ALMOST CONTINUITY AND NEARLY (ALMOST) PARACOMPACTNEES

Ilija Kovačević

Abstract. The purpose of the present paper is to investigate some properties of nearly (almost) paracompactness under almost continuous mappings.

Notation is standard except that $\alpha(A)$ will be used to denote interior of the closure of A. The topology τ^* is the semi-regularization of τ and has as a base the regularly open sets from τ .

1. Preliminaries

Definition 1.1. A subset of a space is said to be *regular open* iff it is the interior of some closed set or equivalently iff it is the interior of its own closure. A set is said to be *regularly closed* iff it is the closure of some open set or equivalently iff it is the closure of its own interior ([1]).

A subset is regularly open iff its complement is regularly closed.

Definition 1.2. A space X is said to be almost regular iff for any regularly closed set F and any point $x \notin F$, there exists disjoint open sets containing F and x respectively ([14]).

A space X is almost regular iff for each point $x \in X$ and each regularly open set V containing x there exists a regularly open set U such that $x \in U \subset \overline{U} \subset V$ ([14]), Theorem 2.2).

Definition 1.3. A space X is nearly paracompact iff every regularly open cover of X has a locally finite open refinement ([18]).

Definition 1.4. A space X is nearly strongly paracompact iff every regularly open cover of X has a star finite open refinement ([8]).

Definition 1.5. A space X is said to be almost paracompact iff for every open covering \mathcal{U} of X there exists a locally finite family of open sets \mathcal{V} which refines \mathcal{U} and is such that the family of closures of members of \mathcal{V} forms a covering of X ([15]).

Definition 1.6. A space X is said to be almost compact iff each open covering of X has a finite subfamily the closures of whose members cover X ([15]).

Ilija Kovačević

Definition 1.7. A space X is said to be almost strongly paracompact iff for every open covering \mathcal{U} of X there exists a star finite family of open sets \mathcal{V} which refines \mathcal{U} and is such that the family of closures of members of \mathcal{V} forms a covering of X ([8]).

Definition 1.8. Let X be a topological space and A a subset of X. The set A is a α -almost paracompact iff for every X-open covering \mathcal{U} of A there exists an X-locally finite family of X-open sets \mathcal{V} which refines \mathcal{U} and is such that the family of X-closures of members of \mathcal{V} forms a covering of A ([4]).

Definition 1.9. A space X is locally almost paracompact iff each point of X has an open neighbourhood U, such that \overline{U} is α -almost paracompact ([4]).

Definition 1.10. Let X be a topological space, and A a subset of X. The set A is α -nearly paracompact iff every X-regularly open cover of A has an X-open X-locally finite refinement which covers A ([6]).

Definition 1.11. A space X is locally nearly paracompact iff each point of X has an open neighbourhood U such that \overline{U} is α -nearly paracompact ([5]).

Definition 1.12. Let X be a topological space and A, a subset of X. The set A is α -nearly strongly paracompact iff every X-regularly open cover of A has an X-open star finite refinement which covers A ([7]).

Definition 1.13. A topological space X is called *locally nearly strongly para*compact iff each point of X has an open neighbourhood U such that \overline{U} is an α -nearly strongly paracompact subset of X ([7]).

Definition 1.14. A subset A of a space X is α -nearly compact (N-closed) iff every X-regular open cover of A has a finite subcovering ([17]).

Definition 1.15. A topological space X is locally nearly compact iff each point has an open neighbourhood U such that \overline{U} is an α -nearly compact subset of X ([2]).

Definition 1.16. A subset A of a space X is said to be H-closed iff for every X-open cover $\{U_{\alpha} : \alpha \in I\}$ of A, there exists a finite subset I_0 of I such that

$$A \subset \cup \{ U_{\alpha} : \alpha \in I_0 \}.$$

Definition 1.17. A function $f: X \to Y$ is said to be almost continuous iff for each point $x \in X$ and each open neighbourhood V of f(x) in Y there exists an open neighbourhood U of x in X such that $f(U) \subset \alpha(V)$ ([13]).

A function is almost continuous iff the inverse image of every regularly open set is open ([13], Theorem 2.2).

Definition 1.18. A function $f: X \to Y$ is said to be almost closed (resp. almost open) iff for every regularly closed (resp. regularly open) set F of X, f(F) is closed (resp. open) in Y ([13]).

74

Definition 1.19. A closed set F of (X, τ) is said to be star closed iff F is closed in (X, τ^*) , A function $f: X \to Y$ is said to be star closed iff for every star closed set F of X, f(F) is closed in Y ([11]).

LEMMA 1.1. If a mapping $f: X \to Y$ is almost continuous and almost closed, then

- 1) For each regularly closed set F of Y, $f^{-1}(F)$ is regularly closed in X,
- 2) For each regularly open set V of Y, $f^{-1}(V)$ is regularly open in X.

Proof. 1. Let F be any regularly closed subset of Y. Then $f^{-1}(F)$ is closed, since f is almost continuous. Hence we have

$$[\overline{f^{-1}(F)}]^0 \subset f^{-1}(F).$$

On the other hand, since f is almost continuous and F^0 is a non empty regularly open subset of Y, $f^{-1}(F^0)$ is non empty open and hence we have

$$f^{-1}(F^0) \subset [f^{-1}(F)]^0 \subset [\overline{f^{-1}(F)}]^0.$$

Moreover, since f is almost closed and $[\overline{f^{-1}(F)}]^0$ is a regularly closed subset of $X, f(\overline{f^{-1}(F)}]^0)$ is closed. Hence we have

$$F = \overline{F^0} \subset \overline{f([f^{-1}(F)]^0)}$$
. Thus we obtain $f^{-1}(F) \subset \overline{[f^{-1}(F)]^0}$.

This completes the proof of 1.

- 2) The proof of 2) follows easily from 1) and the following two facts:
- a) $f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$ for each subset F of V.
- b) F is regularly closed iff $Y \setminus F$ is regularly open subset of Y.

2. Nearly (almost) paracompactness

THEOREM 2.1. Let X be a nearly paracompact amost regular space. If $f: X \to Y$ in an almost continuous, almost closed surjection, such that $f^{-1}(y)$ is an α -nearly compact subset of X for each point $y \in Y$, then Y is nearly paracompact almost regular.

Proof. Since $f: F \to Y$ is almost continuous and almost closed surjection such that $f^{-1}(y)$ is α -nearly compact for each $y \in Y$, Y is almost regular ([5]. Lemma 5).

Next, we shall shown that Y is nearly paracompact. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in I\}$ be any regularly open cover of Y. Then by Lemma 1.1 $f^{-1}(\mathcal{U}) = \{f^{-1}(U_{\alpha}) : \alpha \in I\}$ is a regularly open cover of X. Since X is nearly paracompact, there exists a locally finite regularly open refinement $\mathcal{V} = \{V_{\beta} : \beta \in J\}$ or $f^{-1}(\mathcal{U}) = \{f^{-1}(U_{\alpha}) : \alpha \in I\}$. Since f is almost closed and $f^{-1}(y)$ is α -nearly compact for each $y \in Y$, $f(\mathcal{V}) =$ $\{f(V_{\beta}) : \beta \in J\}$ is locally finite ([11], Lemma 2). Also, $f(\mathcal{V})$ covers Y and is a refinement of \mathcal{U} . Hence $f(\mathcal{V})$ is a locally finite refinement of \mathcal{U} and thus Y is nearly paracompact ([18], Theorem 1.5).

THEOREM 2.2. Let f be any almost closed, almost continuous and almost open mapping of a space X onto a space Y such that $f^{-1}(y)$ is α -nearly compact for each $y \in Y$. Then, the image of an α -almost paracompact subset of X is an α -almost paracompact subset of Y.

Proof. Let A be any α -almost paracompact subset of X. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in I\}$ be any Y-regularly open cover of a subset f(A). Sice f is almost continuous and almost open,

$$f^{-1}(\mathcal{U}) = \{ f^{-1}(U_\alpha) : \alpha \in I \}$$

is an X-regularly open cover of A. Since A is α -almost paracompact, then there exists an X-open X-locally finite family $\mathcal{V} = \{V_{\beta} : \beta \in J\}$ which refines $f^{-1}(\mathcal{U})$ and is such that $\{\overline{V}_{\beta} : \beta \in J\}$ forms a covering of A. Consider the family

$$\mathcal{W} = \{ \alpha(V_{\beta}) : \beta \in J \}.$$

Then \mathcal{W} is an X-locally finite X-regularly open family which refines $f^{-1}(\mathcal{U})$ and is such that $\{\overline{\alpha(V_{\beta})} : \beta \in J\}$ forms a covering of A.

Since f is almost continuous, almost open and almost closed such that $f^{-1}(y)$ is α -nearly compact for each $y \in Y$, $\{f(\alpha(V_{\beta})) : \beta \in J\}$ is a Y-locally finite family which refines $\mathcal{U}([\mathbf{11}], \text{Lemma 2})$. Since f is almost closed and almost continuous, therefore $f(\overline{\alpha(V_{\beta})}) = \overline{f(\alpha(V_{\beta}))}$. Hence $\{f(\alpha(V_{\beta})) : \beta \in J\}$ is a Y-locally finite family of Y-open subsets refining $\{U_{\alpha} : \alpha \in I\}$ and such that $\{f(\alpha(V_{\beta})) : \beta \in J\}$ is a covering of f(A). Hence f(A) is α -almost paracompact ([4] Lemma 1.3).

COROLLARY 2.1. If $f : X \to Y$ is any almost closed, almost continuus and almost open mapping of an almost paracompact space X onto a space Y such that $f^{-1}(y)$ is α -nearly compact for each $y \in Y$, then Y is almost paracompact.

Proof. X is an α -almost paracompact subset of X. Therefore f(X) = Y is an α -almost paracompact subset of Y, i.e. Y is almost paracompact.

COROLLARY 2.2. ([15]. Theorem 6.3.1). If f is a closed, continuous, open mapping of a space X onto a space Y such that $f^{-1}(y)$ is compact for each $y \in Y$, then Y is almost paracompact if X is almost paracompact.

THEOREM 2.3. If f is an almost closed, almost continuous, almost open mapping of a locally almost paracompact space X onto a space Y such that $f^{-1}(y)$ is α -nearly compact for each $y \in Y$, then Y is locally almost paracompact.

Proof. Let $y \in Y$. Then, there exists $x \in X$ such that f(x) = y. Since X is locally almost paracompact, there exists an open neighbourhood U of x such that \overline{U} is α -almost paracompact subset of X. Then $\alpha(U)$ is a regularly open neighbourhood of x such that $\overline{\alpha(U)} = \overline{U}$ is α -almost paracompact subset of X.

76

Then, $f(\alpha(U))$ is a Y-open neighbourhood of y such that $f(\overline{\alpha(U)}) = \overline{f(\alpha(U))}$ is α -almost paracompact subset of Y, therefore Y is locally almost paracompact.

COROLLARY 2.3. ([4], Theorem 2.2.) If f is any closed, continuous, open mapping of a space X onto a space Y such that $f^{-1}(y)$ is compact for each $y \in Y$, then Y is locally almost paracompact if X is locally almost paracompact.

LEMMA 2.1. Let f be any almost open and almost continuous mapping of a space X onto a space Y such that $f^{-1}(G)$ is H-closed for each proper open subset $G \subset Y$. Then the image of any α -nearly paracompact subset of X is α nearly strongly paracompact subset of Y.

Proof. Let A be any α -nearly paracompact subset of X. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in I\}$ be any Y-regularly open cover of a subset f(A). Since f is almost continuous and almost open,

$$f^{-1}(\mathcal{U}) = \{ f^{-1}(U_{\alpha}) : \alpha \in I \}$$

is an X-regularly open cover of A. Since A is α -nearly paracompact, then there exists an X-regularly open X-locally finite family $\mathcal{V} = \{V_{\beta} : \beta \in J\}$ which refines $f^{-1}(\mathcal{U})$ and is such that

$$A \subset \bigcup \{ V_{\beta} : \beta \in J \}.$$

Since f is almost continuous, almost open that $f^{-1}(G)$ is H-closed for each proper open subset $G \subset Y$, $\{f(V_{\beta}) : \beta \in J\}$ is a Y-open star finite family which refines U, and is such that

$$f(A) \subset \bigcup \{ f(U_{\beta}) : \beta \in J \}$$

([9]. Corollary 4.1). This implies that f(A) is α -nearly strongly paracompact.

THEOREM 2.4. If f is an almost open, almost closed and almost continuous mapping of a locally nearly paracompact space X onto a space Y such that $f^{-1}(G)$ is H-closed for every proper open set $G \subset Y$, then Y is locally nearly strongly paracompact.

Proof. Let $y \in Y$ be any point. Then there exists $x \in X$ such that f(x) = y. Since X is locally nearly paracompact, there exists an open neighbourhood U of x such that \overline{U} is α -nearly paracompact subset of X. Then, $\alpha(U)$ is a regularly open neighbourhood of x such that $\overline{\alpha(U)} = \overline{U}$ is α -nearly paracompact subset of X. Then, $f(\alpha(U))$ is a Y-open neighbourhood of y such that $\overline{f(\alpha(U))} = \overline{f(\alpha(U))}$ is α -nearly strongly paracompact, therefore Y is locally strongly paracompact.

LEMMA 2.2. A space X is almost strongly paracompact iff for every regularly open covering of X there exists a star finite family of open sets which refines it and the closures of whose members cover the space X.

Proof. Only the "if" partneeds to be proved.

Let $\{U_{\lambda} : \lambda \in I\}$ be any open covering of X. Then $\{\alpha(U_{\lambda}) : \lambda \in I\}$ is a regularly open covering of X. There exists an open star finite family $\{H_{\beta} : \beta \in J\}$

which refines $\{\alpha(U_{\lambda}) : \lambda \in I\}$ such that $X \cup \{\overline{H}_{\beta} : \beta \in J\}$. For each $\beta \in J$ there exists $\lambda(\beta) \in I$ such that $H_{\beta} \subset \alpha(U_{\lambda(\beta)})$. For each $\beta \in J$, let

$$M_{\beta} = H_{\beta} \setminus [\overline{U_{\lambda(\beta)}} \setminus U_{\lambda(\beta)}].$$

Since $H_{\beta} \subset \alpha(U_{\lambda(\beta)}) \subset \overline{U_{\lambda(\beta)}}$, therefore $M_{\beta} = H_{\beta} \cap U_{\lambda(\beta)}$.

Thus $\{M_{\beta} : \beta \in J\}$ is a star finite family of open sets which refines \mathcal{U} . We shall prove that

$$X = \bigcup \{ \overline{M}_{\beta} : \beta \in J \}.$$

Let $x \in X$. Then $x \in \overline{H}_{\beta}$ for some $\beta \in J$. Now

$$\overline{M}_{\beta} = \overline{H_{\beta} \cap U_{\lambda(\beta)}} = \overline{H_{\beta} \cap \overline{U_{\lambda(\beta)}}} = \overline{H}_{\beta}.$$

Thus $x \in \overline{M}_{\beta}$. Hence $\{M_{\beta} : \beta \in J\}$ is an open star finite family which refines \mathcal{U} and the closures of whose members cover the space X, therefore X is almost strongly paracompact.

THEOREM 2.3. If f is an almost continuous, almost open mapping of an almost paracompact space X onto a space Y such that $f^{-1}(G)$ in H-closed for each proper open set $G \subset X$, then Y is almost strongly paracompact.

Proof. Let $\{U_{\alpha} : \alpha \in I\}$ be any regularly open cover of Y. Then $\{f^{-1}(U_{\alpha}) : \alpha \in I\}$ is a regularly open cover of X. There exists a locally finite family $\{V_{\beta} : \beta \in J\}$ of open sets refining $\{f^{-1}(U_{\alpha}) : \alpha \in I\}$ such that $X = \bigcup \{\overline{V}_{\beta} : \beta \in J\}$. Now, $\{\alpha(V_{\beta}) : \beta \in J\}$ is a locally finite family of regularly open sets refining $\{f^{-1}(U_{\alpha} : \alpha \in I\}$ and is such that $X = \bigcup \{\overline{\alpha(V_{\beta})} : \beta \in I\}$. Since f is almost open and $f^{-1}(G)$ is H-closed for each proper open set $G \subset Y$, $\{f(\alpha(V_{\beta})) : \beta \in J\}$ is a star finite family of open sets refining $\{U_{\alpha} : \alpha \in I\}$ ([9]), Lemma 4.2). Since $f(\overline{(\alpha(V_{\beta}))} \subset \overline{f(\alpha(V_{\beta}))})$, therefore $\{f(\alpha(V_{\beta})) : \beta \in J\}$ is a star finite family of open sets refining $\{U_{\alpha} : \alpha \in I\}$ is a star finite family of open sets refining $\{U_{\alpha} : \alpha \in I\}$ is a star finite family of open sets refining $\{U_{\alpha} : \alpha \in I\}$ and is such that $Y = \bigcup \{\overline{f_{\alpha}(V_{\beta})}) : \beta \in J\}$.

Hence Y is almost strongly paracompact.

REFERENCES

- Arya, S. P., A note on nearly paracompact spaces, Matematički vesnik 8 (23), (1971), 113-115.
- [2] Carnahhan, D., Locally nearly compact spaces, Boll. Un Mat. Ital. (4)6 (1972), 146-153.
- [3] Herrington, I., Properties of nearly compact spaces, Proc. Amer. Math. Soc. 45 (1974) 431-436.
- [4] Kovačević, I., Locally almost paracompact spaces, Zbornik radova PMF u Novom Sadu, 10, (1980), 86-91.
- [5] Kovačević, I., Locally nearly paracompact spaces, Publ.Inst.Math. Belgrade 29 (43) (1981), 117-124.
- [6] Kovačević, I., On nearly paracompact spaces, Publ. Inst. Math. Belgrade, 25 (39), (1979), 63-69.
- [7] Kovačević, I., On nearly strongly paracompact spaces, Publ. Inst. Math. Belgrade, 27 (41), (1980), 125-134.

- [8] Kovačević, I., On nearly stongly paracompact any almost strongly paracompact spaces, Publ. Inst. Math. Belgrade, 23 (37), (1978), 109-116.
- [9] Mashhour, A. S. and I. A. Hasanein, On S-closed any almost (nearly) strongly paracopactness (to appear).
- [10] Noiri, T., Almost continuity and some separation axioms, Glasnik matematički Ser. III 9 (29) No 1, (1974), 131-135.
- [11] Noiri, T., Completely continuous images of nearly paracompact spaces, Matematički vesnik 1 (14) (24), (1977), 59-64.
- [12] Noiri, T., N-closed sets and almost closed mappings, Glasnik matematički 4 (24), (1969), 89-99.
- [13] Singal, M. K. and A. R. Singal, Almost continuous mappings, Yokuhoma Math. J., 16 (1968), 63-73.
- [14] Singal, M. K. and S. P. Arya, On almost regular spaces, Glasnik matematički 4 (24) (1969), 89–99.
- [15] Singal, M. K. and S. P. Arya, On m-paracompact spaces, Math. Annal. 181 (1979), 119-133.
- [16] Singal, M. K. and A. Mathur, On nearly compact spaces, Boll. Un. Math. Ital. (4)6 (1969) 702-710.
- [17] Singal, M. K. and A. Mathur, On nearly compact spaces II, Boll. Un. Math. Ital. (4)9 (1974) 670-678.
- [18] Singal, M. K. and S. P. Aryas, On nearly paracompact spaces, Matematički vesnik 6 (21) (1969) 3-16.

University of Novi Sad Faculty of Technical Science Department of Mathematics Veljka Vlahovića 3 21000 Novi Sad Yugoslavia