ABOUT AN EQUIVALENT OF THE CONTINUUM HYPOTHESIS

Žikica Perović

The main result of this paper is the statement that every atomless ω_1 -saturated Boolean algebra of power $c=2^{\omega}$ is isomorphic to $2^{\omega}/F$, where F is the Frechet filter on ω , iff $\omega_1=c$.

One part of this statement is a direct consequence of the theorem about the uniqueness of the saturated model of a complete theory. The second part is shown by constructing two ω_1 -saturated Boolean algebras whose isomorphism implies CH.

As a consequence of this result we obtained the main result of [3], i.e. every Parovičenko space is homeomorphic to ω^* iff CH is true. This paper was the inspiration for our work.

The terminology used in this paper follows [1]. Basic model-theoretic notions like *complete theory*, and *k-saturated model*, are assumed to be known.

Boolean algebras are denoted by A, B, C..., and their domains, by A, B, C..., respectively. The cardinal number of A will de denoted by |A|. Every Boolean algebra B is of the form $B = (B, +, \cdot, ', \leq, 0, 1)$. Instead of 'Boolean algebra' we will often write BA.

Let **B** be a *BA* and assume $X, Y \subset B$, $a \in B$. a < X stands for $\forall y \in X (a < y)$ and $a \leqslant X$ for $\forall y \in X (a \leqslant y)$. By X < Y we mean $\forall x \in X \forall y \in Y (x < y)$. $X \leqslant Y$ has a similar meaning. If $x \in B$, then $a \parallel x$ stands for $\exists (a \leqslant x) \land \exists (x \leqslant a)$, and $a \parallel X$ for $\forall y \in X (a \parallel y)$. The formula $\forall x \in X \forall y \in Y (\exists (x \leqslant y))$ is denoted by $X \mid < Y$. The *BA* A satisfies the condition H_k iff A satisfies the following. Let $X, Y \subset A, X$ is directed upward, Y is directed downward, $0 \notin Y, 1 \notin X, |X| + |Y| < k$ and X < Y. Then there is an $a \in A$ sach that X < a < Y.

We will use the following statements:

Proposition 1. An atomless BA A satisfies H_{ω_1} iff:

- (1) for any $\{a_i\}_{i\in \mathbb{N}}$, $b\in A$ such that $a_0 < a_1 < \cdots < a_n < \cdots < b$ there exists $a \ c\in A$ such that $a_0 < a_1 < \cdots < a_n < \cdots < c < b$,
- (2) for any increasing chain $\{a_i\}_{i\in N}$, and decreasing chain $\{b_i\}_{i\in N}$; b_i , $a_i\in A$ such that $a_0< a_1< \cdots < a_n< \cdots < b_n< \cdots < b_1< b_0$ there exists a $c\in A$ such that

$$a_0 < a_1 < \cdots < a_n < \cdots < c < \cdots < b_n < \cdots < b_1 < b_0$$

The proof of this simple statement can be found in [4] (Proposition 2.27).

Proposition 2. A is an atomless, k-saturated BA iff A satisfies H_k . This statement was proved in [4] (Theorem 2.7.).

By 2 we will denote the two-element BA, by 2^{ω} the direct product of ω copies of 2 and by $2^{\omega}/F$ the ultrapower modulo the Frechet filter F.

Proposition 3. $2^{\omega}/F$ is an ω_1 -saturated BA, and $|2^{\omega}/F| = c$.

This statement was proved by B. Jonsson, P. Olin (1968). A very elegant proof of this statement can be found in [4] (Example 2.28.).

Proposition 4. Let $A = \{f_{\alpha F} \mid \alpha < \omega_1\}$ be a strictly decreasing chain of nonzero elements of $2^{\omega}/F$. Let $D = \{f_F \mid f_{\alpha F} < f_F \text{ for some } \alpha < \omega_1\}$. Then:

- (i) D is a filter of $2^{\omega}/F$,
- (ii) |D| = c,
- - (iv) D is an ultrafilter of B.

Proof. (i) Let f_F , $g_F \in D$ and $h \in 2^\omega$, $f_F \leqslant h_F$. Then $f_{\alpha F} < f_F$ for some $\alpha < \omega_1$, hence $f_{\alpha F} < h_F$, so that $h_F \in D$. $f_{\beta F} < g_F$ for some $\beta < \omega_1$. Let $\gamma = \max\{\alpha, \beta\}$. Then $f_{\gamma F} \leqslant f_{\alpha F} \cdot f_{\beta F}$, hence $f_{\gamma F} < f_F \cdot g_F$, i.e. $f_F \cdot g_F \in D$.

(ii) Let $f_{\alpha F} \in D$ and $f_{\alpha F} \neq 1_F$. Then $I = \{i \mid f(i) = 0\}$ is a set of power ω . Let us order I into the sequence $I = \{i_n \mid n \in \omega\}$. Let F_I be the Frechet filter on I. From Proposition 3 it follows that $|2^I/F_I| = c$. Let us define for every $g \in 2^I$ an element $f_g \in 2^\omega$ such that:

$$f_g(i) = \begin{cases} f_\alpha(i), & i \notin I \\ g(i), & i \in I. \end{cases}$$

Then $f_{\alpha F} \leqslant f_{\mathcal{E}_F}$, hence $f_{\mathcal{E}_F} \in D$, and if $g_{F_I} \neq h_{F_I}$, then $f_{\mathcal{E}_F} \neq f_{h_F}$. Hence $|\{f_{\mathcal{E}_F} | g \in 2^I\}| = c$, i.e. |D| = c.

(iii) D is closed for +, \cdot in $2^{\omega}/F$, $1_F \in D$ hence \mathbf{B} is a BA.

Let us prove that **B** is atomless. If $f_F \in D$, and $f_F \neq 0_F$ then there exists an $\alpha < \omega_1$ such that $f_{\alpha_F} < f_F$ and $f_{\alpha_F} \neq 0_F$. Let $g_F' \in D$. Since $2^\omega/F$ is an atomless BA there exists an $h_F \in D$ such that $g_F < h_F < 1_F$, so that $h_F' \in B$ and $0_F < h_F' < g_F'$.

Let us prove that **B** satisfies H_{ω_1} . According to Proposition 1 it is sufficient to prove conditions (1) and (2) of Proposition 1.

We will check only condition (2). For (1) we can proceed in the same way.

Let $g_{1F} < g_{2F} < \cdots < g_{n_F} < \cdots < h_{n_F} < \cdots < h_{2F} < h_{1F}$ and g_{n_F} , $h_{n_F} \in B$, $n \in \mathbb{N}$.

We will consider several cases:

A) In the sequence $(g_{n_F})_{n\in\mathbb{N}}$ there exists an $m\in\mathbb{N}$ such that $g_{m_F}\in D$. Since $2^{\omega}/F$ satisfies H_{ω_1} , there exists an $f\in 2^{\omega}$ such that

$$g_{1_F} < g_{2_F} < \cdots < f_F < \cdots < h_{2_F} < h_{1_F}.$$

Since $g_{m_F} < f_F$ and $g_{m_F} \in D$, we have $f_F \in D$ and $f_F \in B$.

- B) In the sequence $(h_{n_F})_{n\in N}$ there exists an $m\in N$ such that $h'_{m_F}\in D$. Then $h'_{2F}< h'_{2F}< \cdots < g'_{2F}< g'_{1F}$. Since $h'_{m_F}\in D$, it follows from A that there exists an $f_F\in D$ such that $h'_{1F}< h'_{2F}< \cdots < f_F< \cdots < g'_{2F}< g'_{1F}$. Hence $g_{1F}< g_{2F}< \cdots < f'_{F}< \cdots < h_{2F}< h_{1F}$ and $f'_{F}\in B$.
- C) $h_{n_F} \in D$, $g'_{n_F} \in D$, $n \in N$. Since $h_{n_F} \in D$ $n \in N$, and for every $n \in N$ there exists an $\alpha_n \in \omega_1$ such that $f_{\alpha_{n_F}} \leq h_{n_F}$, and since $\{\alpha_n \mid n \in N\}$ is not cofinal with ω_1 , there exists a $\beta < \omega_1$ such that $f_{\beta_F} < h_{n_F}$ for every $n \in N$.

Since $2^\omega/F$ satisfies H_{ω_1} there exists $e\in 2^\omega$ such that $g_{1F}< g_{2F}<\cdots e_F<<\cdots < h_{2F}< h_{1F}$.

Let $f = e + f_{\beta}$. Then $g_{1F} < g_{2F} < \cdots < e_F < f_F \le \cdots < h_{2F} < h_{1F}$ and $f_F \in D$. Since the sequence $\{h_{iF}\}_{i \in N}$ is strictly decreasing we have

$$g_{1F} < g_{2F} < \cdots < e_F < f_F < \cdots < h_{2F} < h_{1F}$$
 and $f_F \subset D$, hence $f_F \subset B$.

(iv) We know that D is a filter, and since for every $f_F \in B$, $f_F \in D$ or $f_F \in D$, D is an ultrafilter.

Proposition 5. Let **A** be a free BA with c generators, and E the nonprincipal ultrafilter on ω . Then:

- (i) A^{ω}/E is an ω_1 -saturated atomles BA of power c.
- (ii) Let p be an ultrafilter on A^{ω}/E . If $q \subset p$ and for every $f_E \in p$ there exists a $g_E \in q$ such that $g_E \leqslant f_E$, then |q| = c.
- Proof: (i) A^{ω}/E is an ω_1 -saturated BA. This statement follows from Theorem 6.1.1. of [1]. The proof that A^{ω}/E is atomless is the same as the proof for $2^{\omega}/F$, or one can use Łoś's theorem. Since $|A| \leq |A^{\omega}/E| \leq |A^{\omega}|$, |A| = c and $|A^{\omega}| = c$, we have $|A^{\omega}/E| = c$.
- (ii) Let $G = \{a_{\alpha} \mid \alpha < c\}$ be set of generators for A. Let us define the set of mappings $f_{\alpha} \in A^{\omega}$, $\alpha < c$, $f_{\alpha}(i) = a_{\alpha}$, $i \in \omega$,

$$K = \{f_{\alpha E} \mid \alpha < c\} \cup \{f'_{\alpha E} \mid \alpha < c\}.$$

Let us define for every $f \in A^{\omega}$

$$K_f = \{f_{\alpha E} \mid \alpha < c, f_E \leq f_{\alpha E}\} \cup \{f'_{\beta E} \mid \beta < c, f_E \leq f'_{\beta E}\}.$$

Since f(i) is the union of finitely many constituents of the form $a_{\alpha_1} \cdot \ldots \cdot a_{\alpha_n(i)} \cdot \alpha'_{\beta_1} \cdot \ldots \cdot \alpha'_{\beta_m(i)}$, there are finitely manu $\alpha < \omega_1$ such that $f(i) \leq a_{\alpha}$, i.e $f(i) \leq f_{\alpha}(i)$, hence $\{f_{\alpha} \mid \alpha < c, f_E \leq f_{\alpha E}\}$ is a countable set. Also, for the same reason, $\{f'_{\beta} \mid \beta < c, f_E \leq f'_{\beta E}\}$ is a countable set.

Let p, q be as in (ii). Since for every $\alpha < c$,

$$f_{\alpha} \in p$$
 or $f'_{\alpha} \in p$, $|K \cap p| = c$.

The conditions for p and q imply that for every $f_{\alpha E} \in p \cap K$ there exists a $g_E \in q$ such that $f_{\alpha} \in K_g$, and $K \cap p \subset \bigcup_{g_E \in q} K_g$.

Since $|K \cap p| = c$, we have $\bigcup_{g_E \in q} K_g = c$. It has already been shown that

$$|K_g| \leq \omega$$
 for every $g_E \in q$, hence $|q| = c$.

Theorem 6. (i) (CH) Every atomless ω_1 -saturated BA of power c is isomorphic to $2^{\omega}/F$.

(ii) If every atomless ω_1 -saturated BA of power c is isomorphic to $2^{\omega}/F$, then $c=\omega_1$.

Proof: (i) This statement follows directly from the completness of the theory of atomless BA and the uniqueness of saturated models [1].

(ii) Since **B** and \mathbf{A}^{ω}/E are ω_1 -saturated atomless BA of power c, $\mathbf{B} \cong \mathbf{A}^{\omega}/E$. From Proposition 4. (iv) we can see that D is an ultrafilter of B, $A \subset D$ such that $|A| = \omega_1$, and for every $f_F \in D$ there exists an $f_{\alpha F} \in A$ such that $f_{\alpha F} \leq f_F$. Proposition 5 (ii) and the existence of an isomorphism between **B** and \mathbf{A}^{ω}/E imply |A| = c. So $c = \omega_1$.

Corollary 7. CH is equivalent to the statement that every Parovičenko space is isomorphic to ω^* .

Proof: The statement directly follows from the previous theorem and the Stone Representation Theorem.

REFERENCES

- [1] C.C. Chang, H.J. Keisler: *Model Theory*, North Holand, Amsterdam, 1973. [2] W.W. Comfort, S. Negropontis: *The Theory of Ultrafilters*, Springer, Berlin, 1974.
- [3] E. K. van Douven, J. van Mill: Parovičenko Characterizations of βω—ω implies CH, Proc. Amer. Math. Soc., 72 (1978), 3.
- [4] Ž. Mijajlović: Saturated Boolean algebras with ultrafilters, Publ. Inst. Math., (Beograd), 26 (40) (1979), 175—197.

Filozofski fakultet u Nišu Grupa za matematiku 18000 Niš Yugoslavia