A TABLEAUX SYSTEM IN MODAL LOGIC

Miodrag Kapetanović

Tableaux proof are frequently used in discussing modal calculi. A method to be described here and applied to the Kripke modal system G (see more about G in [1]) is a modification of analytic tableaux develiped by Smullyan in [2]. Its main feature, is the use of prefixed formulae¹ i.e. triples of the form $(s, T, \varphi), (s, F, \varphi), (s^*, T, \varphi)$ or (s^*, F, φ) with s a (possibly empty) finite sequence of natural numbers and φ a formulae where formulae of G (denoted by $\varphi, \psi, \theta, \ldots$) are defined as usual starting with a countable set of propositional letters and using, say, aconstant \bot , a unary propositional conective \Box and a binary conective \rightarrow . The intended meaning of $s T(F)\varphi^2 s^*T(F)\varphi$) is: φ is true (false) in the possible world s (φ is true in (false) in all possible worlds related to s).

Let us now define a *tableau for* φ as any sequence T_0, T_1, \ldots of sets of sets of prefixed formulae such that $T_0 = \{\{ \varnothing F \varphi\}\}$ and for all $m \in \omega$, all formulae ψ, θ and all $B \in T_m$ either

1° $sF\psi \rightarrow \theta \in B$ and $T_{m+1} = (T_m - \{B\}) \cup \{(B - \{sF\psi \rightarrow \theta\}) \cup \{sT\psi, sF\theta\}\}$ or

 $2^{\circ} s^* F \psi \to \theta \in B$ and T_{m+1} as above with s replaced by s^* or

3° $sT\psi \to \theta \in B$ and $T_{m+1} = (T_m - \{B\}) \cup \{(B - \{sT\psi \to \psi\}) \cup P | P \in \{\{sF\psi\}, \{sT\theta\}\}\}$ or

4° $s^*T\psi \to \theta \in B$ and for some $s' \subset s$ occuring in $T_mT_{m+1} = (T_m - \{B\}) \cup \{B \cup P | P \in \{\{s'T\theta\}\}\}$ or

5° $sT \Box \psi \in B$ and $T_{m+1} = T_m - \{B\} \cup \{(B - \{sT \Box \psi\}) \cup \{s^*T\psi\}\}$ or

6° $s^*T \Box \psi \in B$ and $T_{m+1} = (T_m - \{B\}) \cup \{B \cup \{s^{'*}T\psi | s' \subset s \text{ occurs in } T_m\}\}$ or

 $^{^1{\}rm The}$ referee pointed out that prefixed formulae orginate with Anderson and Belnap (see their "Pure calculuc of entailment", J. Symp. Logic, 27, 19–52)

 $^{^2\}mathrm{Brackets}$ and commas in prefixed formulae will always be omitted and s identified with its range

7° $sF \Box \psi ||B||$ and $T_{m+1} = (T_m - \{B\}) \cup \{(B - \{sF \Box \psi\}) \cup P | P \in \{\{s'F\psi, s'^*\psi\}| s' \subset s \text{ and either } s' \text{ occurs in } T_m \text{ or it is the (lexicorgraphically) first sequence extending } s\}$.

A set P of prefixed formulae is closed iff $T \perp \in P$ or for some $\varphi \{sT\varphi, sF\varphi\} \subseteq P$ or for some s and $\varphi s^*F \Box \varphi \in P$ and $\{s' \supset s | s' \text{ occurs in } P\} \neq \emptyset$ or for some $s' \underset{s \neq t}{s} upsets \{s^*T\varphi, s'F\varphi\} \subseteq P$ or $\{s^*F\varphi, s'T\varphi\} \subseteq P$

A tableau T_0, T_1, \ldots is closed iff for some $i \in \omega$ all elements of T_i are closed; otherwise it is *open*. Call a formulae φ a *theorem* iff there is a closed tableau for φ .

Let $W \neq \emptyset$ and let < be a binary relation on W. Then (W, <) is a *frame for* G iff < is transitive and well-founded.

Given a frame (W, <) define a valuation on (W, <) as any mapping $v : W \times \text{For}^3 \rightarrow \{0, 1\}$ satisfying: for all $W, W' \in W$ and all $\varphi, \psi \in \text{For}$:

1° $v(w, \perp) = 0;$

 $2^{\circ} v(w, \varphi \to \psi) = 1$ iff $v(w, \varphi) = 0$ or $v(w, \psi) = 1$

3° $v(w, \Box \varphi) = 1$ iff for all $w' < w \ v(w', \varphi) = 1$.

Then call φ a *tautology* iff for all frames (W, <) for G, for all $w \in W$ and all valuations v on $(W, <) v(w, \varphi) = 1$.

We can now prove that all theorems for φ and v a valuation such that for some $w \in W$ $v(w, \varphi) = 0$. Then for any tableau for φ and for all s occuring in it define a mapping $s \mapsto w(s) \in W$ by:

 $w(\emptyset)$ = the least $w \in W$ such that $v(W, \varphi) = 0$,

w(si)=the least w < w(s) such that for all φ if $siT(F)\varphi$ occurs in the tableau then $v(w,\varphi) = 1(0)$ and if $si^*T(F)\varphi$ occurs in the tableau then for all $w' < w \ v(w',\varphi) = 1(0)$.

Now call an $sT\varphi$ v-true iff $v(w(s), \varphi) = 1$ (other cases are similar) and also a set of prefixed formulae i v-true iff all its elements are. So in our case T_0 has a v-true member and if T_m has such a member it is proved (by checking all the cases) that sp does T_{m+1} . That would not be possible if any of the closure conditions held (by definition of a valuation and well-foundedness of <), so the tableau must be open.

The converse also holds of the above result, i.e. all tautlogies are theorems. To rpove it suppose there is an open tableau for φ and extend it to a (finite) maximal one (in a sence that no more rules can be applied). Choose an open element Bof the tableau. Then there is obviously a sequence $\{ \varnothing F \varphi \} = B_0, B_1, \ldots, B_k =$ $B(B_i \in T_i)$ of open sets such that we get B_{i+1} form B_i by application of one of the reduction rule $1^\circ - 7^\circ$. Define a (finite) frame for G by $(\{s | s \text{ occurs in some } B_i\} \supseteq_{\neq})$ and a valuation v on it by v(s, p) = 1 iff for some i $sTp \in B_i(p \text{ a propositional letter})$. Using closure conditions one can prove by induction on the complexity of

 $^{^{3}}$ The set of all formulae

formulae that all B_i are v-true, hence $v(\emptyset, \varphi) = 0$ i.e. φ is not a tautology. Notice that the whole procedure of searching for a counterexamples is effective.

REFERENCES

- [1] Boolos, G., The unprovability of consistency, Cambridge, 1979.
- [2] Smullyan, R., First-Order Logic, Berlin, Heidelberg, New York, 1968.
- [3] Solovay, R., Provability interpretations of modal logic, Israel J. Math. vol. 25, 1976, pp. 287-304.

Matematički institut Knez Mihailova 35/I 11000 Beograd Yugoslavia