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INTEGRABILITY THEOREMS FOR TRIGONOMETRIC SERIES
WITH POSITIVE COEFFICIENTS

Tatjana Ostrogorski

1. Introduction and results

Let g be an odd function and let f be an even function defined on (0, ),
periodic with period 27, and let their Fourier series be

o0 o0
1
g(x) = E by sin nx flz) = 240 + E Gy, COS NT
1 1

with a, > 0, b, > 0. In his book [3] Boas proved the following two theorems
concerning integrability of ¢ (similar statements hold for f).

THEOREM A. Let 0 <y < 1. Then
/x*”g(:r)d:r < o0& Zn”flbn < 00
S0 1

s
( where [ =lim [ is the integral in Cauchy’s sense )
1=

-0 e—0

THEOREM B. Let 1 < v < 2. Then

7 7g(x) € L(0, ) & Zn”’_lbn < 0.
1

Izumi and Izumi [4] have proved a generalization of Theorem A in which the
function =7 is replaced by a monotone decreasing function £(z), and Hasegawa
[5] has proved a generalization of Theorem B in which =7 is replaced by a func-

n
tion a(z) having the following properties: za(z) is decreasing and ¢! [ a(z)dz <
t

Ca(t), forsomen, 0 <p<mandallt, 0 <t <.
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In the present paper we prove another generalization of Theorem B (Theorem
1). We remark that no monotony condition iz required for the multiplier function
K. This is a consequence of the following observations: different properties of the
function =7 are essential for Theorems A and B. While the monotony of =7 plays
a central role in the proof of Theorem A, in Theorem B no use is made of monotony,
but only of the regular variation of z~7. Indeed the main step in the proof of both

theorems is the estimation of the integral fa: Vsin nzdr = n7 ! f 77 sin zdz.

For 1 < v < 2 this integral is absolutely conx[/)ergent, and thisis a consoequence of the
regular variation properties of 277 only (cf. [1]). On the other hand, for 0 < v < 1,
the integral converges nonabsolutely and the monotony of 7 is essential for this
statement.

For the definition and properties of O-regularly varying (0 — RV') functions
(in the sense of Karamata) we refer to [2]. The symbol K(g,?) denotes the class
of all 0 — RV functions with lower index ¢ and upper index 9. The symbol <
defined by: f(z) < g(z) on [a,00) if there are two positive constants Cy,Cy such
that 0 < Cig(x) < f(z) < Cag(x) < co. By the letter C, possibly with subscripts,
we denote a positive constant, not necessarily the same at each appearence.

o0
THEOREM 1. Let b, > 0 and let g be defined by g(z) = > by sin nx. Let K
1

be a positive function defined on (1/m, 00) such that xK(%) € L(0,7) and
[ 1
(1) / t 2K (t)dt < u 'K (u), for u> —.
u

1/7

(a) an //n <m>dm<oo=>g( )K(i) € L0, 7)

and conversely

(b) G

T

) € L(0,7) = ianén) < 0

1

THEOREM 2. Let ap, > 0 and let f be defined by f(x) = 4 + ;an COS nx.

Let K be a positive function defined on (1/m, 00) such that a:%((%) € L(0,7)
and condition (1) is satisfied. Then

1/n

(a) Zn an/ (%)d;ﬁ <oo = (f(0) —f(x))KG) € L(0, )
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and conversely

(v (1O - f@)K (5 ) €L0m) = S a0

o0
COROLLARY 1. Let b, > 0 and let g(z) = ) by sin nz. Let K € K(1 < p,2 <
1
2). Then

EIE

>€L0ﬂ'
T

o0
CORROLARY 2. Let a, > 0 and let f(z) = %ag + > ancosnx. Let K €
1
K(1 <o, 2<3). Then
1 oo
(10 - f@)E (3 ) €LOm) & S,

1

2. Some properties of 0-RV functions

Let us remark that condition (1) is a characteristic property for O-regularly
varying functions ([2]), i.e. a function K satisfying (1) is an 0 — RV function with
lower index ¢ > 1: K € K(1 < g, ). In the folloving lemma we list some properties
of 0 — RV functions which follow from (1).

LEMMA. Let K be a positive function defined on (1/m, o) such that (1) holds.
Then

1° u='K(u) is almost increasing (u= K (u) /), i.e. there is a constant C' >
0 such that u 'K (u) < Cv™t, for 1/m < u < wv.

2° There is a T < 1 such that u="K (u) is almost decreasing (u™" K (u) \,),
i.e. there is a constant C > 0 such that u""K(u) > Cv~"K(v), for 1/m < u < v.

3° IfK(l)g(m) € L(0,7), then z71g(x) € L(0, ).

4° Let F(x f|f (t)|dt. Then

O/IKG)F 0/1 <>m|f )| da

for some positive constant C.

5° If ¢y | 0, then the series Ecn nn and Z( - cn_H)@ are equicon-

vergent.
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Proof .
1° and 2° cf. [2].

3° It is easily seen that

Z g do = / sl () (wKG))d

-1 T
< sup (Z’K<l>> /|g(m)|K<l> de =C sup (t1K(t))*
o<z<m T 5 T 1/m<1<00

=C0( inf (K@) =0 (ﬂ((%))l

Ir<t<oo

since ¢t 1K (t) is almost increasing, by 1°.

4° We by changing the order of integration and by making use of (1)

O/IKe)F(x)dQ::O/IK(i) Z'f(t”dtdx:()/llf(t)lt/lK(i) da dt =
1/t

/1|f(t)|/K(u)u‘2dudt§C’/l|f(t)|<%> _1K®dt:c/l|f(t)|tK<%>dt.

0

5° this is Lemma 2 of [1].

3. Proof of the Theorems

We prove Theorem 1 only, the proof of Theorem 2 being very similar.

a) First, by the definition of g, we have

o0 n 1
= g bn/K<—>|sin nz|dzx.
- T

Next we prove that

[=}

™ 1/n

(3) /KG) |sin na| dz < Cn / xKG) dz.

0 0
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Really,
™ 1/n T
1Y, .
/K<—>|smnm|da:: /—l—/ =1 + L.
x
0 0 1/n

Now for the first integral we have obviously

1/n

1/n
1 1
(4) I = /K<—>|sinnm|dm§n/xK<—> dz
x x
0 0

and for the second

5) I = ]K<%>|sin na|dz < iK(%) dr = /nK(t)t‘2 dt < Cn'K(n),
1/x

1/n 1/n
since K satisfies (1).

Now, by Lemma 1°, the function v K (u) is almost increasing, thus

1/n o 0
(6) n /mK(%) dx = n/t_lK(t)t_2 dt > Cn-n""K(n) /t_2 dt =
0 n n
=CK(n)-n~"

From (5) and (6) it follows that

1/n

I, <Cn / xK(i) dx
0

which, together with (4), proves (3).
Finally, by substituting (3) into (2), we obtain

T 1/n
1 - 1
/K(§> lg(z)| dz < C’z[): |bn|n / mK(E> dx
0 0
which proves part a) of the Theorem.
b) Assume that g(m)K(%) € L(0, 7). By Lemma 3° it follows that ™' g(x)

€ L(0,7); hence by Theorem 4.1. [3] the seies ) by, is convergent.
)

[ee]
Denote By, = ) bajyr+1. Then By decreases to zero and we obtain by partial
j=0
summation (cf. Lemma 2.2. [3])

o0 o0
g(x) :ansin nw:Bosinm+QZBncos nx sin
1 1
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or

Sin

h(z) = g(:r) =By +2 Z By cos nzx.
1
Denote ¢(z) = h(z) — Bp =23 By cos nx. It is easily seen that
1

(7) @mm(%) € L(0, 7).

Indeed,
/|<p a:K( >da:</|h CUK( >dw+BO/a:K<%>:
0
=/|g<a:)| k(L) ey [ox () o
sinxz” \z T
0 0

and both integrals converge by the assumptions of the theorem. Since ¢ is integrable
and B,, monotone, it follows that B,, are the Fourier coefficients of ¢ and we can
put

T

D(x) :/go(t)dt = 250: % sin kx

>~ By B . ,kx
F(a:):/ Zk_ 1—coskx):4zﬁsm -
o 1 1
Next, we prove that
1 B
8 F >Cc—=
® (n—l—l) - n

Indeed,

k
F( >—4Zk2 1n2 4Zk2 IHT]_)
2

2\ & k 24 1 " 41 4 B,
4( = - ) =——— __SN'B,>—-B,-n=—-2
(w) ;(2@—#1)) w2 (n+1)2kz:; k=t T,

where we have used that sin z(nlfH) > %2(7!““), for 2(nkikl) < % and that B, is a

monotone decreasing sequence

Next, put ®*(z f lo(t)|dt and F*(z) = [|®(¢)|dt. The functions ®* and
0
F* are positive and i 1ncreasmg and

(9) F(2)] < F*(z) < / (1) dt < 20 (a).

0
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Therefore, by (8) and (9) it follows that
B, 1 1
(10) “n <o <1>+< )

n — n+1
Now we are ready to prove

(1) 5o Bl / @ik (1 ).
0

1

The proof runs as follows

ZB e Czn+1q>+<n+l> nn [by (10)]

1

scinilqﬁ(nil)/ KO0 fince u' K (w) 27

_Cf: 1 (I)+
o T n+1 n+

1/n
1 1
> / oK (—) 2 dz
1 T
1/(n+1)

<oy / a:<I>+(:n)K<%>mlda: [since 2@ () 1]

1/(n+1)

- c/lKG) &+ () da

Applying Lemma 4° to the last integral we obtain (11). Thus, by (7) if follows that

oo
the series > B, Krfg‘ ) is convergent. To complete the proof of the theorem we have
1

o0
to prove that this implies that the series > bn@ is convergent. First, by Lemma
1

5° it follows that

(12) S B, - BT < oo

1

and since u 'K (u) is almost increasing

(13) =CY (B~ Bus1) K(”).
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Thus from (12) and (13) the following series

o0

(14) R N e

1

[ee]
:an+1K n
1

is also convergent. Now, since by Lemma 2° there is a 7 > 1 such that u™" K (u) is
almost decreasing, we have

K(n+1)
n+1
Whence

=(n+1) "TKn+1)n+1)" ' <Cn TKn)Cin" t = Cyn 'K (n).

Z bn+1 n + 1 02 Z anrl

o0
and the last series is convergent, by (14). Thus we have proved that ) b,
1

K@) i

convergent, which completes the proof of the theorem.
Proof of Corollary 1.

Let K € K(1 < g, ¢ < 2). The assumption ¢ > 1 implies condition (1) of
Theorem 1. On the other hand, from the assumption p < 2 it follows that

o0

/t_3K(t) dt < u 2K (u).

u

O/ < > r = n/t*lK(t)t*2 dt < nn 2K(n) =n 'K(n)

n

Thus

which means that the series

o 1/n
1
ann/a:K<—>
x
1 0

are equiconvergent. Now Corollary 1 follows from Theorem 1.
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