a;

But since X1, ,(p,)#0 for at least one /=2, . ,k and p, €N, because in the
opposite case we would have from (18) (for «70), x(I,1; p, p,)=0, thus x=0,
the linear system (20) has a non-trivial solution for at least one p,.

Hence
m %

@1) det (p) = det(l— ~)=0 m,r=2, ... k).

a,

‘But «=0 is a root of (21) whose multiplicity is k—2, and a=ay-+... +ax
is a simple root of (21).

Assuming that «s%0, we necessarly have that a=ax+... +a;.

We yet construct at least one D-eigenvalue corresponding to this D-cigenvalue.

Put: x(I, 1; p, p)=0 (f p=3 or p,=3; r=2 , k), and

x(, 1; p, pr)=ﬁr_ai(1,2;pl, D—itl 5 2,0 x (1, 2; p,, 1)=
a,

:ﬂ(_ 1)Pr~1 i (% Py D=iCl, 75 P POFiCL 25 3=Pr, D
a,

(v, =1, 2),

and all other coordinates are zero.

Then one can easily check that relations (17), (18) are valid witha=a+ . . . @z,
and the corresponding eigenvector x is tinite, thus the corresponding series fox
|l x [|2 converges. This completes the proof.[]

Theorem 10. Let G be the line graph of a complete infinite-partite
graph with exact y one infinite part. Then in any labelling of its vertex set, 6p(G)=
={—2}

Theorem 11. Let G be the line graph of a ycomplere k-partite infinite
graph (k>4) with at least two finite and at least two infinite parts. Then in any
labelling of its vertex set, op(G)={—2}.

Proof. Let G=L(K) where K=K(Ny, . .., Np, Npsas - .., Np) (p=2, k—
—p>2), where Ny, ..., Np are finite and Np+q, ..., Ni are 1nf1n1te Then due to
the presence of Npiq; Np+2, obviously —2 EcD(G) .
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Next, relation Ax=Xx Dx is equivalent to the following three sets of relations:

@) ZX )+ 2 X R =ax(oms P B (m=1, . p I2Em)
@ ZX@)+ 2 X @)=ax(ripop) (=L, 5 r=pr])
@4 g X, (P) + ;X,,s(p,)= ax(r 5 pop) (2P F15 rE).

From (24), we easily find that for a=£0 it follows
(25) g X, (p)=0,

and consequently x(r, #; pr,p)=0 (r,t=p+1; r#t).
Substituting now (25) in (23) and letting pr— oo we find

(26) 2 X, ,(p)=0,
sl

so that as£0 implies x(/, r; p, pr)=0 (I<p; r=p+1).

Finally, substituting (26) in (22), we get x(/, m; p, pw)=0 (I, m<p; I#m),
and hence x=0 (contradiction).

This complets the proof.[]

Theorem 12. Let G be the line graph of a complete infinite-partite
graph with at least two infinite and at least two finite parts. Then in any labelling
of its vertex set, op(G)={—2}.

We end with a problem.

Problem. Determine the D-spectrum of the line graph G+L(K,)
of a complete infinite-partite graph whose all parts are finite.

So, we calculated the D-spectrum of line graphs of all complete k-partite and
infinite-pactite infinite graphs, except infinite-partite graphs whose all parts are
finite. Namely, the above methods were not suitable to be applied to this remaining
case.

We also note that, although the applied methods have some similarities, we
were not able to give a unique proof for all cases considered.

Acknowledgement. The author is very indebted to Prof. D. M. Cvetkovié for seve-
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