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ON SUBSPACES OF RIEMANN-OTSUKI SPACE

F. Nadj Djerdji

In this paper we observe an n-dimensional point-space determined with a
given (1.1) tensor P i

j (x); detkP i
j k 6= 0, Otsuki's connection with the usual relations

between P i
j ;

0�ijk , and
00�ijk and the symmetric metric tensor gij, detkgijk 6= 0, as

in T. Otsuki [2] and A. Mo�or [1], but with the proposition 
k = 0, i.e.

(1) rkgij = 
kgij = 0:

This space we call Riemann-Otsuki space (R � On). According to the above
proposition it follows that

00�ijk =
00 �ikj = f i

jkg

where f i
jkg denote Cristo�el symbols.

Let an m dimensional subspace Sm be de�ned as usual with xi =
xi(u1; . . . ; um)(m < n). We shall determine, through some assumptions, the basic
elements of subspace Sm analogous to the tensor P i

j and analogous to the co-

eÆcients of connections 0�ij k and 00�ijk of R � On, so that this subspace be a

Riemann-Otsuki space (R �Om) too. By assumption rang

wwww
@ xi

@ u�

wwww = m1

Using the notation

(2) �i� :
@ xi

@ u�

we get the metric tensor G�� of Sm by the requirement that it is the projection of

gij on Sm. Hence

(3) G�� = gab�
a
��

b
� ; G��G

�
 = Æ


� ; G�
 = gab��a �



b

where in the usual way we de�ne

(4) ��i := gijG
���

j
�

1In this paper Latin indices run from 1 to n , Greek indices �; . . . ;{ run from 1 to m ,
but �; �; . . . run from m+ 1 to n.
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and suppose that det kG��k 6= 0.

The projection on the basic tensor P i
j of R �On we denote by

(5) P�
� : P i

j �
�
i �

j
�

and suppose that det kP�
� k 6= 0, so that there are tensors

�
Q�
� satisfying

(6) P�
� Q

�

 = Æ�
 :

The choice of the tensor P�
� follows from our requirement that the Sm be an R�Om

space. In the following the tensor P�
� of Sm will always be the projection of the

tensor P i
j of the basic space.

If
T i
j = T�

� �
i
��

�
j ;

then the tensor T i
j is a tensor of Sm. Now we can de�ne the Otsuki covariant

di�erential of the tensor T�
� of Sm by

(7)

�
DT�� = P�


 P
Æ
�T




Æj� du
{

= P�

 P

Æ
� (@{T



Æ +0

�
�
�{T

�
Æ �

00
�
��Æ
T



� ) du

{ =
�
rT�

b eta du
{:

Here the coeÆcients 0
�
� �
� 
 and 00

�
� �
� 
 will be de�ned by the following suppositions:

(i) For the metric tensor G�� we have the relation

(8)
�

r{G�� = P 

�P

Æ
� (@{G
Æ �

00
�

��
 {G�Æ �
�

��Æ{G
�) = 0:

(ii) Between the tensor P�
� and the coeÆcients of connections, 0

�

� �
� 
 and

00
�
� �
� 
 , we have the relation

(9) P
�
Æ

00
�
� alpha
� 
 � P�

�
0
�
� '
Æ 
 + @
P

�
Æ = 0:

Now we determine the coeÆcients of connection 00
�

� alpha
� 
 . Using relation (8),

according to the supposition det kP�
� k 6= 0 and relations (6), (3) and (2) we get

(10) 00
�
� �

 {G�Æ +

00
�
� �
Æ {G
� = (@kgij)�

k
{
�iÆ�

j

 + gij(�

i
delta{�

j

 + �iÆ�

j

 {)

where

(11) � i

{ =

@

@ u{
�i
 = � i

{ 
 :

Now we construct the connection between the coeÆcients 00� i
j k and 00

�
� alpha
� 
 . Ac-

cording to (1) we have
@kgij =

00 � s
i kgsj +

00 � s
j kgis:
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Substituting this in (10) we get

(12)
00

�
� �

 {G�Æ +

00
�
� �
Æ {G
� =

00 � s
i kgsj�

k
{
�iÆ�

j

 +

00 � s
j kgsi�

k
{
�iÆ�

j

+

+ gij(�
i
Æ{�

j

 + �iÆ�

j

{):

In the following we use the notation

(13) 00� �
� 
 =00 � i

s k�
�
i �

s
��

k

 :

Applying (13) on (12) and making the contraction with metric tensor we get the
relation symmetric in 
; delta:

(14) 00
�
�
Æ{ +00

�
�Æ
{ =00 �
Æ{ +00 �Æ
{ + gij(�

i
Æ{�

j

 + �iÆ�

j

 {):

In the following we suppose that

(15) 00
�

�
Æ{ =00
�

�{Æ
 :

Now we use the cyclic permutation of indices 
; delta; { in (14) and subtract one
of the equations from the sum of the other two. At the same time we use the
symmetry of 00� i

j k and � i
�� in the lower indices, and relation (15). So we get

(16) 00
�

�Æ{
 =00 �Æ{
 + �
j
delta 
�

i
{
gij :

It is known that relation (2) dermines m tangent vectors of Sm. With the
equations

(17) �i�N
�
i = 0; gij(x)N

�
i N

�
j = Æ�� (Æ�� is the Kronecker symbol)

we determine n �m mutally ortogonal unit vectors which are orthogonal to Sm.
In the case that m = n� 1 we have only one vector of this kind, but if m < n� 1,
there are many possibilities for choosing them. We suppose that by the tangent
vectors �i� the normal vectors N�

i are given too. Now we have the relation

(18) �i��
�
j +N i

�N
�
j = Æij :

Applying the contraction with G{� on (16), according to relations (13), (3),
(18) and (17) we get

(19) 00
�
� "
Æ 
 =00 � "

Æ 
 + � i
Æ 
�

"
i =

00 � "
Æ 
 � �iÆ�

"
i 
 :

Hence from the above considerations it follows that

Theorem 1: If relation (15) holds, then (19) is a necessary and suÆcient

conditions for (8).

According to supposition (1) the coeÆcients 00� i
j k of R � On are Christo�el

symbols (see [1] (2.3)). From (8) it follows that the coeÆcients 00
�
� �
� 
 de�ned by
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(19) are, with respect to the metric tensor G�� , Christo�el symbols too and so we
have

Corollary 1: The relation (19) is the relation between Christo�el symbols

of the second kind of R�On and R�Om, i.e.

fÆ"
gG = G" �f
�
Æ 
g = fÆ"
gg + � i

Æ 
�
j
"g

2
ij :

Proof : According to (6), from (8) it follows that

(20) @{GÆ
 �
00

�
� �
Æ{G�
 �

00
�
� �

 {GÆ� = 0:

Obviously it holds that 00
�

� "
{ 
 = G" �f{�
gG is a solution of (8) resp (20). Now we

prove the uniqueness of this solution. We suppose that

00
e�
� "
{ 
 = G"�f{�
gG +�{�
G

"�

is a solution too, where 00
e�
� "
{ 
 is symetric in {; 
, and �{�
 is a tensor which ac-

cording to (20) must be skew-symmetric in {; � and by the supposition symmetric
in {; 
. Now we can write

�{Æ
 = �
Æ{ = ��Æ
{ = ��{
Æ = �
{Æ = �Æ{
 = ��{Æ
 :

From this it follows that
�{Æ
 = 0;

i.e.

00
e�
� "
{ 
 = G"�f{�
gG = f "

{ 
g:

So we have proved that f "
{ 
gG is the unique solution of (20) resp (8). Since (19) is

the solution of (8) too the assertion of Corollary 1 follows.

Using the results above we can determine the relation between DTi and
�
DT�,

if Ti is a tensor of Sm. We have

Theorem 2: In case Ti is a vector of Sm, i.e.

(21) Ti := ��i T�;

we have

(22) DT� = �i�DTi:

Proof : Applying the Otsuki invariant di�erential analogous to (7) on Ti and
using (21), (5) and (7) we get

�i�DTi = �i�P
s
i (@kTs �

00 � j
s kTj)�

k
� du

� =

= �i�P
s
i �



s (@�T
 �

00
�
� Æ

 �TÆ) du

� = P 

�T
j� du

� =
�
DT�

2)fÆ"
gg := fijkgg �iÆ �
j
" �k
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where

(23) 00
�

� Æ

 ��



s =00 � delta

s � � @��
Æ
s

which is after one contraction with �s" identical with (19).

Now we return to our (ii) property and determine the coeÆcients 0
�

� �
� 
 of the

connection on m-dimensional subspace. It is known (se [2] (3.13)) that the relation

between the tensor P�
� and the coeÆcients 0

�

� �
� 
 and 00

�

� alpha
� 
 is relation (9). From

this relation using (6), (19), (5), (18), (17) and the fact that P i
j ;

0� i
j k and 00� i

j k

are basic elements of R�On, i.e. satisfying a relation analogous to (9), we get:

(24) 0
�
� �
Æ 
 =

�
Q�
��

�
i (�

j
Æ�

k

P

i
a
0� a

j k � P a
j �

j
ÆN

�
aN

b
�
00� i

b c�
c

 � P a

j �
j
ÆN

�
a (@
N

i
�) + P i

j �
j
Æ 
):

Now from the above considerations it follows that

Theorem 3: If (5), (7), (15), (19) and (24) are satis�ed, then the m-

dimensional subspace of R�On de�ned by xi = xi(u1; . . . ; um) is an R�Om.

Using de�nition (7) one can prove that the relation analogous to (22) for the
contravariant tensor

(25) T6i = �i�T
�

of Sm generally does not hold. Now we shall construct the conditions by which this
analogy holds. We can suppose that in place of relation (9) for tensor satisfying
(25) we have

(9')
�

DT� = ��i DT i:

Using Otsuki's covariant di�erential, relations (25) and (2) we get

��i DT i = ��i P
i
r((@{T

�)�r� + (@{�
r
�)T

� +0 � r
s kT

��s��
k
{
) du{

where

�r�
0
�
� �
Æ { =0 � r

s k�
k
{
�sÆ + @{�

r
Æ :

One contraction by �"r gives us

(26) 0
�

� �
Æ { =0 � r

s k�
k
{
�sÆ�

�
r + ��r �

r
Æ { =0 � �

Æ { + ��r �
r
Æ { :

Now we have the question whether these coeÆcients with P�
� and 00

�
� �
� 
 satisfy

property (9) of Otsuki space. The answer is obviously no, but it is possible to �nd
some special cases in them from (5), (7), (15), (19) and (26) follows that the m-

dimensional subspace of R�On is R�Om. Substituting P
�
� ;

00
�
� �
� 
 and 0

�
� �
� 
 from

(5), (19) and (26) in the term on the left side of relation (9) we get

(27)
P
�
Æ

00
�

� �
� 
 � P�

"
0
�

� "
Æ 
 + @
P

�
Æ = ��i N

r
��

b
Æ�

c

N

�
a (P

i
a
0� a

b c�

� P a
b

00� i
a c) +Nr

�N
�
a (P

s
r �

�
s �

a
Æ gamma + P a

b �
b
Æ�

�
r{):
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Relation (9) will be satis�ed if this expression vanishes.

I. If we suppose that P i
j = %Æij ; % = %(x), then (27) vanishes and relation (9) is

satis�ed, but it is known that then 0� i
j k =

00 � i
j k and Otsuki space reduces to almost

simple aÆn space.

bf II. Now we suppose that m = n� 1 and the normal vectors Ni are eigenvectors,
i.e. P i

jNi = �Nj . In this case

P i
rN

r = pir(g
rjNj) = P j

r g
riNj = �Nrg

ri = �N i

according to the supposition P i
jgia = Pja = Paj . Substituting in (27) we get that

relation (9) is satis�ed.

III. In general for subspaces characterized with P i
j = P]beta

��i��
�
j relation (9) is

satis�ed.
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