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REPRODUCTIVITY OF SOME EQUATIONS OF ANALYSIS
Jovan D. Kedkié

1. Introduction

1.1. Reproductive equations. Following S.B. Presi¢, we shall say that the
equation in u:

(1.1.1) u=Au
where 4 : S—S is a given mapping of a nonempty set into itself, is reproductive if
(1.1.2) A (Au)=Au for every ucS, ie. A=A,

and the function A satisfying (1.1.2) will be called a reproductive function.

All the solutions (the general solution) of the reproductive equation (1.1.1}
are given by the formula u=At, where 1< S is arbitrary.

This suggests that a way to solve an equation in u:
(1.1.3) u=Fu

where F : S—S, would be to form a repreductive equation equivalent to (1.1.3).

Indeed, Presi¢ [1] showed that for any equation ( 1.1.3) which has at least one
solution, it is possible to construct a reproductive equation which is equivalent
to it. This general construction, however, is such that it cannot be used for solving
the equation (1.1.3).

Nevertheless, in certain cases it is possible to construct a reproductive equ-
ation equivalent to a given equation (1.1.3) which will, as a result, yield an effective
general solution of (1.1.3). Examples of such procedure may be found in Adamovi¢
[2), where a system of functional equations is written in the form of an equivalent
reproductive equation, and in a number of papers by Presi¢, but notably in [},
where he applied this idea to various kinds of equations (matrix equations, functi-
onal equations, Boolean equations, etc). Both mentioned authors obtained effective
general solutions of the considered equations.

Reproductivity was not, as far as we know, applied to equations of analysis.
In this note we shall apply reproductivity to ordinary differential equations, and
in some subsequent notes we shall consider some other kinds of equations. Though
we shall not, as a rule, obtain new results, the method used seems to be interesting,
particularly as it will throw some light on the nature of the solutions of the equ-
ations in question.

Throughout this paper Di(I) will denote the set of all real functions which
have the k-th order derivative on an interval I.
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1.2. Reproductivity and systems of equations. In certain cases it is more con-
venient to form an equivalence between the given equation (1.1.3) and a disjunction
of reproductive equations:

u=fusu=Awuy - Vu=Auu,

where 4,2=A4, (v=1,...,n). In that case, the general solution of (1.1.3) can be
expressed as
u=Ait\ - - - Vu=-Agt,
where r<.S is arbitrary.
Sometimes a system of equations can be put into equivalence with one rep-

roductive equation:
u=Fu/ - - Nu=Fu & u=Au (A°=A)
In that case, the general solution of the system
u=Fup - ANu=Fu
18 given by wu=At, where t=S is arbitrary.

1.3. Constant equations. A particularly important situation arises when A
is a constant mapping, i.e. for all u& S, Au=uy, where 1y S is fixed. (The constant
mapping is clearly reproductive). In that case the (general) solution of the corres-
ponding equation (or system) is unique.

Having in mind the importance of unique solutions in various branches of
analysis, we shall also be concerned with the following problem:

For a given equation (1.1.3), which is found to be equivalent to a reprodu-
ctive equation (1.1.2), find what equations (E;), ..., (E,) should be added to
(1.1.3), so that the resulting system:

(LI)AEDA - -+ A(En)

is equivalent to a constant equation.

It will be seen that the structure of the equivalent reproductive equation indi-
cates the solution of this problem.

2. First order differential equations

2.1. An auxiliary result. Let y<& D (I) and consider the equation
2.1.1) V' (x)=0.

According to the mean-value theorem, the equation (2.1.1) is equivalent to
e equation
1.2) y(x)=y (xg) (xpc 1 is fixed).
The equation (2.1.2) is reproductive (for A:D{(I)—D (I) defined by Ay (x)=
=y (xo), we clearly have 42=4). Hence, its general solution is given by

y(x)=t(xp) (t&D; () is arbitrary)
or, as we usually write
y=C (C arbitrary constant).
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The equivalent reproductive form (2.1.2) clearly shows that the system

(2.1.3) . Y (x)=0Ay (x0)=yo
(where xg&1 and y are given numbers) will be equivalent to the constant equation
.14 ¥ (x)=Yo,

and hence the general (and unique) solution of (2.1.3) is (2.1.4).

2.2. A class of first order equations. In [3] we proved that the differential
equation

2.2.1) V=f(x2y (yeD (D)
can be integrated by a given procedure if and only if it can be written as
(22.2) (g (x,») =0.
The equation (2.2.2) is equivalent to
(2.2.3) g (x, y (x))=g (X0, y (x0)) (xpE1 is fixed).

Suppose that
gu,V=wev=hu,w).

Then (2.2.3) is equivalent to
(2.2.4) ¥ (¥)=h(x, g (xo, y (x0)))

and it is easily verified that the equation (2.2.4) is reproductive. Hence, its general

solution is
v (xX)=h(x, g (xo, t (X0))),

where t< D; (I) is arbitrary, or y=h(x, C), where C is an arbitrary constant.

The reproductive form (2.2.4) shows that uniqueness will be achieved if y (xg)
is given. Indeed, the system

(2.25) ¥ =f, )Ay(x)=ro (yo given real number)
is equivalent to the constant equation
(2.2.6) y(x)=h(x, g (xo, ¥0))

which means that (2.2.6) is the general (and the unique) solution of the system (2.2.5).

Cauchy’s initial condition y(xo)=yy is, therefore, a natural condition to add
to (2.2.1) to ensure the uniqueness of solution,. However, as we shall see in the
next section, it is not the natural condition for all first order equations, as we are
sometimes led to believe by standard text-books.

2.3. A special Clairaut’s equation. Let y <D, (/) and consider the equation
2.3.D) y=xy' +())2.
If xoc I is fixed (but arbitrary), from (2.3.1) follows

(2.3.2) ¥ (xp)=x0y" (xo)+" (x0)2.
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Differentiating (2.3.1) we obtain

y' (x+2y)=0,
and we distinguish between two cases:
() y'=0. Then y¥=1@W=. .. =0,
(ii) x+2y'=0. Then
(2.3.3) V)= .
and y"' = —1/2, YO =y = ... =0,

If we develop y into Taylor’s series in a neighbourhood of x,, we get:
() ¥ (x)=y (x0)+(x —x0) ¥ (xo),

i.e. having in mind (2.3.2):

(2.3.4) V() =y (%) + Xy’ (xo)-

(i) ¥ ()= (o) + (¥ — x) ¥’ () + —; (%) (),
or, using (2.3.2) and (2.3.3):

1 1 1 1
X)={ ——Xg+— X2 ) - — (x—x,)x, ——— (X — x,)2,
¥y (x) ( 5 0Ty 0) 2( D 4( o)

ie.
(26.3.5) y(x)= —x*4.
The equations (2.3.4) and (2.3.5) are reproductive equations (the second being
also a constant equation). Since for y&D,(I) we have
231 e (234 Vv(2.3.5

we conclude that the general solution of (2.3.1) is given by

V@)= (P +xt" () Vy ()= —x*/4,
where t<.D,(I) is arbitrary, or by

y(x)=C?+CxVy(x)= —x?/4,

where C is an arbitrary constant.

Remark. It is customary to say that the general solution of (2.3.1) is
y=Cx+C2 (C arbitrary constant) and that its singular solution is y= —x2/4.

Throughout this paper we have taken the general solution to mean the solution
containing all the solutions, which is a natural definition, though not in accordance
with tradition.

The equivalent reproductive form of (2.3.1), provided that y& D, (I), namely

Y(X) =y (X +xp (X)) Vy(x)= — x2/4,

shows what conditions should be added to the equation (2.3.1) to ensure the uni-
queness of solution.
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The additional condition is clearly
V' (x)) =y, (}’o'(?’: - %xo) given number) .
This shows that Cauchy’s initial condition y(xg)=yp is not a natural condi-

dition for Clairaut’s equation (2.3.1).

Remark. If y'= —x0/2 then there will be two solutions satisfying
(2.3.1) and the given condition y (xo) =yy’, and hence some more conditions should
be added, if we want to secure a unique solution.

3. Linear second order differential equations
3.1. The general solution. If f, g& D (I), let

WL =W (fgx)=rf(x)g(x)-f(x)g (x)

It is easily verified that for three functions f, g, #< D (I), the following identity
is valid:

G3.1.1) W(f,e)h+Wh,flg+Wig, h) f=0 (x&I).
Let y&D,(I) and consider the equation
(3.1.2) YV'+p(x)y' +q(x)y=0 (x&n).

Suppose that f and g are linearly independent solutions of (3.1.2), i.e.
W(f, g;x)#0 (x&I). If y is any other solution of (3.1.2), from (3.1.1) we get

_W(r,8x) W(f,y;x)
(3.1.3) y(x)—W(ﬁg;x)f(xHW(ﬁg;x)g(X)-

Moreover, if ¥ and v are solutions of (3.1.2) then

i W,v;x)+p () W,v,x)=0,
dx

which implies that the quotients appearing on the right hand side of (3.1.3) do
not depend on x, provided that p has a primitive function on /7. Hence, (3.1.3) can
be written in the form

W(y, 8 a) £+ W(f,y;b)

3.14 —
G149 YOy G’ W g b

——=227 L g (X),

where a, b& 1 are fixed.

The equations (3.1.2) and (3.1.4) are equivalent. However, the equation
(3.1.4) is reproductive, since it is casily seen that for the mapping 4 : D, (1) — D,(I)
defined by

Ay(x)zW(y,g; a) f(x)+W(ﬁ ¥; b)

AT T i
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we have A2=A. This means that the general solution of the equation (3.1.4), and
hence of (3.1.2), is

W, ga W(f.t; b

3.1.5 X)= + ),
(3.1.5) () W(f,g;a)f(X) W(f’g;b)g(x)
where t& D, (I) is arbitrary, or

(3.1.6) y(®)=C1f(x)+Crg (%),

where Cy and C, are arbitrary constants.

Remark. In the last step of the proof, i.c. in the transititicn frem (3.1.5)
wtega 4 WELH
W/ g a) W(/, & b)
can take arbitrary real values. However, we have proved that (3.1.2) = (3.1.6)
where C; and C, are constants, and the implication (3.1.6) = (3.1.2) where C;
and C, are arbitrary constants is directly verified.

to (3.1.6) it is necessary to show that the quotients

In other words we have proved the following theorem:

If f and g are linearly independent solutions of the equation (3.1.2), where
p has a primitive function on 7, then the general solution of that equation is given
by (3.1.6).

The above theorem is, in a way, often taken for granted. In fact, we could
not find a proof of this theorem, as it stands, anywhere.

The standard text-book procedure runs roughly as follows:

(i) It is first necessary to prove an existence theorem such as: If p and g are
continuous on I, there exists a unique solution Y of (3.1.2) which satisfies the
conditions Y(xg)=7Yy, Y'(xg)=Yy, where xc€1, Ygard Yy are given nimkbers.

(ii) Suppose that Y is a solution of (3.1.2). According to (i), Y is the only
solution of (3.1.2) satisfying Y(xg)=Y, and Y'(xq)=Y,, where xo&1 is fixed.
But the solution (3.1.6) with

C, - Yo' g (x0) —Yo8" (%) C, = Yof' (xo) — Yo' f (%)
W(f, g x) W (f, & Xo)

also satisfies (3.1.2) and Y(x0)=Yy, Y (xg)=Y,, erd Larce it must coircide
with Y.

The proof of the above theorem by means of reproductivity has several advan-
tages over the standard method sketched above:

(i) The proof does not require the theorem on the existence of the unique
Cauchy solution of (3.1.2);
(ii) The restrictions needed for the cocfficients p and q are weaker: we
need only suppose that p has a primitive function on 7
(iii) Cauchy’s initial conditicns are not used in the proof. Indeed, as we
shall sce later, Cauchy’s conditions naturally follow from the reproductive form
(3.1.4).
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The reproductive proof of the above theorem is easily extended to n-th order
linear equations.

The equation (3.1.4) is not the only reproductive equation equivalent to (3.1.2),
For example, from (3.1.4), interchanging a and b, and adding the obtained equa-
tions, we get

Wif,es )W, gsa)+W(f, g aW(,g
2W(f, g a)W(/, g b)
W W(Ly b+ W (e )W, y;a)g
2W(f, g a)W(/ g b)

It is easily shown that the equation (3.1.7), equivalent to (3.1.2), is reproductive.

D r+

G117  y)=

().

3.2. Cauchy’s solution. Putting a=b=x, into (3.1.4) we get

(321) y (x) _ y’ (xo) g (xo) -) (xo) g, (xo)f x) + fl (xo)y (X()) “f(xo)yl (XO) g(X)
f, (xo) g (xo) "f(xo) g, (xo) f, (Xo) g (xo) *f(xo) g/ (xo)
The equivalent reproductive equation (3.2.1) indicates what additional equ-

ations should be added to (3.1.2) to ensure the uniqueness of solution, i.c. to trans-
form (3.2.1) into a constant equation.

Clearly, y(xo) and »'(xg) should be given.
In fact, the system

(3.2.2) G LAY (X) =y, AV (%) =¥y

where xo&1, 3o, ¥’ are given numbers, is equivzlent to the constant equation

(3.2.3) y(x)= ; Yy 8(x)—» & (x(’)) x)+ — Yol (%) *yo,f(x(l)) (x).
I (o) & (xg) —f (x0) 8" () J (%) g (xg) —f(x0) & (%)

and hence (3.2.3) is the general (and the unique) sclution of the system (3.2.2).

Remark. This procedure emphasizes the natural need for Cauchy’s
initial conditions y(xg)=yq, »'(x¢)=)¢’, srce thcy crstie the tniqueress of
solution for any equation (3.1.2).

Remark. The solution (3.2.3) is obtained from the general solution (3.1.5)
by putting a=b = x, and 1 (x) =y, + ¥, (x — X,), though this is not the only choice
of t.

3.3. Examples of boundary value preblems. By considering the equation

(3.3.) yY'+y=0

we shall illustrate how the repreductive ferms (3.1.4) and (3.1.7) can be used to
yield generzl solutiors of scme boundary value problems, which will in certain
cases be unique.

Cicarly, for the equation (3.3.1) we mey take

f(x¥)=sin x, g(x)= cos x,
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so that W(f, g)=1. The reproductive equations (3.1.4) and (3.1.7) become

(3.3.2) y(x)=[y' (a) cosa+y (a)sina]sin x+[y (b) cos b—y’ (b) sin b] cos x

and

(3.3.3) 2y(x)=(y (@)cosa+y(a)sina+y (b)cosb+y(b)sinb)sin x
+((B)cosb—y (b)sinb+y(a)cosa—y (a)sina)cos X,

respectively.

(i) Consider the problem
(3.3.4) (33.) Ay (0)=0A p(m)=0.
Putting ¢=0, b=n into (3.3.2), we get

yx)= y’(d) sin x—y (w) cos X,
i.e. using y (m)=0.

(3.3.5) y(x)=y'(0) sin x,
and it is easily seen that (3.3.4) & (3.3.5).

Since (3.3.5) is reproductive, the general solution of the system (3.3.4) is gi-
ven by

y(x)=t"(0)sin x (t€Dy(I) is arbitrary)

or y(x)=Csinx (C arbitrary constant).
(ii) For the problem

(3.3.6) B3 DAYO)=0AY@=1,
using the same procedure, we arrive at the reproductive equation
y(x)=y" (0) sin x — cos x,

but this equation is not equivalent to (3.3.6), indicating that (3.3.6) has no solu-
tions.

(iii) The problem
(3.3.7) B3.DAY (@ =AAY (0)=v

(., v given numbers) has a unique solution. Indeed, the equation (3.3.2) for a=0,
b=m becomes
y(x)=y(0) sin x — y () cos x,

and using y (m)=4, »'(0)=v,
(3.3.8) y(x)=vsin x — A cCoS Xx.

Since the constant equation (3.3.8) is equivalent to the system (3.3.7), the
unique solution of (3.3.7) is (3.3.8).

(iv) Finally, consider the problem
(3.3.9) B3.DAYO) —y@=rAY (0)=y (T)=v
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(4, v given numbers). The reproductive equation (3.3.3) for a=0, b== becomes

2y () =0"(0)—y (m)sin x+(y(0) -y (m)) cos x,
and using (3.3.9)
(3.3.10) Y(x)=(vsin X+ cos x)/2.
The constant equation (3.3.10) is equivalent to (3.3.9), and hence (3.3.10)
is the unique solution of (3.3.9).

The author is indebted to Professor D.D. Adamovié for careful reading of
the first version of this paper, and for a number of valuable comments and sug-
gestions.
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