THE SPECTRUM OF INFINITE COMPLETE MULTIPARTITE GRAPHS

Miroslav M. Petrović

(Communicated 27. 02. 1981.)

Abstract. In this paper the spectra of infinite complete multipartite graphs are considered and a spectral characterization of such graphs is given.

1. Introduction

Throughout the paper, G denotes an infinite denumerable (connected or disconnected) undirected graph, without loops or multiple edges, whose vertex set is $X = \{x_1, x_2, \ldots\}$.

According to [5], its adjacency matrih $A = (a_{ij})$ is an infinite $N \times N$ matrix, where $a_{ij} = a^{i+j-2}$ if x_i and x_j are adjacent and $a_{ij} = 0$ otherwise (a is a fixed constant, 0 < a < 1).

The adjacency matrix \mathcal{A} of G corresponds in a unique way, with a bounded linear selfadjoint operator A in separable Hilbert space H, whose matrix representation in a fixed orthonormal basis $\{e_j\}_1^{\infty}$ is \mathcal{A} .

The spectrum $\sigma(G)$ of G is defined to be the spectrum $\sigma(A)$ of the operator A corresponding to the adjacency matrix A. Since the operator A is always nuclear ([3]) and consequently compact, its spectrum consists of a sequence $\lambda_1, \lambda_2, \ldots$ of non-zero eigenvalues (each appearing according to its multiplicity, which is always finite) and the zero.

We notice that the vertex set X of a graph G can be partitioned uniquely, into a finite or infinite number of disjoint subsets X_1, X_2, \ldots so that any two vertices from the same subset are not adjacent, and any two subsets are completely adjacent or completely non-adjacent in the graph G.

The sets X_1, X_2, \ldots are equivalence classes of an equivalence relation in X defined as follows: the vertices x and y are equivalent iff they have the same neighbours.

The subsets X_1, X_2, \ldots are called the characteristic subset of graph G([6]). The subgraph g of G, obtained by choosing a fixed vertex from each of the characteristic subsets, is named the canonical image of graph G.

An infinite graph G is called a complete multipartite graph if any two characteristic subsets X_i and X_j $(i \neq j)$ are completely adjacent in the graph G.

A complete multipartite graph G having k characteristic subsets X_1, \ldots, X_k is denoted by K_{X_1, \ldots, X_k} . A complete multipartite graph G which has infinitely many characteristic subsets X_1, X_2, \ldots is denoted by $K_{X_1, X_2, \ldots}$.

2. On the spectrum of complete multipartite graphs

If the vertices of a complete multipartite graph G are denumerated so that $X_1 = \{x_{i_1^1}, x_{i_2^1}, \ldots\}$, $X_2 = \{x_{i_1^2}, x_{i_2^2}, \ldots\}$, ..., then in the permuted basis $\{e_{i_1^1}, e_{i_2^1}, \ldots\} \cup \{e_{i_1^2}, e_{i_2^2}, \ldots\} \cup \ldots$ of the separable Hilbert space H, the adjacency matrix A of G has the form:

(1)
$$\mathcal{A} = \begin{bmatrix} 0 & \mathcal{A}_{12} & \mathcal{A}_{13} & \cdots \\ \mathcal{A}_{21} & 0 & \mathcal{A}_{23} & \cdots \\ \mathcal{A}_{31} & \mathcal{A}_{32} & 0 & \cdots \\ \vdots & \vdots & \vdots & \end{bmatrix}$$

where

$$\mathcal{A}_{pq} = \begin{bmatrix} a_1^{p} + i_1^{q} - 2 & a_1^{p} + i_2^{q} - 2 & \cdots \\ a_2^{p} + i_1^{q} - 2 & a_2^{p} + i_2^{q} - 2 & \cdots \\ \vdots & \vdots & \vdots & q = p + 1, p + 2, \ldots \end{bmatrix} \quad (p = 1, 2, \dots; q = p + 1, p + 2, \dots)$$

and $\mathcal{A}_{qp} = \mathcal{A}_{pq}^T$.

Let $N_k = \{i_1^k, i_2^k, \ldots\}$ $(k = 1, 2, \ldots)$ and denote:

(2)
$$c_k = \sum_{i_q^k \in N_k} a^{2i_q^k - 2}$$

The following theorems describe the spectra of complete multipartite graphs. At first, we consider the case when such a graph possesses infinitely many characteristic subsets.

Theorem 1. Let $G = K_{X_1}, X_2, ...$ be a complete multipartite graph with infinitely many characteristic subsets. Then its spectrum is infinite, and the next is valid:

- (a) If $G \neq K_{\infty}$ (i.e. not each X_i is a singleton), then $\lambda = 0$ is its eigenvalue; if $G = K_{\infty}$, then $\lambda = 0$ is not its eigenvalue.
- (b) $\lambda = -c_i$ (i = 1, 2, ...) is an eigenvalue of G iff the number c_i appears in the sequence $c_1, c_2, ...$ p-folds (p > 1), and then its multiplicity is p 1.

(c) There is exactly one positive eigenvalue of G, and all other eigenvalues distinct from 0 and $-c_i$ $(i=1,2,\ldots)$ are simple and determined by equation

(3)
$$f(\lambda) = \sum_{k=1}^{\infty} \frac{c_k}{\lambda + c_k} = 1.$$

Proof. Let λ be an arbitrary eigenvalue of G and $x = (x_1, x_2, ...)^T \neq 0$ be a corresponding eigenvector. Then from $Ax = \lambda x$ we have

(4)
$$\sum_{j=1}^{\infty} a_{ij} x_j = \lambda x_i \qquad (i = 1, 2, ...).$$

Since then the adjacency matrix of G is of the form (1), relation (4) becomes

(5)
$$\sum_{i_{q}^{1} \in N_{1}} a^{i_{q}^{1}-2} x_{i_{q}^{1}} + \dots + \sum_{i_{q}^{k-1} \in N_{k-1}} a^{i_{q}^{k-1}-2} x_{i_{q}^{k-1}} + \sum_{i_{q}^{k+1} \in N_{k+1}} a^{i_{q}^{k+1}-2} x_{i_{q}^{k+1}} + \dots = \frac{\lambda}{a_{p}^{i_{k}}} x_{i_{p}^{k}} (i_{p}^{k} \in N_{k}; \quad k=1, 2, \dots).$$

Consider at first the case $\lambda = 0$. Then from (5):

$$\sum_{v=1}^{\infty} Y_{v} = Y_{k} \qquad (k = 1, 2, \ldots).$$

where $Y_{\nu} = \sum_{i_q^{\nu} \in N_{\nu}} a^{i_q^{\nu}-2} x_{i_q^{\nu}}$ ($\nu = 1, 2, ...$). Since the series $\sum_{\nu=1}^{\infty} Y_{\nu}$ is convergent, it follows that $Y_1 = Y_2 = \cdots = 0$, i.e.

$$\sum_{\substack{i_q^{\nu} \in N_{\nu}}} a^{i_q^{\nu}} x_{i_q^{\nu}} = 0 \quad (\nu = 1, 2, ...).$$

If now d_{ν} denotes the cardinal number of $X_{\nu}(\nu=1, 2, ...)$, then $d_{\nu}=1$ implies $x_{i_{1}^{\nu}}=0$, and $d_{\nu}>1$ implies that the vector $x^{\nu}=\sum_{\substack{i_{q}^{\nu}\in N_{\nu}\\q}}x_{i_{q}^{\nu}}e_{i_{q}^{\nu}}$ is orthogonal to

the vector $a^{\nu} = \sum_{i_{q}^{\nu} \in N_{\nu}} a^{i_{q}^{\nu}} e_{i_{q}^{\nu}}$, where x^{ν} , $a^{\nu} \in H_{\nu} = \underbrace{\mathcal{Z}\left\{e_{i_{1}^{\nu}}, e_{i_{2}^{\nu}}, \ldots\right\}}_{q \in I_{\nu}}$. In the latter

case, the vector x^{ν} forms a corresponding closed hyperplane H'_{ν} of the space H_{ν} . Hence, we get that, except for the case $d_{\nu}=1$ ($\nu=1, 2, \ldots$), i.e. $G=K_{\infty}$, $\lambda=0$ is an eigenvalue of G. The corresponding proper subspace is then $H'_1 \oplus H'_2 \oplus \ldots$

Now, let $\lambda \neq 0$ Then from (5) we easily find:

$$x_{ip}^{k} = a^{i_{p}^{k} - i_{1}^{k}} x_{i_{1}^{k}} \quad (i_{p}^{k} \in N_{k}; k = 1, 2, ...)$$

and (5) reduces to relation

(6)
$$\sum_{\nu=1}^{\infty} \frac{c_{\nu}}{a^{l_{1}^{\nu}}} x_{l_{1}^{\nu}} = \frac{\lambda + c_{k}}{a^{l_{1}^{k}}} x_{l_{1}^{k}} \quad (k = 1, 2, \ldots).$$

Since $x \neq 0$, at least one of $x_{i_1^k}$ (k = 1, 2, ...) must be non-zero. For instance $x_{i_1^k} \neq 0$. Then from (6) we find

(7)
$$(\lambda + c_k) x_{i_1}^k = a^{i_1^k - i_1^k} (\lambda + c_1) x_{i_1^k} \quad (k = 2, 3, \ldots).$$

Now, since $x \neq 0$, one can conclude that $\lambda = -c_k (k = 1, 2, ...)$ is not an eigenvalue of G if c_k appears in (2) excatly once.

If c_k appears in (2) exactly p-times $(p \ge 2)$, then $\lambda = -c_k$ is an eigenvalue of G whose multiplicity is p-1. If, for instance, $c_1 = c_2 = c_3$, then the vector x (where $x_{i_1^2}$ and $x_{i_1^3}$ are arbitrary, $x_{i_1^4} = x_{i_1^5} = \cdots = 0$ and $x_{i_1^1}$ is determined from (6)) is an eigenvector corresponding to the eigenvalue $\lambda = -c_1$.

We notice that sequence (2) cannot contain infinitely many equal elements c_k , because all $c_k > 0$ and

$$\sum_{k=1}^{\infty} c_k = \sum_{i=1}^{\infty} a^{2i-2} = \frac{1}{1-a^2}.$$

If $\lambda \neq -c_k$ (k=1, 2, ...), then (7) implies:

$$x_{i_1}^{\nu} = \frac{a^{i_1^{\nu} - i_1^{\nu}} (\lambda + c_1)}{\lambda + c_1} x_{i_1^{\nu}} \quad (\nu = 2, 3, \ldots).$$

Now substituting $x_{i_1^{\nu}}$ ($\nu=2,3,\ldots$) into the first relation (6) we get that non-zero eigenvalues of G distanct from $-c_k$ ($k=1,2,\ldots$) satisfy equation (3). Since the corresponding eigenvectors are uniquely determined, these eigenvalues are simple.

Besides, it is easily seen that the converse is true. Namely, if λ is an arbitrary root of (3), then λ is a simple eigenvalue of graph G.

Let all mutually distinct elements in (2) be ordered in a decreasing sequence c_{i_1}, c_{i_2}, \ldots , and let $I_{\nu} = (-c_{i_{\nu}}, -c_{i_{\nu+1}})$ ($\nu = 1, 2, \ldots$).

Then it can be shown that the functional series on the right side of (3) can be differentiated in each of the intervals $(-\infty, -c_1)$, I_{ν} $(\nu=1, 2, ...)$, $(0, \infty)$. We get that in all these intervals:

$$f'(\lambda) = -\sum_{k=1}^{\infty} \frac{c_k}{(\lambda + c_k)^2} < 0.$$

From that we conclude that the function $f(\lambda)$ is strongly monotonically decreasing in all these intervals.

It can also be shown that if $\nu = 1, 2, \ldots$,

$$\lim_{\lambda \to -c_{i_{\mathsf{V}}} - 0} f(\lambda) = -\infty, \quad \lim_{\lambda \to -c_{i_{\mathsf{V}}} + 0} f(\lambda) = +\infty \quad \text{and} \quad \lim_{\lambda \to \pm \infty} f(\lambda) = 0.$$

Hence, equation (3) possesses exactly one root in each of the intervals I_{ν} ($\nu = 1, 2, ...$) and (0, ∞).

Hence, the theorem is proved.

Now we consider the case when G possesses finitely many characteristic subsets.

Theorem 2. Let $G = Kx_1, \ldots, x_k$ be a complete multipartite graph with finitely many characteristic subsets. Then

- (a) $\lambda = 0$ is an eigenvalue of G;
- (b) $\lambda = -c_i$ (i = 1, ..., k) is an eigenvalue of G iff the number c_i appears in the spanence $c_1, ..., c_k$ p-times (1 , and then its multiplicity is <math>p-1;
- (c) G has exactly k non-zero eigenvalues, exactly one of which is positive. The eigenvalues distinct from 0 and $-c_i$ $(i=1,\ldots,k)$ are simple and determined by the equation

$$f(\lambda) = \sum_{i=1}^{k} \frac{c_i}{\lambda + c_i} = 1.$$

Proof. Graph $G = K_{X_1, \ldots, X_k}$ is of a finite type k and its canonical image g is a complete finite graph with k vertices. Since g has exactly k non-zero eigenvalues (taking into account their multiplicities too), graph G must have exactly k non-zero eigenvalues (see [6], Theorem 1).

Since the spectrum of a compact selfadjoint operator A is finite iff its range $\mathcal{R}(A)$ is finite dimension, we conclude that $\lambda = 0$ is an eigenvalue of G.

The remaining part of Theorem 2 can be proved analogusly to the corresponding part of Theorem 1. \blacksquare

3. A spectral characterization of complete multipartite graphs

We first quote two auxiliary results.

Let G_0 be a (finite or infinite) induced subgraph of an infinite graph G, whose vertex set is $X_0 = \{x_{i_1}, x_{i_2}, \ldots\}$. Then its adjacency matrix A_0 is the

corresponding submatrix $(a_{i_p i_q})$; thus the vertices of G_0 have weights a^{i_1-1} , a^{i_2-1} , ..., respectively.

Let $H_0 = \mathcal{L}\{e_{i_1}, e_{i_2}, \ldots\}$ be the closed linear hull of elements e_{i_1}, e_{i_2}, \ldots and $P: H \to H_0$ be the orthogonal projection of H onto the subspace H_0 . Then the spectrum $\sigma(G_0)$ of G_0 is defined to be the spectrum $\sigma(A_0)$ of the operator $A_0 = PAP|_{H_0}$. Its matrix in basis $\{e_{i_1}, e_{i_2}, \ldots\}$ of H_0 is represented by the matrix \mathcal{A}_0 .

The following theorem gives a relation between the spectrum of G and any induced subgraph G_0 .

Theorem 3. (Interlacing Theorem). Let

$$\lambda_1^+\!\!\geqslant\!\lambda_2^+\!\!\geqslant\!\cdots\!>\!0;\ \lambda_1^-\!\!\leqslant\!\lambda_2^-\!\!\leqslant\!\cdots\!<\!0$$

be the sequences of positive and negative eigenvalues of graph G, respectively, and let

$$\mu_1^+\!\geqslant\!\mu_2^+\!\geqslant\!\cdots\!>\!0;\quad \mu_1^-\!\leqslant\!\mu_2^-\!\leqslant\!\cdots\!<\!0$$

be the corresponding sequences of positive and negative eigenvalues of an induced subgraph G_0 . Then

$$\lambda_n^+ \geqslant \mu_n^+; \quad \lambda_n^- \leqslant \mu_n^- \qquad (n=1, 2, \ldots).$$

Proof. The proposed proof is similar to that in the finite dimensional case (see [2], p. 405).

By virtue of a known theorem (see [4], p. 256) we have

$$\lambda_n^+ = \min_{y_1, \dots, y_{n-1} \in H} \left[\max_{\substack{x \in H, ||x||=1 \\ x \perp y_1, \dots, y_{n-1}}} (Ax, x) \right], \quad \mu_n^+ = \min_{\substack{z_1, \dots, z_{n-1} \in H_0 \\ x \perp z_1, \dots, z_{n-1}}} \left[\max_{\substack{x \in H_0, ||x||=1 \\ x \perp z_1, \dots, z_{n-1}}} (A_0 x, x) \right].$$

Since

$$\max_{\substack{x \in H, \ ||x|| = 1 \\ x \perp y_1, \dots, y_{n-1}}} (Ax, x) \geqslant \max_{\substack{x \in H_0, \ ||x|| = 1 \\ x \perp y_1, \dots, y_{n-1}}} (Ax, x) = \max_{\substack{x \in H_0, \ ||x|| = 1 \\ x \perp P y_1, \dots P y_{n-1}}} (A_0 x, x)$$

we immediately have:

$$\lambda_{n}^{+} = \min_{\substack{y_{1}, \dots, y_{n-1} \in H \\ x \perp y_{1}, \dots, y_{n-1}}} \left[\max_{\substack{x \in H, ||x|| = 1 \\ x \perp y_{1}, \dots, y_{n-1}}} (Ax, x) \right] \geqslant \min_{\substack{y_{1}, \dots, y_{n-1} \in H \\ x \perp Py_{1}, \dots, Py_{n-1}}} \left[\max_{\substack{x \in H_{0}, ||x|| = 1 \\ x \perp Py_{1}, \dots, Py_{n-1}}} (A_{0} x, x) \right] = \mu_{n}^{+}.$$

Further, by applying the analogous statements concerning λ_n^- and μ_n^- one can show that $\lambda_n^- \leq \mu_n^-$.

The following lemma gives an expected relation between the spectrum of (finite or infinite) graphs G_1, G_2, \ldots and their infinite union $\bigcup G_i$. The uni-

on $\bigcup_i G_i$ of graphs $G_1 = (X_1, U_1)$, $G_2 = (X_2, U_2)$, ... $(X_i \cap X_j = \emptyset, i \neq j)$ is the graph G = (X, U), where $X = \bigcup_i X_i$, $U = \bigcup_i U_i$.

Lemma. The spectrum of an infinite union $\bigcup_i G_i$ of graphs G_1 , G_2 , ... coincides with the union of their spectra $\sigma(G_1)$, $\sigma(G_2)$, ... including zero:

$$\sigma(\bigcup_i G_i) = (\bigcup_i \sigma(G_i)) \cup \{0\}.$$

Proof. If $X_i = \{x_{j_1}, x_{j_2}, \ldots\}$, put $H_i = \overline{\mathcal{L}\{e_{j_1}, e_{j_2}, \ldots\}}$. Then H_i $(i = 1, 2, \ldots)$ are closed mutually orthogonal subspaces of H and $H = \sum_i \oplus H_i$.

But each of graphs G_1, G_2, \ldots is an induced subgraph of the union. Let A_i be the adjacency matrix of G_i , and A_i the corresponding operator on H_i $(i=1, 2, \ldots)$.

Then the subspace H_i is invariant under A, i.e. $A(H_i) \subset H_i$ and $A|_{H_i} = A_i$ (i = 1, 2, ...).

Let $\lambda \in \sigma (\bigcup_i G_i)$. Then there is an eigenvector $x = \sum_i x_i$ $(x_i \in H_i; i = 1, 2, ...)$ such that $Ax = \lambda x$. There is some $x_{i_0} \neq 0$ such that $A_{i_0} x_{i_0} = \lambda x_{i_0}$. Thus, $\lambda \in \sigma (G_{i_0})$, which proves $\sigma (\bigcup_i G_i) \subset \bigcup_i \sigma (G_i)$.

The proof of the inclusion $(\bigcup_i \sigma(G_i)) \cup \{0\} \subset \sigma(\bigcup_i G_i)$ is obvious.

Corollary. The spectrum of an infinite disconnected undirected graph G coincides with the union of spectra of its connected components and zero.

Finally, we note a theorem which gives a spectral characterization of complete multipartite graphs.

Theorem 4. An infinite graph G has exactly one positive eigenvalue iff its non-isolated vertices form a complete multipartite graph.

Proof. In virtue of the lemma, we may ignore the isolated vertices.

Primarily, by Theorems 1 and 2, we see that a complete multipartite graph possesses exactly one positive eigenvalue.

Conversely, assume that G is not a complete multipartite graph. Then there are non-adjacent vertices x and y from distinct characteristic subsets, and there is a vertex z which is, for instance, adjacent to y and non-adjacent to x.

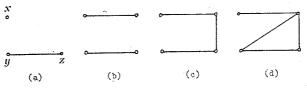


Figure 1.

Thus, G contains an induced subgraph displayed in Figure 1 (a). Since x is not an isolated vertex in G, the graph G contains at least one subgraph of the form 1 (b), 1 (c), 1 (d) as an induced subgraph. Since it can be shown that with arbitrary weights $(a^{l-1}, a^{l-1}, a^{k-1}, a^{l-1})$ these graphs possess exactly two positive eigenvalues, Theorem 3 shows that graph G has at least two positive eigenvalues, which is a contradiction.

This completes the proof.

REFERENCES

- [1] D. Cvetković, M. Doob, H. Sachs, Spectra of graphs Theory and Application, VEB Deutscher Verlag der Wissenschaften, Berlin, 1980.
- [2] S. Kurepa, Finite dimensional vector spaces and applications, (in serbo-croatian), Tehnička knjiga, Zagreb, 1967.
- [3] M. Petrović, The spectrum of an infinite labelled graph (in serbo-croatian), (Masters thesis), PMF, Beograd, 1981.
- [4] Ф. Рис, Б. Сёкфальви-Надь, Лекции по функциональному анализу, Наука, Москва, 1979.
- [5] A. Torgašev, Spectra of infinite graphs, Publ. Inst. Math. (Beograd) 29(43), (1981), 269—282.
- [6] A. Torgašev, On infinite graphs with three and four non-zero eigenvalues, Bull. Serb. Acad. Sci. (Math.) Beograd 11 (1981), 39—48.

Prirodno-matematički fakultet Institut za matematiku 34000 Kragujevac Jugoslavija