THE SPECTRUM OF INFINITE COMPLETE MULTIPARTITE GRAPHS

Miroslav M. Petrović

(Communicated 27. 02. 1981.)

Abstract. In this paper the spectra of infinite complete multipartite graphs are considered and a spectral characterization of such graphs is given.

1. Introduction

Throughout the paper, G denotes an infinite denumerable (connected or disconnected) undirected graph, without loops or multiple edges, whose vertex set is $X = \{x_1, x_2, \ldots\}$.

According to [5], its adjacency matrix $A = (a_{ij})$ is an infinite $N \times N$ matrix, where $a_{ij} = a^{-j-i} - \frac{2}{a}$ if x_i and x_j are adjacent and $a_{ij} = 0$ otherwise (a is a fixed constant, $0 < a < 1$).

The adjacency matrix A of G corresponds in a unique way, with a bounded linear selfadjoint operator A in separable Hilbert space H, whose matrix representation in a fixed orthonormal basis $\{e_j\}^\infty_1$ is A.

The spectrum $\sigma(G)$ of G is defined to be the spectrum $\sigma(A)$ of the operator A corresponding to the adjacency matrix A. Since the operator A is always nuclear ([3]) and consequently compact, its spectrum consists of a sequence $\lambda_1, \lambda_2, \ldots$ of non-zero eigenvalues (each appearing according to its multiplicity, which is always finite) and the zero.

We notice that the vertex set X of a graph G can be partitioned uniquely, into a finite or infinite number of disjoint subsets X_1, X_2, \ldots so that any two vertices from the same subset are not adjacent, and any two subsets are completely adjacent or completely non-adjacent in the graph G.

The sets X_1, X_2, \ldots are equivalence classes of an equivalence relation in X defined as follows: the vertices x and y are equivalent iff they have the same neighbours.

The subsets X_1, X_2, \ldots are called the characteristic subset of graph $G([6])$. The subgraph g of G, obtained by choosing a fixed vertex from each of the characteristic subsets, is named the canonical image of graph G.
An infinite graph G is called a complete multipartite graph if any two characteristic subsets X_i and X_j ($i \neq j$) are completely adjacent in the graph G.

A complete multipartite graph G having k characteristic subsets X_1, \ldots, X_k is denoted by K_{X_1, \ldots, X_k}. A complete multipartite graph G which has infinitely many characteristic subsets X_1, X_2, \ldots is denoted by $K_{X_1, X_2, \ldots}$.

2. On the spectrum of complete multipartite graphs

If the vertices of a complete multipartite graph G are denumerated so that $X_1 = \{x_{i_1}, x_{i_2}, \ldots\}$, $X_2 = \{x_{i_3}, x_{i_4}, \ldots\}$, ..., then in the permuted basis $\{e_{i_1}, e_{i_2}, \ldots\} \cup \{e_{i_3}, e_{i_4}, \ldots\} \cup \ldots$ of the separable Hilbert space H, the adjacency matrix \mathcal{A} of G has the form:

$$\begin{bmatrix}
A_{12} & A_{13} & \cdots \\
A_{21} & 0 & A_{23} \\
A_{31} & A_{32} & 0 \\
\vdots & \vdots & \vdots
\end{bmatrix}$$

(1)

where

$$A_{pq} = \begin{bmatrix}
a^{p+q-2} & a^{p+q-2} & \cdots \\
a^{p+q-2} & a^{p+q-2} & \cdots \\
\vdots & \vdots & \vdots
\end{bmatrix} \quad (p = 1, 2, \ldots; q = p + 1, p + 2, \ldots)$$

and $A_{qp} = A_{pq}^T$.

Let $N_k = \{i^k_1, i^k_2, \ldots\}$ $(k = 1, 2, \ldots)$ and denote:

$$c_k = \sum_{\sum_{q}^{i^k_q}} a^{2i^k_q - 2}$$

(2)

The following theorems describe the spectra of complete multipartite graphs. At first, we consider the case when such a graph possesses infinitely many characteristic subsets.

Theorem 1. Let $G = K_{X_1, X_2, \ldots}$ be a complete multipartite graph with infinitely many characteristic subsets. Then its spectrum is infinite, and the next is valid:

(a) If $G \neq K_\infty$ (i.e. not each X_i is a singleton), then $\lambda = 0$ is its eigenvalue; if $G = K_\infty$, then $\lambda = 0$ is not its eigenvalue.

(b) $\lambda = -c_i$ $(i = 1, 2, \ldots)$ is an eigenvalue of G iff the number c_i appears in the sequence c_1, c_2, \ldots p-folds $(p > 1)$, and then its multiplicity is $p - 1$.
(c) There is exactly one positive eigenvalue of G, and all other eigenvalues distinct from 0 and $-c_i$ \((i=1, 2, \ldots)\) are simple and determined by equation

\[
(3) \quad f(\lambda) = \sum_{k=1}^{\infty} \frac{c_k}{\lambda + c_k} = 1.
\]

Proof. Let λ be an arbitrary eigenvalue of G and $x = (x_1, x_2, \ldots)^T \neq 0$ be a corresponding eigenvector. Then from $Ax = \lambda x$ we have

\[
(4) \quad \sum_{j=1}^{\infty} a_{ij} x_j = \lambda x_i \quad (i=1, 2, \ldots).
\]

Since then the adjacency matrix of G is of the form (1), relation (4) becomes

\[
(5) \quad \sum_{i_k \in N_1} a_{i_k}^{i-2} x_{i_k} + \cdots + \sum_{i_k \in N_k} a_{i_k}^{i-2} x_{i_k-1} + \sum_{i_k+1 \in N_k} a_{i_k}^{i+2} x_{i_k+1} + \cdots =
\]

\[
= \frac{\lambda}{d^k} x_p^k \quad (i_k \in N_k; \quad k=1, 2, \ldots).
\]

Consider at first the case $\lambda = 0$. Then from (5):

\[
(6) \quad \sum_{v=1}^{\infty} Y_v = Y_k \quad (k=1, 2, \ldots).
\]

where $Y_v = \sum_{i_v \in N_v} a_{i_v}^{i-2} x_{i_v}$ \((v=1, 2, \ldots)\). Since the series $\sum_{v=1}^{\infty} Y_v$ is convergent, it follows that $Y_1 = Y_2 = \cdots = 0$, i.e.

\[
\sum_{i_v \in N_v} a_{i_v}^{i-2} x_{i_v} = 0 \quad (v=1, 2, \ldots).
\]

If now d_v denotes the cardinal number of $X_v(v=1, 2, \ldots)$, then $d_v=1$ implies $x_v=0$, and $d_v>1$ implies that the vector $x^v = \sum_{i_v \in N_v} x_{i_v}$ is orthogonal to the vector $a^v = \sum_{i_v \in N_v} a_{i_v}^{i-2} e_{i_v}$, where $x^v, a^v \in H_v = \mathcal{P} \{e_{i_v}^{1}, e_{i_v}^{2}, \ldots \}$. In the latter case, the vector x^v forms a corresponding closed hyperplane H^v of the space H_v. Hence, we get that, except for the case $d_v=1 \quad (v=1, 2, \ldots)$, i.e. $G=K_\infty$, $\lambda = 0$ is an eigenvalue of G. The corresponding proper subspace is then $H_1 \oplus H_2 \oplus \ldots$.
Now, let $\lambda \neq 0$. Then from (5) we easily find:

$$x_{ik}^k = a^{k-i} x_{i1}^k \quad (i^k \in N_k; \quad k = 1, 2, \ldots)$$

and (5) reduces to relation

$$\sum_{v=1}^{\infty} \frac{c_v}{a^{iv}} x_{iv}^v = \frac{\lambda + c_k}{a^{ik}} x_{i1}^k \quad (k = 1, 2, \ldots).$$

Since $x \neq 0$, at least one of $x_{i1}^k \quad (k = 1, 2, \ldots)$ must be non-zero. For instance $x_{i1}^1 \neq 0$. Then from (6) we find

$$\lambda c_k x_{i1}^k = a^{k-1} \lambda + c_1 \quad x_{i1}^1 \quad (k = 2, 3, \ldots).$$

Now, since $x \neq 0$, one can conclude that $\lambda = -c_k \quad (k = 1, 2, \ldots)$ is not an eigenvalue of G if c_k appears in (2) exactly once.

If c_k appears in (2) exactly p-times ($p \geq 2$), then $\lambda = -c_k$ is an eigenvalue of G whose multiplicity is $p - 1$. If, for instance, $c_1 = c_2 = c_3$, then the vector x (where x_{i1}^1 and x_{i1}^2 are arbitrary, $x_{i1}^1 = x_{i1}^2 = \ldots = 0$ and x_{i1}^1 is determined from (6)) is an eigenvector corresponding to the eigenvalue $\lambda = -c_1$.

We notice that sequence (2) cannot contain infinitely many equal elements c_k, because all $c_k > 0$ and

$$\sum_{k=1}^{\infty} c_k = \sum_{i=1}^{\infty} a^{2i-2} = \frac{1}{1 - a^2}.$$

If $\lambda \neq -c_k \quad (k = 1, 2, \ldots)$, then (7) implies:

$$x_{i1}^v = \frac{a^{v-1} \lambda + c_1}{\lambda + c_v} x_{i1}^1 \quad (v = 2, 3, \ldots).$$

Now substituting $x_{i1}^v \quad (v = 2, 3, \ldots)$ into the first relation (6) we get that non-zero eigenvalues of G distant from $-c_k \quad (k = 1, 2, \ldots)$ satisfy equation (3). Since the corresponding eigenvectors are uniquely determined, these eigenvalues are simple.

Besides, it is easily seen that the converse is true. Namely, if λ is an arbitrary root of (3), then λ is a simple eigenvalue of graph G.

Let all mutually distinct elements in (2) be ordered in a decreasing sequence c_{i1}, c_{i2}, \ldots, and let $I_v = (-c_{i_{v}}, -c_{i_{v+1}}) \quad (v = 1, 2, \ldots)$.
Then it can be shown that the functional series on the right side of (3) can be differentiated in each of the intervals \((-\infty, -c_i), I, (v=1, 2, \ldots), (0, \infty)\). We get that in all these intervals:

\[
f'(\lambda) = -\sum_{k=1}^{\infty} \frac{c_k}{(\lambda + c_k)^2} < 0.
\]

From that we conclude that the function \(f(\lambda)\) is strongly monotonically decreasing in all these intervals.

It can also be shown that if \(\psi = 1, 2, \ldots\),

\[
\lim_{\lambda \to -c_i + 0} f(\lambda) = -\infty, \quad \lim_{\lambda \to -c_i - 0} f(\lambda) = +\infty \quad \text{and} \quad \lim_{\lambda \to \pm \infty} f(\lambda) = 0.
\]

Hence, equation (3) possesses exactly one root in each of the intervals \(I, (\psi=1, 2, \ldots)\) and \((0, \infty)\).

Hence, the theorem is proved. ■

Now we consider the case when \(G\) possesses finitely many characteristic subsets.

Theorem 2. Let \(G = K_{x_1, \ldots, x_k}\) be a complete multipartite graph with finitely many characteristic subsets. Then

(a) \(\lambda = 0\) is an eigenvalue of \(G\);

(b) \(\lambda = -c_i\) \((i=1, \ldots, k)\) is an eigenvalue of \(G\) iff the number \(c_i\) appears in the sequence \(c_1, \ldots, c_k\) \(p\)-times \((1 < p \leq k)\), and then its multiplicity is \(p - 1\);

(c) \(G\) has exactly \(k\) non-zero eigenvalues, exactly one of which is positive. The eigenvalues distinct from \(0\) and \(-c_i\) \((i=1, \ldots, k)\) are simple and determined by the equation

\[
f(\lambda) = \sum_{i=1}^{k} \frac{c_i}{\lambda + c_i} = 1.
\]

Proof. Graph \(G = K_{x_1, \ldots, x_k}\) is of a finite type \(k\) and its canonical image \(g\) is a complete finite graph with \(k\) vertices. Since \(g\) has exactly \(k\) non-zero eigenvalues (taking into account their multiplicities too), graph \(G\) must have exactly \(k\) non-zero eigenvalues (see [6], Theorem 1).

Since the spectrum of a compact selfadjoint operator \(A\) is finite iff its range \(\mathcal{R}(A)\) is finite dimension, we conclude that \(\lambda = 0\) is an eigenvalue of \(G\).

The remaining part of Theorem 2 can be proved analogously to the corresponding part of Theorem 1. ■

3. A spectral characterization of complete multipartite graphs

We first quote two auxiliary results.

Let \(G_0\) be a (finite or infinite) induced subgraph of an infinite graph \(G\), whose vertex set is \(X_0 = \{x_{i_1}, x_{i_2}, \ldots\}\). Then its adjacency matrix \(\mathcal{A}_{G_0}\) is the
corresponding submatrix \((a_{ij})\); thus the vertices of \(G_0\) have weights \(a_{i-1}, a_{i-1}, \ldots, \) respectively.

Let \(H_0 = \overline{\text{span}} \{e_i^+, e_i^-, \ldots\}\) be the closed linear hull of elements \(e_i^+, e_i^-, \ldots\) and \(P : H \to H_0\) be the orthogonal projection of \(H\) onto the subspace \(H_0\). Then the spectrum \(\sigma(G_0)\) of \(G_0\) is defined to be the spectrum \(\sigma(A_0)\) of the operator \(A_0 = PAP|_{H_0}\). Its matrix in basis \(\{e_i^+, e_i^-, \ldots\}\) of \(H_0\) is represented by the matrix \(A_0\).

The following theorem gives a relation between the spectrum of \(G\) and any induced subgraph \(G_0\).

Theorem 3. (Interlacing Theorem). Let

\[
\lambda_1^+ \geq \lambda_2^+ \geq \cdots > 0; \quad \lambda_1^- \leq \lambda_2^- \leq \cdots < 0
\]

be the sequences of positive and negative eigenvalues of graph \(G\), respectively, and let

\[
\mu_1^+ \geq \mu_2^+ \geq \cdots > 0; \quad \mu_1^- \leq \mu_2^- \leq \cdots < 0
\]

be the corresponding sequences of positive and negative eigenvalues of an induced subgraph \(G_0\). Then

\[
\lambda_n^+ \geq \mu_n^+; \quad \lambda_n^- \leq \mu_n^- \quad (n = 1, 2, \ldots).
\]

Proof. The proposed proof is similar to that in the finite dimensional case (see [2], p. 405).

By virtue of a known theorem (see [4], p. 256) we have

\[
\lambda_n^+ = \min_{y_1, \ldots, y_{n-1} \in H} \left[\max_{x \in H_0, ||x||=1} (Ax, x) \right], \quad \mu_n^+ = \min_{z_1, \ldots, z_{n-1} \in H_0} \left[\max_{x \in H_0, ||x||=1} (A_0x, x) \right].
\]

Since

\[
\max_{x \in H_0, ||x||=1} (Ax, x) = \max_{x \in H_0, ||x||=1} (A_0x, x)
\]

we immediately have:

\[
\lambda_n^+ = \min_{y_1, \ldots, y_{n-1} \in H} \left[\max_{x \in H_0, ||x||=1} (Ax, x) \right] \geq \min_{y_1, \ldots, y_{n-1} \in H} \left[\max_{x \in H_0, ||x||=1} (A_0x, x) \right] = \mu_n^+.
\]

Further, by applying the analogous statements concerning \(\lambda_n^-\) and \(\mu_n^-\) one can show that \(\lambda_n^- \leq \mu_n^-\).

The following lemma gives an expected relation between the spectrum of (finite or infinite) graphs \(G_1, G_2, \ldots\) and their infinite union \(\bigcup_i G_i\). The uni-
The spectrum of infinite complete multipartite graphs

on \(\bigcup_i G_i \) of graphs \(G_1 = (X_1, U_1), G_2 = (X_2, U_2), \ldots \) \((X_i \cap X_j = \emptyset, i \neq j) \) is the graph \(G = (X, U) \), where \(X = \bigcup_i X_i, U = \bigcup_i U_i \).

Lemma. The spectrum of an infinite union \(\bigcup_i G_i \) of graphs \(G_1, G_2, \ldots \) coincides with the union of their spectra \(\sigma(G_1), \sigma(G_2), \ldots \) including zero:

\[
\sigma\left(\bigcup_i G_i \right) = \left(\bigcup_i \sigma(G_i) \right) \cup \{0\}.
\]

Proof. If \(X_i = \{x_{i1}, x_{i2}, \ldots\} \), put \(H_i = \sum e_{ij}, e_{ji}, \ldots \). Then \(H_i \) \((i = 1, 2, \ldots) \) are closed mutually orthogonal subspaces of \(H \) and \(H = \sum H_i \).

But each of graphs \(G_1, G_2, \ldots \) is an induced subgraph of the union. Let \(A_i \) be the adjacency matrix of \(G_i \), and \(A \) the corresponding operator on \(H \) \((i = 1, 2, \ldots) \).

Then the subspace \(H_i \) is invariant under \(A \), i.e. \(A(H_i) \subset H_i \) and \(A|_{H_i} = A_i \) \((i = 1, 2, \ldots) \).

Let \(\lambda \in \sigma\left(\bigcup_i G_i \right) \). Then there is an eigenvector \(x = \sum_i x_i \) \((x_i \in H_i, i = 1, 2, \ldots) \) such that \(Ax = \lambda x \). There is some \(x_{i_0} \neq 0 \) such that \(A_{i_0} x_{i_0} = \lambda x_{i_0} \). Thus, \(\lambda \in \sigma(G_{i_0}) \), which proves \(\sigma\left(\bigcup_i G_i \right) \subset \bigcup_i \sigma(G_i) \).

The proof of the inclusion \(\bigcup \sigma(G_i) \cup \{0\} \subset \sigma\left(\bigcup_i G_i \right) \) is obvious.

Corollary. The spectrum of an infinite disconnected undirected graph \(G \) coincides with the union of spectra of its connected components and zero.

Finally, we note a theorem which gives a spectral characterization of complete multipartite graphs.

Theorem 4. An infinite graph \(G \) has exactly one positive eigenvalue iff its non-isolated vertices form a complete multipartite graph.

Proof. In virtue of the lemma, we may ignore the isolated vertices.

Primarily, by Theorems 1 and 2, we see that a complete multipartite graph possesses exactly one positive eigenvalue.

Conversely, assume that \(G \) is not a complete multipartite graph. Then there are non-adjacent vertices \(x \) and \(y \) from distinct characteristic subsets, and there is a vertex \(z \) which is, for instance, adjacent to \(y \) and non-adjacent to \(x \).

\begin{figure}[h]
\centering
\includegraphics[width=0.7\textwidth]{fig1.png}
\caption{Figure 1.}
\end{figure}
Thus, G contains an induced subgraph displayed in Figure 1 (a). Since x is not an isolated vertex in G, the graph G contains at least one subgraph of the form 1 (b), 1 (c), 1 (d) as an induced subgraph. Since it can be shown that with arbitrary weights ($a^{-1}, a^{j-1}, a^{k-1}, a^{l-1}$) these graphs possess exactly two positive eigenvalues, Theorem 3 shows that graph G has at least two positive eigenvalues, which is a contradiction.

This completes the proof. ■

REFERENCES

Prirodno-matematički fakultet
Institut za matematiku
34000 Kragujevac
Jugoslavija