SOME EMBEDDING THEOREMS

Marica D. Prešić and Slaviša B. Prešić

Summary. In this paper we prove Theorems $1,2,3$ which are generalization of Malcev theorem ([6], p. 274). We also make the correction of a mistake made in our paper [9].

1. There are several general theorems on embedding like the following: Loś theorem ([4])
(L) Let $L_{1}, L_{2}\left(L_{1} \subseteq L_{2}\right)$ be languages ${ }^{1}, \mathcal{M}_{1}$ a model of L_{1} and F_{2} a set of formulae in L_{2}. Then \mathcal{M}_{1} can be extended to some model of F_{2} iff for every universal formulae φ in L_{1} the following implication holds:

$$
F_{2} \vdash \varphi \rightarrow \mathcal{M}_{1} \models \varphi
$$

The theorem close to the preceding one:
(S) Let $L_{1}, L_{2}\left(L_{1} \subseteq L_{2}\right)$ be languages F_{1} and F_{2} sets formulae in L_{1}, L_{2} respectively. Then every model \mathcal{M}_{1} of F_{1} can be extended to some model \mathcal{M}_{2} of F_{2} iff for every universal formula φ in L_{1} the following implication holds:

$$
F_{2} \vdash \varphi \rightarrow F_{1} \vdash \varphi
$$

Malcev theorem (slighty reformulated):
(M) Let $L_{1}, L_{2}\left(L_{1} \subset L_{2}\right)$ be languages, F_{1}, F_{2} sets of quasiidentities in L_{1}, L_{2} respecively. Then every model \mathcal{M}_{1} of F_{1} can be extended to some model \mathcal{M}_{2} of F_{2} iff for every quasiidentity in L_{1} the following implication holds:

$$
F_{2} \vdash \varphi \rightarrow F_{1} \vdash \varphi
$$

Keisler theorem [5]
(K) Let \mathcal{M} be a structure for L, T a theory with language L, Γ a regular set of formulae in L. Then \mathcal{M} has a Γ-extension which is a model of T iff every theorem of T which is disjunction of negations of formulae in Γ is valid in \mathcal{M}.

[^0]Cohn-Rebane theorem ($[\mathbf{1}, \mathbf{1 1}])$
(C R) Any Ω-algebra can be enbedded in some semigroup.
A number of results of different authors $([\mathbf{2}, \mathbf{7}, \mathbf{8}, \mathbf{9}, \mathbf{1 0}, \mathbf{1 1}])$.
In Theorems $(\mathrm{L})-(\mathrm{K})$ it is supposed $L_{1} \subseteq L_{2}$ which is not the case ${ }^{2}$ in (C R) and in some results in $[\mathbf{7}, \mathbf{1 0}, \mathbf{1 1}]$.

We emphasize that Theorem (CR) can be naturally reformulated so that the condition $L_{1} \subseteq L_{2}$ holds. For example, by (C R) the grupoid $\mathcal{G}=(G, \circ)$ where:

$$
G=\{a, b\} \quad \begin{array}{c|cc}
\circ & a & b \\
\hline a & b & a \\
b & a & a
\end{array}
$$

can be embedded in some semigroup $\mathcal{S}=(S, *)$.
According to the proof of (C R) this means that the set G can be extended to some set S, in S can be chosen an element, say $c(c \notin G)$, and can be defined an associative operation $*$ in S such that for all $x, y \in G$ the equality

$$
\begin{equation*}
x \circ y=(c * x) * y \tag{1}
\end{equation*}
$$

holds.
As we can see the equality (1)—definition of the operation \circ of the given structure \mathcal{G} by $*$ and the constant symbol c, is required only for $x, y \in G$. However, if we permit x, y to be any elements of S, this equality becomes a definition of exactly one operation of S. In such a way in connection with the considered example one model $\mathcal{S}^{\prime}=(S, \circ, *, c)$ of the language $\{*, \circ, c\}$, which is an expansion of $\{*\}$, appears. In fact, \mathcal{G} is extebded to \mathcal{S}^{\prime}. Similar holds generally in case of embedding a model of one language in some model of some other language providing that in addition certain explicit definitions of operations and relations, like (1), are required.
2. Let $L_{1}, L_{2}\left(L_{1} \subseteq L_{2}\right)$ be languages and F_{1}, F_{2} sets of universal Horn formula in L_{1}, L_{2} respectively. Then we have the following theorem.

Theorem 1. Every model \mathcal{M}_{1} of the set F_{1} can be extended to some model \mathcal{M}_{2} of the set F_{2} iff for every universal Horn formulae φ in L_{1} the following implication holds:

$$
\begin{equation*}
F_{2} \vdash \varphi \rightarrow F_{1} \vdash \varphi \tag{2}
\end{equation*}
$$

Proof. Only if-part. Let φ be a universal Horn formulae and suppose $F_{2} \vdash \varphi$. Further, let \mathcal{M}_{1} be any model ${ }^{3}$ of F_{1}. Denote by \mathcal{M}_{2} a model of F_{2} which is an extension of \mathcal{M}_{1} and which exists by hypothesis. Then:

$$
\mathcal{M}_{2}=\varphi
$$

[^1]As \mathcal{M}_{2} is an extension of \mathcal{M}_{1} and φ is universal we conclude

$$
\mathcal{M}_{1} \neq \varphi
$$

wherefrom by the completeness theorem it follows

$$
F_{1} \vdash \varphi
$$

for φ is true in every model \mathcal{M}_{1} of F_{1}.
If part. Let \mathcal{M}_{1} be a model of F_{1}. Consired the set

$$
\begin{equation*}
\left(D i a g \mathcal{M}_{1}\right) \cup F_{2} \tag{3}
\end{equation*}
$$

of some formulae in the language $L_{2} \cup M$, where $\operatorname{Diag} \mathcal{M}_{1}$, in fact equivalent to the diagram of \mathcal{M}_{1}, is the set of all formulae having one of the form

$$
\begin{align*}
& O\left(a_{1}, \ldots, a_{m}\right)=a \tag{i}\\
& R\left(b_{1}, \ldots, b_{n}\right) \tag{ii}\\
& \neg R\left(c_{1}, \ldots, c_{n}\right) \tag{iii}\\
& d \neq e
\end{align*}
$$

which are true in \mathcal{M}_{1}, where $O, R \in L_{1}, a_{i}, b_{j}, c_{k}, a, d, e \in M$.
The proof will be completed if we prove that the set (3) is consistent, for then any model \mathcal{M}_{2} of (3) will be an extension of \mathcal{M}_{1} and a model of F_{2}, too. Assume on the contrary that (3) is inconsistent. Then using one general logical fact ([12], p. 42) it follows

$$
\begin{equation*}
F_{2} \vdash \neg\left(A_{1} \wedge \cdots \wedge A_{k}\right) \tag{4}
\end{equation*}
$$

for some finitely many elements A_{1}, \ldots, A_{k} of $\operatorname{Diag} \mathcal{M}_{1}$. Let P be conjuction of all A_{i} which are of the forms (i), (ii) and let $\neg Q_{1}, \ldots, Q_{r}$ be new denotations for the rest of the formulae A_{i}. Then (4) becomes

$$
F_{2} \vdash \neg\left(P \wedge\left(\neg Q_{1} \wedge \cdots \wedge \neg Q_{r}\right)\right)
$$

which is equivalent to

$$
\begin{equation*}
F_{2} \vdash \Rightarrow\left(Q_{1} \vee \cdots \vee Q_{r}\right) \tag{5}
\end{equation*}
$$

Denote by s_{1}, \ldots, s_{p} all elements of M_{1} occuring in $P \Rightarrow Q_{1}\left(\vee \cdots \vee Q_{r}\right)$ and consired the set ${ }^{4} F_{2} \cup\left\{P\left(s_{1}, \ldots, s_{p}\right)\right\}$. For this set there are two possibilities:
1° It is inconsistent, 2° It is consistent
Case 1°. Then we have

$$
\begin{equation*}
F_{2} \vdash \neg P\left(s_{1}, \ldots, s_{p}\right) \tag{6}
\end{equation*}
$$

${ }^{4} P$ is denoted by $P\left(s_{1}, \ldots, s_{p}\right)$.

As the constant symbols s_{1}, \ldots, s_{p} do not appear in F_{2}, using the related general logical fact ([12], p. 33), (8) yields

$$
\begin{equation*}
F_{2} \vdash\left(\forall x_{1}, \ldots, x_{p}\right) \neg P\left(x_{1}, \ldots, x_{p}\right) \tag{7}
\end{equation*}
$$

where the variables x_{1}, \ldots, x_{p} do not appear in F_{2}. The formula

$$
\left(\forall x_{1}, \ldots, x_{p}\right) \neg P\left(x_{1}, \ldots, x_{p}\right)
$$

is in the language L_{1} and obviously is equivalent to a universal Horn formula. Using the hypothesis (2) from (7) we obtain

$$
F_{1} \vdash\left(\forall x_{1}, \ldots, x_{p}\right) \neg P\left(x_{1}, \ldots, x_{p}\right)
$$

wherefrom

$$
\mathcal{M}_{1} \models\left(\forall x_{1}, \ldots, x_{p}\right) \neg P\left(x_{1}, \ldots, x_{p}\right)
$$

and particularly

$$
\mathcal{M}_{1}=\neg P\left(s_{1}, \ldots, s_{p}\right)
$$

which contradicts $\mathcal{M}_{1} \models P\left(s_{1}, \ldots, s_{p}\right)$. Thus it is not possible that

$$
F_{2} \cup\left\{P\left(s_{1}, \ldots, s_{p}\right)\right\}
$$

is inconsistent.
Case 2°. If $F_{2} \cup\left\{P\left(s_{1}, \ldots, s_{p}\right)\right\}$ is consistent then it has a model. Denote by $\mathcal{F}\left(s_{1}, \ldots, s_{p}\right)$ the free model of this set generated by all constant symbols occuring in it ${ }^{5}$. From (5) we deduce

$$
F_{2}, P \vdash Q_{1} \vee \cdots \vee Q_{r}
$$

wherefrom it follows

$$
\mathcal{F}\left(s_{1}, \ldots, s_{p}\right) \models Q_{1} \vee \cdots \vee Q_{r}
$$

which implies that at least one of the formulae $Q_{1}, \ldots, Q_{r}, Q_{i}$ say, is true in $\mathcal{F}\left(s_{1}, \ldots, s_{p}\right)$. Thus

$$
\mathcal{F}\left(s_{1}, \ldots, s_{p}\right) \mid=Q_{i} .
$$

From this and the definition of freee model it follows

$$
F_{2}, P\left(s_{1}, \ldots, s_{p}\right) \vdash Q_{i}\left(s_{1}, \ldots, s_{p}\right)
$$

wherefrom by Deduction theorem:

$$
\begin{equation*}
F_{2} \vdash P\left(s_{1}, \ldots, s_{p}\right) \Rightarrow Q_{i}\left(s_{1}, \ldots, s_{p}\right) \tag{8}
\end{equation*}
$$

[^2]As s_{1}, \ldots, s_{p} do not appear ${ }^{6}$ in $L_{2},(8)$ yields

$$
\begin{equation*}
F_{2} \vdash\left(\forall x_{1}, \ldots, x_{p}\right)\left(P\left(x_{1}, \ldots, x_{p}\right) \Rightarrow Q_{i}\left(x_{1}, \ldots, x_{p}\right)\right) \tag{9}
\end{equation*}
$$

where the variables x_{1}, \ldots, x_{p} do not appear in F_{2}.
Using the hypothesis (2) from (9) we deduce

$$
F_{1} \vdash\left(\forall x_{1}, \ldots, x_{p}\right)\left(P\left(x_{1}, \ldots, x_{p}\right) \Rightarrow Q_{i}\left(x_{1}, \ldots, x_{p}\right)\right)
$$

wherefrom it follows

$$
\mathcal{M}_{1}=\left(\forall x_{1}, \ldots, x_{p}\right)\left(P\left(x_{1}, \ldots, x_{p}\right) \Rightarrow Q_{i}\left(x_{1}, \ldots, x_{p}\right)\right)
$$

and particulary

$$
\mathcal{M}_{1} \models P\left(s_{1}, \ldots, s_{p}\right) \Rightarrow Q_{i}\left(s_{1}, \ldots, s_{p}\right)
$$

which contradicts the assumptions

$$
\mathcal{M}_{1} \models P\left(s_{1}, \ldots, s_{p}\right) \mathcal{M}_{1} \models \neg Q_{i}\left(s_{1}, \ldots, s_{p}\right) .
$$

The proof of the theorem is completed.
3. Analyzing the proof of Theorem 1 the following facts can be noticed:
(j) If F_{1}, F_{2} are quasiidentities Case 1° in fact does not appear and consequnetly the formulae φ may be supposed to be quasiidentities. In such a way Theorem 1 yields Theorem (M).
(jj) The assumption that F_{1} is a set of universal Horn formulae in fact has not been employed and consequently we have the following theorem.

Theorem 2. Let $L_{1}, L_{2}\left(L_{1} \subseteq L_{2}\right)$ be languages, F_{1}, F_{2} sets of formulae in L_{1}, L_{2} respectively such that the elements of F_{1} are arbitrary and elements of F_{2} are universal Horn formulae. Then every model \mathcal{M}_{1} of F_{1} can be extended to some model \mathcal{M}_{2} of F_{2} iff for every universal Horn formula φ in L_{1} the implication

$$
F_{2} \vdash \varphi \rightarrow F_{1} \vdash \varphi
$$

holds.
(jjj) The crucial point in the proof of Theorem 1 is the pass from (5) to either (6) or (8), i.e. the pass from

$$
F_{2} \vdash P \Rightarrow\left(Q_{1} \vee \cdots \vee Q_{r}\right)
$$

to

$$
\text { either } F_{2} \vdash \neg P \text { or } F_{2} \vdash P \Rightarrow Q_{i} \text {, for some i }
$$

which is grounded on the fact that the set $F_{2} \cup\{P\}$ has a free model. Bearing this in mind a new generalization can be formulated, in which we replace the word free with deductive.

[^3]Theorem 3. Let F_{1} be any set of formulae in the language L_{1} and F_{2} a set formulae in the language $L_{1}\left(L_{1} \subseteq L_{2}\right)$ having the property:

The set $F_{2} \cup Q$ where Q is any finite set of formulae of the form

$$
O\left(a_{1}, \ldots, a_{m}\right)=a, \quad R\left(b_{1}, \ldots, b_{n}\right)
$$

($O, R \in L_{2},|O|=m,|R|=n$ are operation and relation symbols and a, a_{i}, b_{j} are constant symbols not in L_{2}) has a deductive model in the sense of Definition ${ }^{7} 1$.

Then every model \mathcal{M}_{1} of F_{1} can be extended to some model \mathcal{M}_{2} of F_{2} iff for every universal Horn Formula φ in L_{1} the implication

$$
F_{2} \vdash \varphi \rightarrow F_{1} \vdash \varphi
$$

holds.
(jw) Theorem (S) has the similar proof. Namely, it sufficies to keep the part of the preceding proof untill the step (5) and to continue in the following way:

Denoting the formula

$$
P \Rightarrow\left(Q_{1} \vee \cdots \vee Q_{r}\right)
$$

by $\varphi\left(s_{1}, \ldots, s_{n}\right)$ (5) becomes

$$
F_{2} \vdash \varphi\left(s_{1}, \ldots, s_{p}\right)
$$

which yields

$$
F_{2} \vdash\left(\forall x_{1}, \ldots, x_{p}\right) \varphi\left(x_{1}, \ldots, x_{p}\right) \quad\left(x_{i} \text { are variables, not in } F_{2}\right)
$$

and by hypothesis (2)

$$
\begin{equation*}
F_{1} \vdash\left(\forall x_{1}, \ldots, x_{p}\right) \varphi\left(x_{1}, \ldots, x_{p}\right) \tag{10}
\end{equation*}
$$

As \mathcal{M}_{1} is a model for $F_{2}(10)$ juields

$$
\mathcal{M}_{1} \models\left(\forall x_{1}, \ldots, x_{p}\right) \varphi\left(x_{1}, \ldots, x_{p}\right)
$$

and therefore particularly

$$
\mathcal{M}_{1}=\varphi\left(s_{1}, \ldots, s_{p}\right)
$$

which by definition of $\operatorname{Diag} \mathcal{M}_{1}$ contradicts to the fact

$$
\mathcal{M}_{1} \models \neg \varphi\left(s_{1}, \ldots, s_{p}\right)
$$

We give now the mentioned definition of deductive model.
Definition 1. Let F be a set of formulae of the language $L, C=\left\{c_{i} \mid i \in I\right\} \neq$ \varnothing the set of all constant symbols occurring in F and $\operatorname{Term}(L, C)$ the set of all

[^4]variable-free terms in L. In the set $\operatorname{Term}(L, C)$ we define the relation \sim in the following way
$$
t_{1} \sim t_{2} \quad \text { iff } \quad F \vdash t_{1}=t_{2}
$$

It is clear that \sim is an equivalence relation. In the set $D=\operatorname{Term}(L, C) / \sim$ for each operation symbol O and relation symbol $R(O, R \in L,|O|=m,|R|=n)$ we define the operation O / \sim and relation R / \sim :

$$
\begin{aligned}
& O / \sim\left(C_{t_{i}}, \ldots, C_{t_{m}}\right)=C_{t} \quad \text { iff } \quad F \vdash O\left(t_{1}, \ldots, t_{m}\right)=t, \\
& R / \sim\left(C_{t_{1}}, \ldots, C_{t_{n}}\right) \text { iff } F \vdash R\left(t_{1}, \ldots, t_{n}\right) .
\end{aligned}
$$

Generally, in such way we obtain a model \mathcal{D} of the language L which is not necessarily a model for F. If that is the case, we say that \mathcal{D} in the ${ }^{8}$ deductive model for F and that F has that deductive model.

For instance, the following sets have deductive models, providing their consistency:
1° Sets of quasiidentities
2° Sets of universal Horn formulae
3° Henkin complete sets, i.e. which with each formula of the form $(\exists x) \varphi(x)(x$ is the only free variable in φ) have some theorem of the form $(\exists x) \varphi(x) \Rightarrow \varphi(c)$-c is a constant symbol
4° The set of axioms of formal arithmetic (of the first order).
4. In our paper [9] in the formulation of Theorem 1 and 2 instead of the condition that the operation \circ satisfies no nontrivial algebaric laws should be the condition:

- satisfies no nontrivial quasiidentities
which is an accordance with Malcev theorem. The mistake has been noticed by Professor Gorgi Čupona, University of Skoplje to whom we would like to express our greatfulness.

It still remains open the problem:
What conditions for the sets of algebraic laws F_{1}, F_{2} (in the languages $L_{1}, L_{2}\left(L_{1} \subseteq L_{2}\right)$ respectively) are necessary and sufficient for the following equivalence:

Every model \mathcal{M}_{1} of F_{1} can be extended to some model M_{2} of F_{2} iff for any algebraic law φ in L_{1} the implication

$$
F_{2} \vdash \varphi \rightarrow F_{1} \vdash \varphi
$$

holds.
The solution of this problem would also be the solution of the problems which still remain in connection with our paper[9].

[^5]
REFERENCES

[1] Cohn P. M., Universal Algebra, Harper Row, New York, Evanston, London and John Weatherhill, Inc. Tokyo, 1965, pp. 184-186.
[2] Čupona G., Za teoremata na Kon-Rebane, God. Zb. PMF 20, A (1970), Skopje pp. 5-14.
[3] Čupona G., Markovski S., Smestuvanje na uneverzalni algebri, God. Zb. PMF 25-26 (1975) (1976), sek. A, Skopje pp. 15-34.
[4] Los̀ J., On the extending of models I, Fund Math. 42 (1955), pp.38-54.
[5] Keisler J. H., Theory of models with generalized atomic formulas, J. Symb. Logic 25 (1960), pp. 1-26.
[6] Мальцев А. И. Алгебрачиеские системы, Наука, Москва 1970.
[7] Markovski S., On quasivarieties of generalized subalgebras, Algebraic conference, Skopje 1980, pp. 125-129.
[8] Pigozzi D., Univezal equtional theories and variaties of algebras, Annals of Math. Logic 17 (1979), pp. 117-150.
[9] Prešić M. D., Prešić S. B., On the embedding of Ω-algebras in grupoids, Publ. Inst. Math. Beograd, 21 (35), 1977, pp. 169-174.
[10] Radojčić M. D. (now Prešić M.D.), On the embedding of universal algebras in grupoids holding the law $x y * z u * *=x z * y u * *$, Mat. vesnik, Beograd, 5 (1968), pp. 353-356.
[11] Ребяне О. К., О представлении универсальныих алгебр в коммутативных подгру$n a x$, Сибир. мат. ж. 7 (1966), 878-883.
[12] Shoenfield, J. R., Mathematical Logic, Addison-Wesley, Reading-Maassachusetts, Menlo Park-California, London, Don Mills-Ontario, 1967.

Correction

Marica D. Prešić, A convergence theorem for a method for simultaneous determination of all zeros of a polynomial, Publ. Inst. Math., Beograd, 28 (42), 1980, pp. 159-168.

Throughout the paper instead of the symbol σ it should be written 6 (the number six). Apart from this in Abstract the letter s in Ostrowski's is omitted. Further, on the page 161, the second line from the bottom instead of $a_{i}, \ldots s_{i}$ it should be $\left\{a_{i}, \ldots, s_{i}\right\}$ and in Acknowledgement, on the page 165 instead of mode it should be made.

Institut za matematiku
Prirodno-matematički fakultet
Studentski trg 16
11000 Beograd, Yugoslavia

[^0]: ${ }^{1}$ All languages are of the first order.

[^1]: ${ }^{2}$ In (C R) L_{1} is Ω and $L_{2}=\{*\}$, where $*$ is a binary operation symbol.
 ${ }^{3}$ If F_{1} is incosistent then we have $F_{1} \vdash \varphi$ and the proof is completed.

[^2]: ${ }^{5}$ Its elements are equivalence classes of the set Term $\left(L_{2}, s_{1}, \ldots, s_{p}\right)$-the set of all variablefree terms in the language $L_{2} \cup\left\{s_{1}, \ldots, s_{p}\right\}$, with respect to the relation \sim defined by

 $$
 t_{1} \sim t_{2} \quad \text { iff } \quad F_{2}, P \vdash t_{1}=t_{2}
 $$

 Operations and relations with equivalence classes are defined in the usual way (see Definition in the part 3.)

[^3]: ${ }^{6}$ As a mater of fact in the very begining it is supposed $L_{2} \cap M_{1}=\varnothing$.

[^4]: ${ }^{7}$ See the sequel of this part of the paper.

[^5]: ${ }^{8}$ In $[\mathbf{1 2}]$ the term canonical structure is used.

