
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie, tome 30 (44), 1981, pp. 117{122

BAIRE OUTHER KERMELS OF SETS

Harry I. Miller1

Abstract. The notion of an outher Baire kernel K of a set A is introduced as a Baire
superset K of A such that the only Baire sets that are subsets of K � A are of the �rst Baire
category. Several results about outher Baire kernels are presented. These theorems are analogues
of theorems of Abial dealing with the concept of the measurable outher kernel of a set.

1. Introduction. In this work every set considered will be a subset of the
set R of all real numbers. Abian [1] in a work that will shortly appear considered
the following de�nition.

De�nition. Let A be a set and K a measurable set such that A � K and
such that the only measurable subsets of K �A are of measure zero. If such a set
K exists we call it a measurable outer kernel of A.

A set A is called a Baire set if it can be expressed in the form A = (G�P )[Q
where G is an open set and P; q are sets of the �rst Baire category (i.e. countable
unions of nowhere dense sets). Analogues between measurable sets and Baire sets
have been extensively studied in Oxtoby's book "Measure and Category" [13].
Much earlier Hausdor� [4] has commented on the connection between measurable
sets and Baire sets. The current author has written several papers dealing at least
in part with this connection ([7, 8, 9,19,11,12]).

In this work we consider an analogue of Abian's concept of a measurable outer
kernel of a set.

De�nition. A Baire set K is called an outer Baire kernel of a set A if and
only if K is a superset of A and each Baire subset of K � A is of the �rst Baire
category.

Analogues of Abian's theorems will be proved.

1Work on this paper was supported by the Scienti�c Research Fund of Bosna and
Hercegovina
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2. Results.

Theorem 1. Every set A has an outher Baire kernel.

Proof . If A is a Baire set, then A possesses an outer Baire kernel, namely
K = A is an outer Baire kernel of A. In particular, if A is of the �rst Baire
category than A has an outer Baire kernel. Suppose that A is an arbitrary set
of the second Baire category. Let G denote a �xed open superset of A. Further
let the sequence (In)

1
n=1 denote all closed intervals with rational endpoints. A

descending sequence (G)1n=1 can be construced as follows.

If A \ I1 is a set of the �rst category, de�ne

G1 = G� I1, whereas

if A \ I1 is a set of the second category, de�ne

G1 = G.

Using induction we can continue this process to obtain a decending sequence
(Gn)

1
n=1 of open subsets of G such that

Gn = Gn�1 � In if A \ In is a set of the

�rst Baire category and

Gn = Gn�1 if A \ In is a set of the

second Baire category.

Set K =

� 1\
n=1

Gn

�
[ P; where

P = [[A \ In; A \ In is of the �rst Baire category]. K is a Baire set (see
[13], pp. 20) and K clearly is a superset of A.

We now show that K is an outer Baire kernel of A. To see this suppose that
Z = (��P1)[P2, with Gamma open and P1; P2 sets of the �rst Baire category, is
a subset of K �A. We will show that Z is of the �rst Baire category (i.e. � = ?).
If Z is of the second Baire category (i.e. � 6= ?), then there exists a �xed positive
integer m such that Im � �.

Therefore

(*) Im � P � Z and (Im � P1) \ A = ?

holds

This, in turn, implies that Im \ A is of the Baire category and therefore Gm =
Gm�1 � Im. The last equality implies

im \

1\
n=1

Gn = ?

and therefore

(Im � Pa) \ K is of the �rst category which contradicts *), and hence the
proof is complete. We now present a lemma which will be needed later.
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Lemma. If A is any set of real numbers, then A�G is a set of the �rst Baire
category, where G is the union of all open intervals with rational endpoints having
the property that each of its subintervals has second category intersecstion with A.

Proof . Suppose A is a set such A|G is of the second category. Let
(Ik ; k 2 N), (where N is the set of natural numbers), denote an enumeration
of the collection of all open intervals with rational endpoints. Then G can be
written in the form G = [[Ik ; k 2 M ] for some subset M of N , where k 2 M

if and only if J \ A is a set of the second category for every subinterval J of Ik .
If k 2 N �M there exists a subinterval Jk of Ik such that A \ Jk is of the �rst
category. Therefore it follows that T = (A�G)�[[Jk; k 2 N �M ] is a set of the
second Baire category. But this is impossible since T is nowhere dense in R, as
T \ Ik = ? if k 2 M and T \ Jk = ? if k 2 N �M . This completes the proof of
our lemma.

We now proceed with analogues of Abian's results.

Theorem 2. If K = (G � P ) [ Q is a superset of A, where G is the set
given in the above lemma and P; Q are sets of the �rst Baire category, then K is
an outer Baire kernel of A.

Proof . Suppose K = (G � P ) [ Q is a superset of A, where G is given as
in our lemma. Suppose that Z = (� � P1) [ P2 is a subset of K � A, where �
is an open set and P1; P2 are sets of the �rst Baire category. We will show that
Z is a set of the �rst Baire category, i.e. that � = ?. Suppose Z is a set of the
second Baire category, then there exists an open interval I such that I � �. It
follows that I \A is a set of the �rst Baire category. If J is any open interval with
rational endpoints such that I \ J 6= ?, then it follows that (I \ J) \ A is a set
of the �rst Baire category and hence J is not one of the intervals in the collection
of intervals whose union is G. Therefore G \ I?, which contradicts the fact that
I = P1 � Z � K. This completes the proof of Theorem 2.

We now prove the converse of the last theorem.

Theorem 3. If K is an outer Baire kernel of A then K can be written in
the form K = (G� P ) [Q, where G is given as in our lemma and P; Q are sets
of the �rst Baire category.

Proof . By our lemmaK 0 = G[(A�G) is a Baire superset of A. Therefore by
Theorem 2,K 0 is an outer Baire kernel of A. ClearlyK = (K 0�(K 0�K))[(K�K 0).
Since K 0�K and K �K 0 are Baire sets and from the de�nition of the outer Baire
kernel of a set it follows that K 0�K and K�K 0 are sets of the �rst Baire category.
Therefore K can be written in the form K = f[G[ (A�G)]�K 0�K)[ (K�K 0)
and hence it follows that K can be written in the desired form, completing the
proof of our theorem.

Combining Theorems 2 and 3, we have:
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Theorem 4. A Baire superset K of a set A is an outer Baire kernel of A
if and only if K can be written in the form K = (G � P ) [ Q, where G is given
as in our lemma and P; Q are sets of the �rst Baire category.

Now we will show:

Theorem 5. The union of the outer Baire kernels of a denumerable number
of sets is an outer Baire kernel of their union.

Proof . The proof of this theorem is an exact analogue of the proof of Theorem
5 in Abian's work, but is included for complereness. For every natural number i,

let Ki be an outer Baire kernel of the set Ai. We show that
1S
i=1

Ki is an outer Baire

kernel of
1S
i=1

Ai. To see this
�
as

1S
i=1

K1 is a Baire superset of
1S
i=1

Ai, see [13], pg.

19
�
it is enough to prove that if Z is a Baire set and Z �

�
1S
i=1

K1 �
1S
i=1

Ai

�
, then

Z is a set of the �rst Baire category. But in this case Z �
1S
i=1

�
Ki �

1S
j=1

Aj

�
and

therefore Z =
1S
i=1

�
Z \

�
K1 �

1S
j=1

Aj

��
. Furthermore, for every natural number i

we have Z \

�
Ki�

1S
j=1

Aj

�
= Z \Ki � (Ki�Ai), therefore Z is the denumerable

union of sets of the �rst Bairecategory and therefore Z is of the �rst Baire category
as desired.

Remark 1. The statement of Theorem 5 does not remain true if in it "denu-
merable\ is replaced by "nondenumerable\. If N = fa; b; c; . . .g is a set that lacks
the Baire property ([13], pg. 24) then every singleton fag; fbg; fcg; . . . is an outer
Baire kernel of itself, however the union of these singletons is N which lacks the
Baire property and hence cannot be the outer Baire kernel of any set.

Also. examples can be given to show that the statement of Theorem 5 does
not remain true if in it "denumerable\ is replaced by the �rst nondenumerable
cardilan @1 (even if we assume @1 < 2@0). This is because there are models for ZF
in which @1 < 2@0 in which there are non-Baire sets of cardinality @1 [6].

However in spite of the remark in the last paragraph we have the following
theorem.

Theorem 6. Let @ be any cardinal satisfying @ < 2@0 . Then it is consistent
(with usual axioms of ZF ) to assume that the union of the outer Baire kernels of
@ manuy sets is an outer Baire kernel of the union of these sets.

Proof . It is knowm ([2], pg. 114) that Martin's axiom is consistent with the
usual axioms of ZF . Furthermore it is known ([5], pg. 286{288) that Martin's
axiom implies that if @ < 2@0 then (i) the union of @ many Baire sets is a Baire
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set and (ii) the union of @ many sets of the �rst Baire category is a set of the �rst
Baire category. Therefore, using (i) and (ii), a proof following the lines of the proof
of Theorem 5 goes through.

The following results is an analogue of Theorem 7 of Abian.

Theorem 7. Let @ be a cardinal. Let us assume that the union of any
collection of @ many sets of the �rst Baire category is always a set of the �rst Baire
categor. Then the intersection (as well as the nion) of any collection of @ many
Baire sets is a Baire set.

Proof . The proof of this theorem is an exact analogue of the proof of Theorem
7 in Abian's work, but is included for completeness. Let (Bi)i2@ be a collection of
@ many Baire sets Mi. Let K be an outer Baire kernel of

T
i2@

Bi. Clearly,

(*) K �
S
i2@

(K �Bi) =
T
i2@

Bi. However, for every i 2 @ we see that K �Bi

is a Baire subset of K �
T
i2@

Bi and thus K �Bi is of the �rst Baire category. But

then, by the assumotion of the theorem,
S
i2@

(K � Bi) is a set of the �rst Baire

category, which by (*) implies that
T
i2@

Bi is a Baire set as desired. That
S
i2@

Bi is a

Baire set follows by complemention and an application of de Morgan's law.

Remark 2. A measurable outer kernel of a set need be an outer Baire kernel of
that set and vice versa. To see this suppose A is a measurable subset of the interval
(0; 1) that is at the same time a Baire set (for example any Borel subset of (0; 1)).
Let S1 de a measurable set of the �rst Baire category such that m(S1) > 0 and
S1\ (0; 1) = ?, where m denotes Lebesgue measure. Let S2 be a measurable set of
the second Baire category such that S2 is a Baire set,m(S2) = 0 and S2\(0; 1) = ?.
Sets S1 and S2 with the precribed properties given above exist (see [13]). Then
A [ S1 is an outer Baire kernel of A but is not a measurable outer kernel of A.
Also, A [ S2 is a measurable outer kernel of A but is not an outer Baire kernel of
A. Following Abian (his Remark 2) we have the following.

Remark 3. The concept of an inner Baire kernel Q of a set A can be
introduced at the dual of an outer Baire kernel by de�ning Q to be a Baire subset
of A such that the only Baire subset of A�Q are sets of the �rst Baire category.
Also, as expeced the duals of Theorems 1 thrue 6 can then be stated and proved.

Remark 4. If A is a set and x 2 R, then x is said to be of the second Baire
category with respect to A in case neighborhod of x intersets A in a set of the
second Baire category. Prof. M. Marjanovi�c has pointed out to the auther that the
set A2 [ A is an outer Baire kernel of A, where A2 denotes the set of all points of
the second Baire category with respect to A. It is interesting to note that A02 [ A
is a measurable outer kernel of A, where A02 denotes the set of all points haing
exterior metric density one with respect to A (see [3], pg. 180).
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The autor wishes to express his thanks to Professor Peter Hinman for his help
in clearing up and providing references for several statements in this work. Finally
I would like to mention the lecture notes by F. D. Tall of the University of Toronto
[14], that Professor Hinman pointed out to me. These notes give a broad view of
Martin's axiom and its uses.
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