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0. In this paper we consider semigroups without zero containing an ideal
which is a completely simple subsemigroup. The main result is the Theorem 1.1.
which gives a structural description for such semigroups. In 2. we give a gen-
eralization of the Theorem in [1], as well a structural description of semigroups
characterized by the Theorem 3.1. in [3].

1. At �rst let us construct a semigroup in which some ideal is a completely
simple semigroup.

Let m[I; G; J; P ] be a Rees matrix semigroup (I; J are nonempty sets, G is
a group, P is a matrix J � I with entries pji 2 G).

Let T be a partial semigroup so that (I �G� J) \ T = ?.

Let
� : T ! �(I) and � : T ! �(J)

be mappings, where �(I) and �(J) are semigroups of all mappings of I in I; J in
J , respectively, i.e. � : p 7! �p; � : p 7! �p, such that for all p; q 2 T is ful�lled:

(a) If pq 2 T then �pq = �q�p

(b) If pq 62 T then �q�p is a constant mapping;

(c) If pq 2 T then �pq = �p�q

(d) If pq 62 T then �p�q is a constant mapping.

Let
' : T � I ! G

be a mapping which satis�es

(e) If pq 2 T then '(pq; i) = '(p; i�i)'(q; i)

(f) pj;i�p'(p; i)p
�1
j�p;i

does not depend upon i 2 I .
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Let us denote the term in (f) by  (p; j), i.e.

(1.1)  (p; j) = pj;i�p'(p; i)p
�1
j�p;i

:

Let us de�ne the multiplication in (I �G� J) [ T by:

(i) (i; x; j) � (k; y; l) = (i; xpjky; l)

(ii) p � (i; x; j) = (i�p; '(p; i)x; j)

(iii) (i; x; j) � p = (i; x (p; j); j�p)

where p � T; (i; x; j); (k; y; l) 2 I ��J , and  (p; j) is given by (1.1);

(iv) If pq = r in T then pq = r in (I �G� J) [ T ;

If pq 62 T then

pq = (i�q�p; '(p; i�q)'(q; i)p
�1
j�p�q ;i

; j�p�q):

Let us denote (I �G�J)[T with multiplication "." by n[I; G; J; P ; T; ';
�; �], i.e.

((I �G� J) [ T; �) = n(I; G; J; P ; T; '; �; �]:

Lemma 1.1. n[I; G; J; P ; T; '; �; �] is a semigroup.

Proof . First, the multiplication is well de�ned. For the cases (i), (ii) and
(iii), and (iv) if pq 2 T , this follows immediately. Let p; q 2 T and pq 62 T . As in
this case i�q�q =const and j�p�p =const, we have only to prove that the term

'(p; i�p)'(q; i) � p
�1
j�p�p;i

does not depend upon i 2 I . Indeed, using (1.1) we have

'(p; i�q)'(q; i) � p
�1
j�p�q;i

=

= p�1j;i�q�p
� pj;i�q�p'(p; i�q) � p

�1
j;�p;i�q

� pj�p;i�Q(q; i) � p
�1
j;�p�q ;i

=

= p�1j;i�q�p
 (p; j) (q; j�p):

Since the right side of this equality does not depend upon i 2 I , it follows that the
left side does not depend upon i 2 I , too.

By direct veri�cation we get that n[I;G; J; P; T; '; �; �] is a semigroup. For
instance, if p; q 2 T; pq 62 T and X = (k; x; l), then

pq �X = (i�q�p; '(p; i�q)'(q; i) � p
�1
j�p�q ;i

; j�p�q) � (k; x; l) =

= (i�q�p; '(p; i�q)'(q; i) � p
�1
j�p�q ;i

� pj�p�q;k � x; l)

Since i is arbitrary, j is arbitrary, then for i = k, it follows

pq �X = (k �q �p; '(p; k �q)'(q; k) � x; l):

On the other side

p � qX = p � q(k; x; l) = p � (k �q ; '(q; k) � x; l) =

= (k xiq�p; '(p; k �q)'(q; k) � x; l):
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So we get
pq �X = p � qX:

Similarly for other cases, which proves the lemma.

Lemma 1.2 In a semigroup n = n[I; G; J; P ; T; '; �; �] there is an ideal
which is a completely simple subsemogroup (without zero).

Proof . Subsemigroup I �G� J ia an ideal in n, which follows immediately
from the de�nition of the multiplication in n, (i){(iv). From (i) we have that
I �G� J = m[I; G; J; P ] is the Rees matrix semigroup over the group G, which
is completely simple (without zero) [4].

Theorem 1.1. In a semigroup S there is an ideal which is a completely
simple subsemigroup (without zero) if and if a semigroup S is isomorphic to a
semigroup n[I; G; J; P ; T; �; �; �].

Proof . Let K be an ideal in a semigroup S which is a completely simple
semigroup without zero. Let T = SnK(6= ?). Then T is a partial semigroup. Since
K can be represented by a Rees matrix semigroup, we have K �= m[I; G; J; P ],
so we get a isomrphism S = K [ T �= m[I; G; J; P ] [ T , and we identify K with
m[I; G; J; P ]. Then, in K, left ideals are

Lj = f(i; g; j) : i 2 I; g 2 Gg; for j 2 J ;

right ideals
Ri = f(i; g; j) : g 2 G; j 2 Jg; for i 2 I

and bi-ideals
Bij = f(i; g; j) : g 2 Gg = Ri \ Lj :

For all left ideals Lj in K we have KLj = Lj . Indeed, let (i; g; j) 2 Lj then

(i; g; j) = (i; g; l) � (k; p�1lk ; j) 2 KLj

so Lj � KLj . By this we have KLj = Lj .

Using this we have

SLj = SKLj � KLj = Lj

whence we have that Lj(j 2 J) is a left ideal in S, too.

Similarly, every right ideal Ri in K, as like as bi-ideal Bij in K, is also a
right ideal in S, and also bi-ideal in S, respectively.

Let p 2 T and (i; e; j) 2 Lj , where e is the identity of a of group G. Then

p � (i; e; j) = (k; g; j) 2 Lj

since Lj is a left ideal in S and

k = i�p;j ; g = '(p; i; j)
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so

(1.2) p � (i; e; j) = (i�p;j ; '(p; i; j); j):

On the other side

(1.3)

p � (i; e; j) = p � (i; e; l) � (k; p�1lk ; j) =

= (i�p;l; '(p; i; l); l) � (k; p
�1
lk ; j) =

= (i�p;l; '(p; i; l); j)

From (1.2) and (1.3) it follows

i�p;j = i�p;l;

'(p; i; j) = '(p; i; l);

whence �p;j depends only upon p and '(p; i; j) depends only upon p and i.

So we have

(1.4) p � (i; e; j) = (i�p; '(p; i); j);

where ' is mapping which maps T �I in G and �p maps I in I i.e. ' : T �I ! G

and �p : I ! I .

Similarly, for (i; e; j) 2 Ri, which is a right ideal in S, and p 2 T we get

(1.5) (i; e; j) � p = (i;  (p; j); j�p);

where  : T � J ! G and �p : J ! J .

Since

(i; e; j)p(i; e; j) = (i; e; j)(i�p; '(p; i); j) = (i; pj;i�p'(p; i); j)

and
(i; e; j)p(i; e; j) = (i;  (p; j); �p)(i; e; j) = (i;  (p; j)pj�p;i; j)

we have

(1.6)  (p; j) = pj;i�p'(p; i) � p
�1
j�p;i

whence it follows that the term on the right side in (1.6) does not depend upon
i 2 I .

Now, let p 2 T and g 2 G. Then

p � (i; g; j) = p � (i; e; l)(k; p�1lk � g; j) = (i�p; '(p; i) � g; j):

Similarly we have

(i; g; j) � p = (i; g �  (p; j); j�p):
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Let p; q 2 T and pq 2 T . Then

pq � (i; e; j) = (i�pq ; '(pq; i); j) = (i�q�p; '(p; i�q)'(q; i); j)

whence

'(p; q; i) = '(p; i�q)'(q; i)(1.7)

�pq = �q�p:

Similarly

(ie; j) � pq = (i psi(pq; j); j�pq) = (i;  (p; j) (q; j�p); jp�q)

whence

 (pq; j) =  (p; j) (q; j�p)(1.8)

�pq = �p�q :

Let p:q 2 T and pq 62 T , i.e. pq = (i; g; j). Then pq = (i; g; j) = (i; g; j) �
(k; p�1jk ; j) = p(k�q ; '(q; k) � p

�1
jk ; j) = (k�q�p; '(p; k�q) � '(q; k)p

�1
jk ; j), so we have

g = '(p; k�q)'(q; k)p
�1
jk(1.9)

i = k�q�p;

where k 2 I is arbitrary, so �q�p is a constant mapping for [q 62 T .

Similarly

pq = (i; g; j) = (i; p�1u ; l)(i; g; j) = (i; p�1u ; l)pq =

= (i; p�1u ;  (p; l); l�p)q = (i; p�1u ;  (p; l) (q; l�p); l�p�q);

whence

g = p�1u �  (p; l) (q; l�p)(1.10)

j = l�p�q ;

where l 2 J is arbitrary, so �p�q is a constant mapping for pq 62 T .

Using (1.9) and (1.10) it follows that g does not depend upon k and l, but
only upon p and q.

This proves that S is isomorphic with a semigroup n.

The converse follows from Lemma 1.1.

2. In this section we give two more theorems which are consequences of the
Theorem 1.1. Previously we give some lemmas which characterize some properties
of bi-ideals.

Lemma 2.1. Let B be a bi-ideal of a semigroup S. Then uBv is a bi-ideal
in S for arbitrary u; v 2 S.
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Proof . uBvSuBv � uBSBv � uBv.

Lemma 2.2. Let M be a minimal bi-ideal in S and B an arbitrary bi-ideal
in S. Then M = uBv for every u; v 2M .

Proof . Using Lemma 2.1. uBy is a bi-ideal in S. Even more

uBv �MBM �MSM �M:

Since M is a minimal bi-ideal then uBv =M .

Lemma 2.3. Let M be a minimal bi-ideal in S. Then sMt is a minimal
bi-ideal in S for each s; t 2 S.

Proof . According to Lemma 2.1. sMt is a bi-ideal in S. Let us prove that
sMt is a minimal bi-ideal in S. Let the converse hold. Then there is a bi-ideal N
such that n � sMt and N 6= sMt, i.e. N = fsht : h 2 H; H � M; H 6= Mg. As
N is a bi-ideal, then for all x 2 S; h1; h2 2 H , we have

sh1t � x � sh2t 2 N

whence h1 txsh2 2 H , and so
h1 tSsh2 � H:

Since h1; h2 2 M and tS is a bi-ideal, M is a minimal bi-ideal, then according to
Lemma 2.2. we have

M = h1tSsh2

whence M � H . Contradiction.

Lemma 2.4.Let M be a minimal bi-ideal in S. Then all minimal bi-ideals
in S are of the form sMt, where s; t 2 S.

Proof . By using both Lemma 2.2 and Lemma 2.3.

Lemma 2.5. The union of all minimal bi-ideals in S is an ideal in S.

Proof . Let M be any minimal bi-ideal in S. Then according to Lemma 2.4.

D = [fsMt : s; t 2 Sg = SMS

is the union of all minimal bi-ideals in S. Then

DS = SMSS � SMS = D;

SD = SSMS � SMS = D:

Accordingly, D is an ideal in S.

Lemma 2.6. Let B be a bi-ideal in S. Then B is a minimal bi-ideal in S

if and only if B is a group.
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Proof . Let B be a minimal bi-ideal in S. For any b1; b2 2 B we have
B = b1Bb2 (Lemma 2.2.). Let a 2 B, then there is x 2 B such that a = b1xb2, and
thus

a = b1y; a = zb2

where y = xb2 2 B; z = b1x 2 B. According, those equations are solvable upon y

and z for each a; b1; b2 2 B. Thus, B is a group.

Conversely let B be a group and, at the same time let it not be a minimal bi-
ideal. Then there is such a bi-ideal in S that M � B and M 6= B. Let x 2 BnM .
Then for any u; v 2 M � B, there is y 2 B such that x = yuv, because B is a
group (y = u�1xv�1). Whence x 2MBM �MSM �M . A contradiction.

Theorem 2.1. A semigroup S has at least left ideal L such that L is a
union of groups which are right ideals in L if and only if S is isomorphic to a
semigroup n[I; G; J; P ; T; '; �; �].

Proof . Let L be a left ideal in S i.e. SL � L and L = [
�2A

G�, where

G�(� 2 A) are groups, such that G�L � G�, for all � 2 A. Then G� are bi-ideals
in S. In fact

G�SG� � G�SL � G�L � G�; for all � 2 A:

As G� are groups, then G� are minimal bi-ideals in S (Lemma 2.6.). Let K be a
union of all minimal bi-ideals in S, i.e.

K =
[
�2�

H�

Then K is an ideal in S (Lemma 2.5.). According to Lemma 2.6. and The
Theorem in [1], K is a completely simple semigroup (without zero). Thus S is
semigroup having an ideal K which is a completely simple subsemigroups (without
zero) and by using Theorem 1.1 a semigroup S is isomorphic with a semigroup
n[I; G; J; P ; T; '; �; �].

The converse follows by a straight veri�cation.

Corollary [2] A semigroup S has at least one left ideal which is a group if
and only if S is isomorphic to a semigroup n[I; G; J; P ; T; '; �; �], where I is a
singleton.

Proof . Let L = G be a left ideal in S which is a group. As GG = G we
have that G is a right ideal in L, and thus the reuirements of the Theorem 2.1 are
funl�led.

Since
Lj = f(i; g; j) : g 2 G; i 2 Ig = [fGij : i 2 Ig;

for monominial set I = fi0g we have

Lj ' L = Gi0j = Gj :
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Since T �fi0g ' T , then the mapping ' : T ! G is a homomorphism, because for
any p 2 T; �pfi0g ! fi0g, so �p is any identity mapping.

Since each Rees matrix semigroup S = m[I; G; J; P ] is isomorphic with some
Rees matrix semigroup S ' m[I; G; J; Q] where Q is some normalized sendwich
matrix (i.e. such a matrix which has at least one row and at least one column with
all the entries equal to the identity of o group G) then in this case, as I = fi0g, we
have

Q =

0
BB@

e

e
...
e

1
CCA

where e is the identity of a group G [4]. Then pji = e, for each j 2 J . Then

'(p) =  (p)

and the multiplication is the same as in the Theorem in [2].

The converse is proved by a veri�cation.

Theorem 2.3. A semigroup S contains at least one minimal left ideal and
at least one minimal right ideal if and only if S is isomorphic to a semigroup
n[I; G; J; P ; T; '; �; �].

Proof . It follows from Theorem 1.1 and Theorem 3.1 in [3].
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