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THE SPECTRUM OF INFINITE COMPLETE MULTIPARTITE GRAPHS
Miroslav M. Petrovié
(Communicated 27. 02. 1981.)

Abstract, In this paper the spectra of infinite complete multipartite graphs
are considered and a spectral characterization of such graphs is given.

1. Introduction

Throughout the paper, G denotes an infinite denumerable (connected or
disconnected) undirected graph, without loops or mulfiple edges, whose vertex
set is X={x;, x,, ...}. !

According to [5], its adjacency matrih 4 =(a;) is an infinite N x N mat-
rix, where ay;=a*/=? if x; and x; are adjacent and a;=0 otherwise (a is a
fixed constant, 0<<a<C1).

The adjacency matrix 4 of G corresponds in a unique way, with a bo-
unded linear selfadjoint operator 4 in separable Hilbert space H, whose matrix

representation in a fixed orthonormal basis {e;}i is /4

The spectrum o (G) of G is defined to be the spectrum o (4) of the ope-
rator A corresponding to the adjacency matrix /4. Since the operator 4 is al-
ways nuclear ([3]) and consequently compact, its spectrum consists of a sequ-
ence A, A,.... of non-zero eigenvalues (each appearing according to its mul-
tiplicity, which is always finite) and the zero.

We notice that the vertex set X of a graph G can be partitioned uniqu-
ely, into a finite or infinite number of disjoint subsets X, X,, ... so that any
two vertices from the same subset are not adjacent, and any two subsets are
completely adjacent or completely non-adjacent in the graph G. -

The sets X,, X,, ... are equivalence classes of an equivalence relation in
X defined as follows: the vertices x and y ate equivalent iff they have the
same neighbours.

- The subsets X, X,,... are called the characteristic subsest of graph
G((6]). The subgraph g of G, obtained by choosing a fixed vertex from each
of the characteristic subsets, is named the canonical image of graph G.
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An infinite graph G is called a complete multipartite graph if any two
characteristic subsets X; and X; (i#j) are completely adjacent in the graph G.

A complete multipartite graph G having k characteristic subsets X, ... X},
is denoted by Kx,, ..., Xe.. A complete multipartite graph G which has infinitely
many characteristic subsets X, X,, ... is denoted by Kx,, x,,....

2. On the spectrum of complete multipartite graphs

If the vertices of a complete multipartite graph G are denumerated so
that X,={x1, % ...}, Xp={x2 xg ...},..., then in the permuted basis
{ei, e, .. }U{ez, ez, ...}U... of the separable Hilbert space H, the adja-
cency matrix 4 of G has the form:

0 04‘12 07%13 e
0%21 0 07%23 e

M A= Ay An O

where
g +if-2 gt +id-2 .
PR v e S B A
. . g=p+1,p+2,..)
T
and cﬁ‘qp=d%pq-
Let N ={i* i, ...} (k=1,2,...) and denote:

) Ce= a2

&
tquk

The following theorems describe the spectra of complete multipartite gra-
phs. At first, we consider the case when such a graph possesses infinitely many
characteristic subsets.

Theorem 1. Let G=Kx,, x,,... be a complete multipartite graph with
infinitely many characteristic subsets. Then its spectrum is infinite, and the next
is valid:

(@) If G#£K., (i.e. not each X, is a singleton), then A=0 is its eigenvalue;
if G=K.,, then A=0 is not its eigenvalue.

() A= —¢; (i=1,2,...) is an eigenvalue of G iff the number c; appears
in the sequence c,,c,, ... p-folds (p>1), and then its multiplicity is p—1.
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(c) There is exactly one positive eigenvalue of G, and all other eigenvalues
distinet from 0 and -—¢; (i=1,2,...) are simple and determined by equation

3) foy=S —%_ 1,
k=1 A+cy

Proof. Let A be an arbitrary eigenvalue of G and x=(x, x,, ...)7=£0
be a corresponding eigenvector. Then from Ax=Ax we have

1C))

a,-jxj:?\xi (l=17 25"‘)'

%L

1

S
i

Since then the adjacency matrix of G is of the form (1), relation (4) becomes

1 K1 Kl
G 2 d* Xt > 4t 2x,~§—l+ 2 4t 2x,-l;+1+ cees
17N ’J;—IGNk—l i§+1€Nk+1
A K
=—0xk((pENy k=1,2,...).
ar 7
Consider at first the case A=0. Then from (5):
> Y=Y k=1,2,..).
ve=1
v o
where Y,= 2 4’7 Zx,.; (v=1,2,...). Since the series> Y, is convergent, it
EN v=1
v
follows that ¥, =Y,= ... =0, ie.

» aiqxi;=0 ~v=1,2,..).
BEN,

If now d, denotes the cardinal number of X,(v=1,2,...), then d,=1 implies

xiv=0, and d,>1 implies that the vector x'—= > Xpey is orthogonal to
! PEN, . :
the vector @’= D, ai; e,> Where ¥, ’CH,=F {ei\l,,ei;,, ...}. In the Iatter
1)
gew,  °
case, the vector x* forms a corresponding closed hyperplane Hj qf the space
H,. Hence, we get that, except for the case d,=1 (v=1,2,..), ie G=K°°’
A=0 is an eigenvalue of G. The corresponding proper subspace is then

HOH®...
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Now, let As%£0. Then from (5) we easily find:

&k
xk=a” " xi (KENg k=1,2,..)
and (5) reduces to relation

2 ¢y Atc
(6) Sy xy=——rxk (k=1,2,..) :
al

v
3 1
v=1 ght !

Since x#£0, at least one of Xk (k=1, 2,...) must be non-zero. For

instance x;; #0. Then from (6) we find

k.
Q) (A +edxk =ai=H (ve)xy  (k=2,3,..).

Now, since x0, one can conclude that A= —¢,(k=1,2,...) is not an
eigenvalue of G if ¢, appears in (2) excatly once.

If ¢, appears in (2) exactly p-times (p>2), then A= —c, is an eigenva-
lue of G whose multiplicity is p— 1. If, for instance, ¢,=c,=c;, then the vec-
tor x (where x; and x; are arbitrary, Xy =x;="---=0 and x; is deter-

mined from (6)) is an eigenvector corresponding to the eigenvalue A= —c;.

We notice that sequence (2) cannot contain infinitely many equal ele-
ments ¢, because all ¢,>0 and

a2i—2,_ 1

Cp = = .
k
1 1—(12

1

®
iM8
T8

If a2 —¢; (k=1, 2, ...), then (7) implies:

_d-t(te)

X (v:Z, 3, )
A+oe,

iy i

Now substituting xy (v=2,3,...) into the first relation (6) we get
that non-zero eigenvalues of G distanct from —¢, (k=1,2,...) satisfy equa-
tion (3). Since the corresponding eigenvectors are uniquely determined, these
eigenvalues are simple.

Besides, it is easily seen that the converse is true. Namely, if A is an
arbitrary root of (3), then A is a simple eigenvalue of graph G.

Let all mutually distinct elements in (2) be ordered in a decreasing se-
quence c¢;,, Ci,, ..., and let I,=(—c;, —c,-v+1) ~v=1,2,..).
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Then it can be shown that the functional series on the right side of (3)
can be differentiated in each of the intervals (— oo, —¢,), I, (v=1,2,..)),
(0, ). We get that in all these intervals:

W= — S —% o,
o= 3§

From that we conclude that the function f(2) is strongly monotonically
decreasing in all these intervals.
It can also be shown that if v=1,2,...,
lim f()=— o0, lim f(A)=+o and lim f(3)=0.

A=» —Cjy,—0 A —Cj,+0 A—>+ o0

Hence, equation (3) possesses exactly one root in each of the intervals
I, (v=1,2,...) and (0, o).
Hence, the theorem is proved. B

Now we consider the case when G possesses finitely many characteristic
subsets.

Theorem 2. Let G=Kx,, ..., x, be a complete multipartite graph with
finitely many characteristic subsets. Then

(&) A=0 is an eigenvalue of G;
() A= —c¢; (i=1, ..., k) is an eigenvalue of G iff the number c; appears
in the spquence c,, ..., ¢, p-times (1<p<k), and then its multiplicity is p—1;

(©) G has exactly k non-zero eigenvalues, exactly one of which is positive.
The eigenvalues distinct from 0 and —c¢; (i=1,..., k) are simple and determi-
ned by the equation
. ¢
A

k
f0= 5 1.
i=1

Proof. Graph G=Kx,,...,x, is of a finite type k and its canonical
image g is a complete finite graph with k& vertices. Since g has exactly & non-
-zero eigenvalues (taking into account their multiplicities too), graph G must
have exactly & non-zero eigenvalues (see [6], Theorem 1).

Since the spectrum of a compact selfadjoint operator 4 is finite iff its
range R(4) is finite dimension, we conclude that A=0 is an eigenvalue of G.

The remaining part of Theorem 2 can be proved analogusly to the cor-
responding part of Theorem 1. W

3. A spectral characterization of complete multipartite graphs

We first quote two auxiliary results.
Let G, be a (finite or infinite) induced subgraph of an infinite graph G,
whose vertex set is X,={X;, X;,,...}. Then its adjacency matrix 4, is the
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corresponding submatrix (a,.p ,.q);' thus the vertices of G, have weights a't—1,
a1, ..., respectively. ‘

Let Hy=_%{e;, e;,, ...} be the closed linear hull of elements e;,, ey, ...
and P:H—H, be the orthogonal projection of H onto the subspace H,. Then
the spectrum 6(Gy) of G, is defined to be the spectrum o (4,) of the operator
Ay=PAP|g,. Its mairix in basis {e;, e;,...} of H, is represented by the
matrix oA, .

The following theorem gives @ relation between the spectrum of G and
any induced subgraph G,.

Theorem 3. (Interlacing Theorem). Let
M- >0 A< < <0
be the sequences of positive and negative eigenvalues of graph G, respectively,
and let :
wl=pi>- >0 pi<p<---<0

be the corresponding sequences of positive and negative eigenvalues of an induced
subgraph G,. Then

M=wh ow <, n=1,2,..).

Proof. The proposed proof is similar to that in the finite dimensional
case (see [2], p. 405). '

By virtue of a known theorem (seec [4], p. 256) we have

AF= min [ max (4x,x)], pt= min [ max (4,x, X)L
Y1, .oy ¥n—1€H x€H, || x|}=1 21y veny Zn—1€Ho xEHy, || x]|=1
XLVl eve s Yn—1 X121y 000y Zn—1
Since
max  (Ax, X)>  max (4x, x)= max (4, x, x)
x€H, ||x||=1 xEHy, || x][=1 xEH,, Hx|]=1
XLVl eeesYn—1 XLVt oo In—1 xXLPyi, e.. Pyn—s

we immediately have:

M= min [ max (4% x)]> min [ max  (4x, X)]=p.
Y1, ..., yn—1€H xEH, ||x||=1 Piyeees Yn-1€H XEHy, |[x]i=1
X1¥ieee s In—1 X1Pyi, .., Pyn—y

Further, by applying the analogous statements concerning %, and u, one
can show that 2, <<p,. B

The following lemma gives an expected relation between the spectrum of
(finite or infinite) graphs G,, G,, ... and their infinite union U G;. The uni-

H
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on U G; of graphs G,=(X, U)), G,=(X,, U), ... (X;N\X;= @, i#]) is. the
graph G=(X, U), where X=J X,, U=U U,.

Lemma. The spectrum of an infinite union U G, of graphs G, G,, ...

1
coincides with the union of their spectra o (G,), c(G,), ... including zero:

G(Ll_) Gz’):(kl:) G(Gi))u {0}.

Proof. If X;={x;,, X;,, ...}, put H,=_F%{e,, e€,,...}. Then H, (i=
=1, 2, ...) are closed mutually orthogonal subspaces of H and H= > @ H,.
i

But each of graphs G,, G,, ... is an induced subgraph of the union. Let
i be the adjacency matrix of G;, and 4, the corresponding operator on H;
(G=12,...).

Then the subspace H; is invariant under 4, i.e. 4(H)CH; and 4|g=4;
(= -

Let )\EG(U G) Then there is an eigenvector x = Zx (x;&H;i=1,2,...)

such that Ax= xx There is some x;£0 such that A, Xiy=AX;,. Thus,
AE6(Gy), which proves o ( U G,)C U o (G).

The proof of the inclusion ( U s (G))U{0}Co( U G,) is obvious. m

Corollary. The spectrum of an infinite disconnected undirected graph G
coincides with the union of spectra of its connected components and zero. B

Finally, we note a theorem which gives a spectral characterization of
complete multipartite graphs.

Theorem 4. An infinite graph G has exactly one positive eigenvalue iff
its non-isolated vertices form a complete multipartite graph.

Proof. In virtue of the lemma, we may ignore the isolated vertices.

Primarily, by Theorems 1 and 2, we seec that a complete mulripartite
graph possesses exactly one positive eigenvalue.

Conversely, assume that G is not a complete multipartite graph. Then
there are non-adjacent vertices x and y from distinct characteristic subsets, and
there is a vertex z which is, for instance, adjacent to y and non-adjacent to x.

X
°

) (®) () (8
Figure 1.
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Thus, G contains an induced subgraph displayed in Figure 1 (a). Since x is not
an isolated vertex in G, the graph G contains at least one subgraph of the
form 1 (b), 1(c), 1(d) as an induced subgraph. Since it can be shown that
with arbitrary weights (-1, @/~1, a*~?, a'~') these graphs possess exactly two
positive eigenvalues, Theorem 3 shows that graph G has at least two positive
eigenvalues, which is a contradiction.

This completes the proof. @
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