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AROUND THE NUMBER OF CHAINS IN PARTITIVE SETS¥*%

Duro Kurepa

0. Generalities

0:0. Among crucial and the most fruitful formations of sets is the one of
the partitive set PS for any given set S; also for a given cardinal (ordinal)
number 7 one designs by Pn or P(n) any partitive set PS such that n=£kS
(=cardinal number of §). The set Pn is ordered by C (the relation C includes
the case of =as well).

0:1. The question arises about the set ! Pn[LP (n)] of all subchains [maximal
subchains] of (P(n), C); of course, vi=IP(n) (v denotes the empty or vacuous
set). The cases of »n finite and n transfinite behave quite distinctly, in particular
as concerns LPn; as a matter of fact, one proves easily that klPu=mn! for any
nc{0,1,2,...}; on the other side, one knows that the assumption LPn##v for
every cardinal # is independent of the usual axioms of the theory of sets and is
equivalent to the folowing proposition.

OP (O:dering principle) Every set is totally orderable.V

0:2. Oae his kPN, =2% [PN, CP2YN, thus kIP ¥, <exp, N,. Does here
<mean="7

* Fiaaacially sumorsted by Rapudbli¥ka zajednica za nauku SR Srbije through Mate-
matiki institut Bzograd.

** Partly p-esented in: 1) Zagreb 1954:03:17, O kombinacijama [On combinations]
(v. Glasnik Mat. fiz. astr. 9:1 (Zagreb 1954) p. 73; 2) Mengentheoretische Kombinatorik
(presented on 1963:02:12 at the Koagress der Mathematiker der DDR (Rostock 1968:02:12
—17); 3) Muatematidki institut, Beograd (the 1976:11:05:5); 4) On a sequence of integers
(1976:06:29:2 at the 5th Hungirian Combinatorial Colloquium (Ke:ztely 1976:06:28—07:03);
5) Kolioquium in Erlangza 1976:11:03:2 Einige Resultate aus der Kombinatorik und der
Graphentheorie.

1 OP is strongly weaker than the proposition.

W (Well-o~dering p-inciple): Bvery set is well-orderable.

We proved that W < OP A MA, where )

MA Every ordered set contains a maximal antichain.

Let us observe that W < MCE (Maximal Chain Extension Principle) L (E, <)#v for
every o-dered set (E, <) (F. Hausdorff). Of course, MA & MAE (Maximal Antichain Exten-
sion). For every ordered set (E, <) and every antichain aC(E, <) there exists a maximal
antichain 4 in (E, <) such that aCA4.

Also: MCE < For every ordered set (E, <) and every chain IC(E, <) there is a
maximal chain LC(E, <) such that /CL.
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0:2:1. Let us consider the following statements
(kD) kIPm =exp,m (; =22
(kl) For every infinite cardinal n the statement (kl),, holds.
KDm Kym=2m
(K;) For every infinite cardinal ‘m one has K;m=expm, where

K m=sup kI, | running through systems of totally ordered sets such that
m=kl: =inf kx, each x being everywhere dense in / in the sense that each
open non empty interval of 7 meets x.

As we proved elsewhere there is no restriction to assume that in the
definition of K,/ one has IC Pm (see. Kurepa 1957:1 Theorem 8:1).

0:2:2. Does (K)),, = (k),, for a given infinite cardinal m? Yes, if K;m
is reached i.e. if there is a chain /CPm such that kl=expm and k,/=m.
0:2:3. Let us observe that GCH = (K|). But the proposition (K,) could

be considered also independently of the GCH. E. g. every K-tree of cardinality
N, and with exp N, branches guarantees (K))y .

0:3. In the present paper we restrict ourselves to P (n) for n&N. In § 2 we
reprove a result of M. Popadi¢ concerning kI/Pn for any natural number and
establish some connexions between summation formula on combinations and
iterated differences. For numbers / (n, ) for a given n, we establish that they
are increasing at beginning and decreasing at the end. We are not able to prove
the assumption that the sequence / (n,7) (r=0,1,...) consists of a strictly
increasing initial segment and of the strictly decreasing remainder and that there
are no equal members in the 7 row (we guess that in the table of numbers
I (n, r) for rs£0 all numbers aie pairwise distinct).

For numbers I (n,r)n!™! (r=n,n—1,...) we prove that they are n-poly-
nomials of degrees 1,2, 3,... Is it so for every r?

In § 4 we formulate scme problems on numbers AT b"

1. Differences of a function.

1:1. For a function f(x) and A& R one puts A,f(x): =f(x+h)—f(x),
Arf() =0, F+R) — A f (), ..., Aif(x)=A, A" f(x). One puts also
Anf(x):=f(x). One writes A}f(x): =A"f(x).

1:2. Theorem, Let f(x) be a real-valued function defined in a set
{a, a+h, a+2h,..}CR; then

n id n
(1:3) A f@ -3 (—1)v( )f(a+<n—v)h).
v=0 v
In particular, for any power ™ one has

(1:4) Ajb= S (—1)v(:’)(b+(n-v)h)r~.
v=0
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If f(x)=g(x)k (x), then
LAY AN )
a:9) Mg ke=3 () Mg @ ATk (rovin
in particular (case: A=1, n+m+1, g(x)=x, k(x)=x*"1) one has
(1:6) A’"“a’=(m+1+a)A'"“a"1+(m+1)A'"a“1.
The proof is carried out by an induction argument.

1:7. Theorem.

(1:8) z(e) A gt = A" (a+ 1y,

e=0

Proof Since A’a‘—z (—1)‘( )(r+a—1)° one has

(9, =z( ) 2(—1)'( )(r+a~z)°

e=0

-500() 5 e

i=0 1] e=0

=é ——1)‘(:)(1+(r+a—i))"=

é ~1)'< )(a+1+r—i)"=A'(a+1)"=(l:8)2.

1:9. Theorem. Let a be any real or complex number; for every positive
integer n and every r&l,. ={0,1,2,...,n—1} one has

Argr=0

Arar=n! In particular, A**'a"=0 for every natural number n.

Proof. For n=1 one has A'1!=21—-11=1=1!
Al10=20_10_0.

Consequently, the statement is holding for n=1. Assume now that the
statement holds for n=m>1; we are going to prove that it is holding for
n=m+1, r=0,1,..., m, as well. First of all, the statement is obviously holding
for n=m+1, r=0. Assume that it holds also for n=m-+1and r=0,1,2,...,
s—1, where s—1<<m; we are going to prove the statement also for n=m+1,
r=s. Now, we have the formula (1:6); by induction assumption, both summands
(in 1:6) are 0; consequently, also A™+14°=0. In particular, for m+1=s+1
the equality (1:6) yields Amtlgmil—(mirl+m+1)Am gt (m+ 1) Am g™ =
= (the first summand is 0)=(m+ 1) A"g™ = (m+ 1) m! = (m+ ).
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1:10. Lemma. For every 2-un (n,r) of natural numbers one has

(1:11) z( )Arle Aron,

e=0

Proof. Since Arle=S (—1)f(f)(r+1—i)e, one has
i=0 [

(1:11), -g( )Z(—l)'( )(r+1—z)_§(-1)( )Z(:)(r+1—i)°=

e=0

r r

a1y S - .)(r+2—i)"=A'2"=
’ i=0 \

i 1

=(1:11),.
1:12. Lemma. If (a, n) is any 2-un of natural numbers such that a<n,
then for any integer r=0

n-—1
(1:13) > (n)A’l":A’“ 17 in particular for r=0 one has

a=r

n—1
(1:14) Z( )AOI“ A1, where AY1e; = 1¢,
a

a=0
Proof. At first, let us prove (1:13) for r=0, i.e. that (1 14) is holding.
Now, (1:14),= S (”)1u(”>A°1n=2n—1" A lr=(1:14),
a n

a=0
If >0, then the summator in (1:13), satisfies, symbolically,

2
therefore,

(1:13), = z ( )A’I“ i (n) A’l“~<n)A' 1, now, the first sum equals
a=0\a n

Ar2n (see 1.10 Lemm:); the second sum equals 0 (v. 1:9 Lemma); thercfore

the last expression for (1:13), yie'ds

(1:13), =A2"-A'["=A"(2"—1"=A"A1"=A*11" Q.E.D.

Remark. It is uszful to compire the countent of lemmas 1:10, 1:1}1;
in either case, the left side is a scalar product; only the boundary of summations
are distinct.

2. Set and number of paths of a graph.

2:1. For any graph &G let pG or /G denote the set of all non empty
paths or chains in §.

The empty set is considered as a path (chain) in every graph.
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22, For any cardinal number 7 let p,§ denote the set of all paths of
€ of cardinality n each. Consequently, pG=,p, (n=0,1,2,...). In particular,
P, G denotes the set consisting of the empty path. \

2:3. For any (n, r) of numbers we define p(n, r): =kp, P (n):=p,,. Conse-
quently, p, is a cardinal number and not a system of sets. Of course, if n<r,
then p,,=0. How to determine the numbers p(n, r)?

2+4. Theorem. Let 0<{r<<nand let e: =(ey, €, ..., e,)E(IIH") be any

+r/ .
strictly increasing sequence of digits &1 .,! ={0,1,2,...,n}. The number
p(n, 1+7) of (L+r) — chains x=(x;<x;<<+ - <X) satisfying k(x)=e;, and

xC P (n) equals: (n) for r=0; thus (’(; ) =1 provided e,=0; and

(:) (Z)(Z:) Jor r>0.

) we get the number p(n, 1+n) of all

€,

o ()

11+n
1

Summing (2 5) through all eE(
+r

(1+¥#) — chains CP(n):
2:6) p@ 1+0=3 (n) 5 ( o ) 951(63)251 (ez)e‘f(el).
er=r \G/ ep_j=r—1\€—1 e,=2\€3/ e;=1 \€1/ ¢;=0\€p|
In particular
2:7 : p(n, 1)=2"
(2:8) p(n, 1+n)=n!
2:9. We put also .
p(n, 0)=1 since the empty set v is considered as a chain in (P (n), C)
for every nN. Thus v is a part as well as a member of P (n) for every n=N.
Proof The particular case r=0 yields e=(e,) and the corresponding

summation in (2:6) becomes > ( " )= 2" i.e. (2:7) is holding. Let us consider

ep=0 €,

€,

. . I
the case that r>1. Since kx,=e,, x, is any member of ( ’) and thus x, can
: ,

r ) , thus

n . .
assume ( ) values. Since x,_,C #X,; kx,_;=¢,;, X,—; 1S any E(
e, ey

e . . .
X,_, assumes ( ’ ) values, ... By induction argument we infer that the formula
ey . ,

(2:6) holds. In particular,

p(n, 1+n)=(’;)(z_1)(’;:;) (\2)(?)((1)>=1-n(n——1)...2-1=n!

Taking the sum of the numbers p(n, 1+7r) for r=0,1,...,n we obtain the
following:

8 Publications de I’Institut Mathématique
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2:10. Theorem. The number of non empty chains in (P (n), C) equals

b= Speeten= 53000 ) (G)
e:=(epep.-.,€) E(IH'").

2:11. Theorem. For every natural number n and every a<={0,1,...,n}
one has

2:12) p(n,1+a)=§(”)( 5 (ea )( b (ea-l)(...

eg=a ea lea_1——a—1 ea 1 ea_2=a -2 ea 2

LB ) )

IR EA o
-3 ( 1)(s}(a+2 9"

1

Proof. The theorem was proved for a=0; (v. 1.1, 2:7). Let a1 and
assume that (2:12) holds for every number a of 1nd10ated ,,parentheses‘; let
us prove it also for 1+a parentheses, i.e. that (2:12) holds.

Let us consider (2:12),; on applying 1:10 L step by step to expressions
6o 1()is +++s ams( Juep the second part (2:12), of (2:12) becomes

a—1

)

2:12), = z ( )A“ lea; further, this equals (in virtue of 3 = i -
€ n 0

n n r—1 n
Jer— A 1ea =
eaz=o(€a) eaz=o(€a)

(apply 1:10L to the first sum and 1:97Th to the second sum)
=N _0=(2:12),
As to the equality (2:12),=(2:12), see (1:4) for (n, m, k) =(m, n, 1). Q.E.D.

2:13. Remark. The equality (2:12),=(2:12), is due to M. Popadi¢
[1951 formula (2))].

3. Another expression for p(n,a). Let us reconsider the relation

3:1) p(n,a): = Zn(e) n(e): —( )(ez) Y (:a-l)=
n!

€
= »
el (e, —ep)l (e, —e)l - - - (egmy—€5- ) (n— ey, )

e =~“(€0, €1y e ea—l)e( 1+n)
a
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Instead of summing in (3:1) over eE( we shall sum over e,

1 (1a+ n))

and over the sequence d of differences

3:2) dy=e,—e, d=e,—e,..., d,_,=e€,,—e, , (the number of terms of
this sequence is a— 1). We have

(B:3) ey=ey+dy, e,=ey+dy+d,...,e,_=ey+dy+d+ - +d,_,=ey+sd,
where

(3:4) sd, =dy+d+ - +d,_,.

Since e, _,<<n we infer that for a given sequence (3:2) of differences the
greatest admissible value of ¢, satisfies n=ey+dy+d,+ + - - +d,_,, i.e.

(3:5) e, =0, 1, ..., n—sd).

3:6. Lemma. Let d=d,d,,...,d,_, be any sequence of positive inte-
gers such that sd<n.

If d=dy,...,d,, is any permutation of the sequence d, then

3:7 nld]=nl[d'],

where, by definition, n[d] denotes 2, n (e), esatistying (3: 1), (3:2), in other words,
n-—-sd ¢ n!

(3:8) nld]= 3

0 €l dyld .. .d, M (n—e, )

As a matter of fact, the last expression yields

— — n—sd (pp _
n[d]= n+l—sd)y(n+2—sd)...n (n .sd) because e, = e, +5d,
dld!...d, ! =0 \ €,
! —
__n.____s(n Sd) n+l—sdy(n+2—sdy...(n—1n.
el (n—sd—ey)! e,
Thus
3:9) n[d]= n+1—sdy(n+2—sd)...n gnmsd.

dldl...d,_,

By the same argument we find the same expression for n[d'): n[d'1=(3:9),.
This means that (3:7) is holding.

3:10. Main theorem. For any given 2-un (n, a) of natural numbers,
let p(n, a) denote the cardinal number of the system of all chains in (P (n), C),
each of cardinality a; then

(”+I_Sd)("+2“5d)--~”2n—sd=__Aa—12n,

(311 p(ma)=3dl
d

dld!...d,,!
where d: =(dy, d,,...,d,_,) runs through the set of all increasing sequences
(3:12) | - d...d<d<...<d,_, ’

of natural numbers satisfying

8%
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(3:13) sdi=dy+d,+ - +d,_,<n; in particular dy>1; d! denotes the riumber
of all permutations of the sequence d.!

In particular

3:14) p,n+1)=nl=A"2"

(3:15) p(n,n) =n! nt3_An-ion
2 o135

3:16 n,n—1)=n! —-+—n+—>=An—22n,

3:16)  pn-1) (8 s

(3:17) p(n,n—2)=n! (Ln3+in2+in——~l—>=A”—32"'
48 120 48 24

Proof of the theorem.

3:18. First of all, instead to perform the summation in (3:1) for p(n,a)
I(n+1)
a
(3:12); from (3:12) and (3:13) we infer that there is a one-to-one corres-

pondence between e's and e, d’s. The formula (3:1) yields

over e ) we shall do the summation over e, and over sequences

n!

p(n,a)=z =

aa eldld!...d ' (n—e,—sd)

n—sd n!

=33 ' =3 nld)

d eg=0 60! dO‘ “en di;_zl (i’l — Sd)' d

Here d means any sequence d=d,, d,...,d, , of positive integers such
that sd<n. If d’ is the normal permutation of d, i.e. such one that do<di<
< - <d;_2, then by virtue of the Lemma 3:6 we have n[d]=n[d']; conse-
quently, > n[d]= 2,[d’], and this is exactly the content of the requested relation
(:1D),=@:11),

3:19. Case p(n+1), i.e. e=(0,1,...,n), d=1,1,...,1, sd=n; the
formula (3:11) becomes precisely (3:14).

3:20. Case p(n, n). The conditions (3:12), (3:13), a=nyield that sd=n—1
or sd=n. If sd=n—1,then d;=1(i=0,1,...,n-2); d!=1; the corresponding
part in p (n, n), according to (3:11), equals

2:3...n,
lo—————2=2n!
i,
YIf f=fi, [ ... is any sequence of objects, a permutation of f is any sequence

f'=f' fs ... such that the frequency vf of every object f in f equals the frequency of the
same object of £/, and that the frequency v f; of every term f;  of f’ equals the frequency
of the same object in f.

If f! denotes the total number of permutations of f: =(f; f;, .., f,) then one knows

that f= n!:l—[ (Vx)!, xE{fl,st . ,fn}'
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- .
If sd=n, then necessarily d=(1),_,, 2; thus d!=£—n—;—;;=n-—l and the
n—2)!
. . . n! n-
corresponding part in p(n, n) is (n—1)! B 20= Y

1
nl. Consequently,

n+3

p(n,n)zznwi;—lnz:nz =(3:15),.

3:21. Expression for p(n,n—1)=A""22"

If we have a=n—1, then in (3:11) the sequences d are of length a—1=
=n—2 thus we have 1<d,<d, <. -<d,_; and sd: =dy+d, + -+ - +d,_;<n;
therefore sd&={n—2, n—1, n}.

(1) If sd=n-2, then necessarily d=(1),_,:=(,1,...,1); then d!=1,
e —

n—2
n+1—sd=3, and the term under 2, in (3:11) reads 1—'31—'41"'—'nﬁ22=2n!
(n—2)!
(2) If sd=n-1, then d=(1),_,2, d!= —=n—2; n+1—sd=2; accor-
(n-3) 1
ding to (3:11) we have
!
nld]=(n—2) —Z—"21=(n—2)n!
(3) If sd=n, then d=(1),_,3 or d=(1),_,2,2.
. (n-—-2)!
(3:1) The case d=(1),_5, 3 yields d!=z——5¥=n—2, n+l—sd=1, nld]=
n—3)!
nlo, n!
7—(n—2)-§~! 2 —(n—2)§.
(3:2) The case d=(1),_,(2), yiclds ;
— 21 —3) (-
dl= n—2)! =(n 3)(n 2)’ nal—sd=1,
(n—NH 2! 2
- - ! — -
n[d]=(n H@r—-2) ~nl 20:(n 3(n Z)n!.
2 2121 8

(4) The summation of all these 4 cases yields

p(n,n~1)=2n!+(n~2)n!+(n—2)g+£'i_—3)—;f;2—)n!=

:m(_nj+ 24+4—15n+48—48—8+18>=n‘ (n2 13
) “\s 24

5
—+—n+—}=(3:16),.
8 24 24 | 12) ©:16)
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3:22. Number p (n, n —2)=A"=32" We shall apply the main theorem 3:10
I(n+1)
a
rence sequence d has n—3 terms: d=d,<d,< - - - <d,_,. Therefore we assume

n>4. Since n—3<<sd<n we have to consider the following 4 cases:

putting a=n—2; consequently, for any eE( ) the corresponding diffe-

- 1
(1) sd—n—3; in this case: d=(1),_s, d!=1, n+ 1 — sd= 4, therefore n[d]=% 2%

(n~3)!=

(2) sd=n-2; in this case d=(1),_,, 2; dl =
(n—4)!

n—3; n+l—sd=3;

therefore the summand in (3:11), becomes
nld]=(n- 3)i-—n—!22_=n! (n—3);
2 2
(3) sd=n-—1; in this case dE((1),_4, 3); (1),—5(2)y), n+1—s5d=2;
3.1) If d=(),_, 3, then d!'=n—3 and

n[d]=(n—3>g2;

(n—3)! =(n~4) (n-3)

32) If d=(1 , then d!=
(3.2 (1),-5(2),, then d! 512 5 and
n[d]z(n—4)(n—3) n! 2t
2 212!

(4) sd=n; in this case d=(1),_,4 ord=(1),_5 2-3, or d=(1),_6(2)s
n+l—sd=2.

@1 If d=(1),_, 4, then d!=n-3,
n!
d — - 0.
nld]=(n=3) 7 2%

(4.2) If d=(1),_;2,3 then d!:%g—i:(n—@ (n—-3),

n!
213!

nld]=n-~4)(n—3) 29,

(n—3)! _ n—5n-4Hm-3)
(n—6)! 3! 31 ’

n[d]=(n—5)(n—4)(n—3) n! 2.
31 @7 "

(4.3) If d=(1),_, (2),» then d!=

Summing the obtained values for n[d] one gets (3:17),.
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4. Table and some properties of the numbers p (n, 5).

4+1. Table of numbers p(n,r)=AT"12"

By eithe: of the formulae (2:6), (2:11), (3:10) one could establish the
following vaues for A72% (=p(n, 1 +r).

n\ri 0 1 2 3 4 5 6 7 8
1 2 1

2 4 5 2

3 8 19 18 6

4 16 65 116 84 24

5 32 211 570 750 480 120

6 64 665 2702 5460 5880 3240 720

7 128 2059 12138 35406 57120 52080 25200 5040

Remark. Maximal members in every line are bold-faced.

4-2. We observe and check that every row of the table has an initial
strictly increasing <ezment and a terminating one which is strictly decreasing.

4:2°1. I the union of these maximal parts the row itself? In other words,
is every row of Ar2" (n is fixed) decomposable into an initial maximal segment
which is «trictly increasing and the remaining terminal segment which is strictly
decreasing?

4:2:2, 1If g, is the ratio of the lengths of these two segments, find
lim g,, lim g,.
4:2:3. E. g. one checks easily that
6<ne-N =>pm,n—2)>pmn,n—1)>pn,n>pHn,n+1).
As a matter of fuct, for the expression
g =n""(p(n,n=2)—p(n,n—1))
in virtue of (3:16), (3:17) we have
1 1 25 11
A T YR TL
and one sees that g(n)>0 for 6<n& N.
4:3. Function 2(n). For n&<N let 2(n) be defined by

{4:3:1) A2@ 27 = gup, Ak 27,
l4-n
4:4:2. We guess that 2(,4)2[7] for every n&N\{3}.

4:4. More generally, for any r&{0.1,2,...} and any natural number n
Tet r(n) be the first natural number x & N such that

(4:4:1) A*rt=sup A¥rn,
k
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4:4:2. Problem. Is r(n)>|i—l¥] for every nc N\{3}?

4:4:3. Problem. Is r(#) the unique solution of the relation (4:4:1)?

4:4:4. Problem. Do the relations 1£A%2%=A% 2" have only the trivial
solution (a,n)=(d', n')?

4-4+5. Problem. Find the solution set of A%b*=A%b"#~1.

Remark that e. g for the case b=>5b'=0 one has A20°=A30%(=6).Is it
the unique non trivial solution of A40¢=A%0%?
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