PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 30 (44), 1981, pp. 5-10

ON A CLASS OF N-ARY QUASIGROUPS

Branka P. Alimpić

(Communicated October 4, 1980)

Let (Q, \cdot) be a loop with the property:

(G) For every loop (H, *), if loops (Q, \cdot) and (H, *) are isotopic, they are isomorphic.

A loop (Q, \cdot) with the property (G) is called a G-loop [1].

By Albert's theorem, any group is a G-loop. A useful characterization of G-loops was given by V. D. Belousov [1] in terms of derived operations.

Let (Q, \cdot) be a quasigroup, $a \in Q$. The operation $_{a}$ of the set Q defined by

$$x_a \cdot y = \varrho^{-1} (x \cdot \varrho_a y)$$

is called the left derived operation determined by a [1]. Analogously, the right derived operation determined by a is defined by

$$x \cdot_a y = \lambda_a^{-1} (\lambda_a x \cdot y)$$

V. D. Belousov obtained the following result.

A loop (Q, \cdot) is a *G*-loop if and only if (Q, \cdot) is isomorphic to all its left and all its right derived operations.

We establish here an analogous result for *n*-ary quasigroups. Previously, we give some definitions. The notation is standard in quasigroup theory [2]. If (Q, A) is an *n*-ary quasigroup, and $\bar{a} = a_1^{i-1}a_{i+1}^n \in Q^{n-1}$, then $L_i(\bar{a})x \stackrel{\text{def}}{=} A(a_1^{i-1}, x, a_{i+1}^n)$.

Definition 1. Let (Q, A) be an *n*-ary quasigroup, and $\bar{a} \in Q^{n-1}$. The *n*-ary operation of the set Q defined by

$$A_{\bar{a}}^{i}(x_{1}^{n}) \stackrel{\text{def}}{=} L_{i}^{-1}(\bar{a})A([L_{i}(\bar{a})x_{\alpha}]_{\alpha=1}^{i-1}, x_{i}, [L_{i}(\bar{a})x_{\alpha}]_{\alpha=i+1}^{n})$$

is called the *i*-th derived operation of A determined by the sequence $\bar{a}, i = 1, \ldots, n$.

If n = 2, we obtain the left and the right derived operations determined by the element a of Q:

$$\begin{split} A_a^1(x,y) &= L_1^{-1}(a) A(x,\,L_1(a) \dot{y}), \\ A_a^2(x,y) &= L_2^{-1}(a) A(L_2(a) x, y). \end{split}$$

Since operations $A^i_{\bar{a}}$ are isotopic to the operation A, they all are quasigroups, too.

If (Q, A) is an *n*-ary quasigroup, a sequence $\tilde{g} = e_1^{i-1} e_{i+1}^n \in Q^{n-1}$, such that

$$(\forall x \in Q)L_i(\tilde{\mathbf{e}})x = x,$$

is called an *i*-th identity sequence of (Q, A).

LEMMA 1. The n-ary quasigroup $(Q, A_{\overline{a}}^i)$ has an *i*-th identity sequence (i = 1, ..., n).

Proof. If
$$e_{\alpha} \stackrel{\text{def}}{=} L_i^{-1}(\bar{a})a_{\alpha}, \ \alpha \in \{1, \dots, n\}, \ \alpha \neq 1$$
, we have
$$A_{\bar{a}}^i(e_1^{i-1}, x, e_{i+1}^n) = L_i^{-1}(\bar{a})A(a_1^{i-1}, x, a_{i+1}^n) = L_i^{-1}(\bar{a})L_i(\bar{a})x = x$$

The next lemma establishes a connection between derived operations and pseudo-automorphisms of an n-ary quasigroup [3].

LEMMA 2. A sequence $\bar{a} \in Q^{n-1}$ is a companion of some *i*-th pseudoautomorphism φ of an n-ary quasigroup (Q, A), if and only if and only if the quasigroups (Q, A) and $(Q, A_{\bar{a}}^i)$ are isomorphic.

Proof. φ is an *i*-th pseudo-automorphism with a companion \bar{a} .

$$\begin{aligned} &\leftrightarrow L_i(\bar{a})\varphi A(x_1^n) = A([L_i(\bar{a})\varphi x_\alpha]_{\alpha=1}^{i-1}, \ \varphi x_i, \ [L_i(\bar{a})\varphi x_\alpha]_{\alpha=i+1}^n) \\ &\leftrightarrow \varphi A(x_1^n) = A_{\bar{a}}^i(\varphi x_1, \dots, \varphi x_n) \\ &\leftrightarrow (Q, A) \cong (Q, A_{\bar{a}}^i). \end{aligned}$$

Definition 2. An *n*-ary quasigroup (Q, A) is a generalized *n*-ary loop if for every i = 1, ..., n there exists an *i*-th identity sequence $\tilde{\mathbf{e}}_i = [e_{i\alpha}]_{\alpha=1}^{i-1} [e_{i\alpha}]_{\alpha=i+1}^n, e_{ij} \in Q$.

Clearly, every *n*-ary loop [2] with an identity e, is a generalized *n*-ary loop with $\tilde{g}_i = \tilde{g} = \frac{n-1}{e}$. In the binary case, every generalized loop is a loop.

LEMMA 3. If (Q, A) is an n-ary loop, then every derived quasigroup $(Q, A_{\bar{a}}^i)$ is a generalized n-ary loop.

Proof. Let (Q, A) be an *n*-ary loop with an identity, e, and let $A_{\bar{a}}^i$ be a derived operation. By lemma 1, $A_{\bar{a}}^i$ has an *i*-th identity sequence. If $f = L_i^{-1}(\bar{a})e$,

we have for every $j, 1 \leq j < i$,

$$\begin{aligned} &A_{\bar{a}}^{i} \begin{pmatrix} j^{-1}, x, i^{-1-j}, e, i^{-i} \end{pmatrix} \\ &= L_{i}^{-1}(\bar{a}) A \underbrace{(L_{i}(\bar{a}) L_{i}^{-1}(\bar{a}) e, L_{i}(\bar{a}) x, L_{i}(\bar{a}) L_{i}^{-1}(\bar{a}) e, e, L_{i}(\bar{a}) L_{i}^{-1}(\bar{a}) e, }_{L_{i}(\bar{a}) A \begin{pmatrix} j^{-1}, L_{i}(\bar{a}) x, i^{-j} \end{pmatrix} = L_{i}^{-1}(\bar{a}) L_{i}(\bar{a}) x = x, \end{aligned}$$

hence, $A_{\bar{a}}^i$ has a *j*-th identity sequence, for $1 \leq j < i$.

Similarly we prove that $A^i_{\bar{a}}$ has *j*-th identity sequences for $i < j \leq n$, thus, $(Q, A^i_{\bar{a}})$ is a generalized *n*-ary loop.

Let (Q, A) be an *n*-ary quasigroup and let $\bar{a}_i = [a_{i\alpha}]_{\alpha=1}^{i-1} [a_{i\alpha}]_{\alpha=i+1}^n$, $i = 1, \ldots, n, a_{i\alpha} \in Q$. We introduce the following operation of Q:

$$A_{\bar{a}_1\cdots\bar{a}_n}(x_1^n) \stackrel{\text{def}}{=} A(L_1^{-1}(\bar{a}_1)x_1,\ldots,L_n^{-1}(\bar{a}_n)x_n),$$

which is a principal isotop of A. It is easy to verify that $(Q, A_{\bar{a}_1...\bar{a}_n})$ is a generalized *n*-ary loop with *i*-th identity sequence

$$\tilde{\mathbf{g}} = [L_{\alpha}(\bar{a}_{\alpha})a_{i\alpha}]_{\alpha=1}^{i-1}[L_{\alpha}(\bar{a}_{\alpha})a_{i\alpha}]_{\alpha=i+1}^{n}, \quad i = 1, \dots, n.$$

If $a_{i\alpha} = a_{\alpha}$, for i = 1, ..., n, $\alpha \neq i$, then $(Q, A_{\bar{a}_1...\bar{a}_n})$ is an *n*-ary loop with identity element $e = A(a_1^n)$. Indeed, then we have $L_{\alpha}(\bar{a}_{\alpha})a_{i\alpha} = A(a_1^n)$, and if we put $e = A(a_1^n)$, then $\tilde{\xi}_i = \stackrel{ne^{-1}}{e^{-1}}$, i = 1, ..., n.

LEMMA 4. Let (Q, A) be an n-ary quasigroup. For every operation $A_{\bar{a}_1...\bar{a}_n}$ there exist sequences $\bar{b}_1, \ldots, \bar{b}_n$ of elements of Q such that $(Q, A_{\bar{a}_1...\bar{a}_n} and (Q, (\cdots (A \frac{1}{b_1}) \frac{2}{b_2} \cdots \frac{n}{b_n})$ are isomorphic.

Proof. First, let $\bar{b}_1, \ldots, \bar{b}_n$ be arbitrary elements of Q^{n-1} . By definition of derived operations, we have

$$(\cdots (A\frac{1}{b_1})\frac{2}{b}\cdots)\frac{n}{b}(x_1^n) = \dot{L}_n^{-1}\cdots \dot{L}_2^{-1}L_1A(\dot{L}_2\cdots \dot{L}_nx_1, L_1\dot{L}_3\cdots \dot{L}_nx_2, \dots, L_1\cdots \dot{L}_{n-1}x_n)$$

where

$$L_{1}x = L_{1}(\bar{b}_{1})x = A(x, b_{12}, \dots, b_{1n}) <$$

$$\dot{L}_{2}x = \dot{L}_{2}(\bar{b}_{2})x = A\frac{1}{b_{1}}(b_{12}, x, \dots, b_{2n}),$$

...

$$\dot{L}_{n}x = \dot{L}_{n}(\bar{b}_{n})x = (\dots (A\frac{1}{b_{1}})\frac{2}{b_{2}}\dots)\frac{n-1}{b_{n}}(b_{n1}, \dots, b_{nn-1}, x).$$

By induction on k, we prove

(1)
$$L_1 \dot{L}_2 \cdots \dot{L}_k = \bar{L}_k \bar{L}_{k-1} \cdots L_1, \ k = 2, 3, \dots, n$$

where

$$\overline{L}_2 x = L_2(\overline{\tau_2 b_2}) x = A(\tau_{21} b_{21}, x, \dots, \tau_{2n} b_{2n}),$$

$$\dots$$
$$\overline{L}_n x = L_n(\overline{\tau_n b_n}) x = A(\tau_{n1} b_{n1}, \dots, \tau_{nn-1} b_{nn-1}, x),$$

and τ_{ij} are certain bijections of Q, which depend only on b_k , k < i.

First we prove $L_1 \dot{L}_2 = \overline{L}_2 L_1$. By definition of \dot{L}_2 , we have

 $\dot{L}_2 x = L_1^{-1} A(b_{21}, L_1 x, \dots, L_1 b_{2n})$ = $L_1^{-1} \overline{L}_2 L_1 x,$

hence, $L_1 \dot{L}_2 = \overline{L}_2 L_1$.

Next assume that $L_1 \dot{L}_2 \cdots \dot{L}_{k-1} = \overline{L}_{k-1} \cdots \overline{L}_2 L_1$. By definition of \dot{L}_k , it follows that

$$\dot{L}_k = \dot{L}_{k-1}^{-1} \cdots \dot{L}_2^{-1} \overline{L}_k L_1 \dot{L}_2 \cdots \dot{L}_{k-1},$$

which implies

$$L_1 \dot{L}_2 \cdots \dot{L}_k = \overline{L}_k \dot{L}_1 \cdots \dot{L}_{k-1}.$$

Hence, by the induction assumption, it follows (1).

Consequently, we obtain

$$\left(\cdots\left(A\frac{2}{b_1}\right)\frac{2}{b}\cdots\right)\frac{n}{b}(x_1^n) = \delta^{-1}A(L_1^{-1}\delta x_1, \overline{L}_2^{-1}\delta x_2, \dots, \overline{L}_n^{-1}\delta x_n)$$

where $\delta = \overline{L}_n \cdots \overline{L}_2 L_1$. Thus, $(Q, (\cdots (A \frac{1}{b_1}) \frac{2}{b_2} \cdots) \frac{n}{b})$ and $(Q, A_{\overline{a}_1 \cdots \overline{a}_n})$ are isomorphic, where

 $\bar{a}_1 = \bar{b}_1$ $\bar{a}_2 = \overline{\tau_2 b_2} = \tau_{21} b_{21} \tau_{23} b_{23} \cdots \tau_{2n} b_{2n}$ \cdots $\bar{a}_n = \overline{\tau_n b_n} = \tau_{n1} b_{n1} \cdots \tau_{nn-1} b_{nn-1}$ and τ_{ij} are bijections of the set Q.

Now it follows that for arbitrary $\bar{a}_1, \ldots, \bar{a}_n$ there exist $\bar{b}_1, \ldots, \bar{b}_n$, such that $\bar{b}_1 = \bar{a}_1, \ \bar{b}_2 = \overline{\tau_1^{-1} a_2}, \ldots, \bar{b}_n = \overline{\tau_n^{-1} a_n}$, and

$$\delta(\cdots(A\frac{1}{b_1})\frac{2}{b_n}\cdots)\frac{n}{b}(x_1^n) = A_{\bar{a}_1\cdots\bar{a}_n}(\delta x_1,\ldots,\delta x_n).$$

LEMMA 5. If a generalized n-ary loop (H, B) is isotopic to an n-ary quasigroup (Q, A), then there exist sequences $\bar{a}_1, \ldots, \bar{a}_n$ of elements of Q such that (H, B) and $(Q, A_{\bar{a}_a} \ldots \bar{a}_n)$ are isomorphic.

Proof. Let $\alpha_{n+1}B(x_1^n) = A(\alpha_1 x_1, \dots, \alpha_n x_n)$, and let $\tilde{e}_i, i = 1, \dots, n$, be identity sequences of (H, B). Then we have

$$\alpha_{n+1}x_i = A(\alpha_1 e_{i1}, \dots, \alpha_{i-1} e_{ii-1}, \alpha_i x_i, \ \alpha_{i+1} e_{ii+1}, \dots, \alpha_n e_{in})$$
$$= L_i(\overline{\alpha e_i})\alpha_i x_i$$

8

Hence, $\alpha_i x_i = L_i^{-1}(\overline{\alpha e_i})\alpha_{n+1}x_i, i = 1, \dots, n$, and

$$\alpha_{n+1}B(x_1^n) = A(L_1^{-1}(\overline{\alpha e_a})\alpha_{n+1}x_1, \dots, L_n^{-1}(\overline{\alpha e_n})\alpha_{n+1}x_n).$$

Thus, (H, B) and $(Q, A_{\overline{\alpha e_1}, \dots, \overline{\alpha e_n}})$ are isomorphic.

An *n*-ary loop (Q, A) with the property

 (G_n) For every n-ary loop (H,B), if (H,B) and (Q,A) are isotopic, then they are isomorphic

is called ann-aty G-loop.

Similarly, an *n*-aty loop with the property

 (G'_n) For every generalized n-ary loop (H, B), if (H, B) and (Q, A) are isotopic, then they are isomorphic

is called a G'-loop.

Clearly, the property G'_n implies the property G_n . As an immediate consequence of definition of a G'-loop, it follows that every generalized loop, isotopic to a G'-loop is a loop, too.

THEOREM. If (Q, A) is an n-ary loop, then the following statements are equivalent:

(i) (Q, A) is a G'-loop

(ii) (Q, A) is a G'-loop, and every derived quasigroup of (Q, A) is a loop.

(iii) (Q, A) is isomorphic to every derived quasigroup of $(Q, A_{\overline{a}}^{i}), \overline{a} \in Q^{n-1}, i = 1, \ldots, n$.

Proof. (i) \Rightarrow (ii). Since all derived quasigroups are generalized loops (lemma 3), isotopic to (Q, A) they are isomorphic to (Q, A). Hence they are loops. (ii) \Rightarrow (iii). Trivially.

(iii) \Rightarrow (i) Let (Q, A) be isomorphic to every derived quasigroup $(Q, A\frac{1}{a})$, and let (H, B) be a generalized loop, isotopic to (Q, A). By lemma 5, (H, B) is isomorphic to a principal isotop $(Q, A_{\bar{a}_1 \dots \bar{a}_n})$ of the loop (Q, A). On the other hand, by lemma 4, $(Q, A_{\bar{a}_1 \dots \bar{a}_n})$ is isomorphic to $(Q, (\dots (A\frac{1}{b_1})\frac{2}{b_2}\dots)\frac{n}{b})$, for some $\bar{b}_1, \dots, \bar{b}_n \in Q^{n-1}$. By (iii), (Q, A) is isomorphic to $(Q, (\dots (A\frac{1}{b_1})\frac{2}{b_2}\dots)\frac{n}{b})$. Consequently, (H, B) is isomorphic to (Q, A) is a G'-loop.

Example 1. Let (Q, A) be an *n*-ary loop satisfying *i*-th Menger's laws for all $i = 1, \dots, n$ [2]. By definition of *i*-th derived operation, such a loop coincides with all its derived operations. Hence, it is a G'-loop.

Example 2. Let (Q, A) be an *n*-ary group with identity element *e*. According to Hosszu-Gluskin's theorem [2] there is a binary group (Q, \cdot) such that $A(x_1^n) = x_1, \ldots, x_n$. A straightforward verification shows that (Q, A) is a *G*-loop: if $\alpha_{n+1}B(x_1^n) = \alpha_1x_1 \cdot \ldots \cdot \alpha_nx_n$, then $\varphi B(x_1^n) = \varphi x_1 \cdot \ldots \cdot \varphi x_n$, where

Branka P. Alimpić

 $\varphi = \lambda_c \alpha_{n+1}, c = (\alpha_1 e, \dots, \alpha_n e)^{-1}$. Generally, (Q, A) is not a G'-loop. Indeed, let Q^+ be the set of all nonnegative rational numbers. If $(x_1, x_2, x_3) = x_1 \cdot x_2 \cdot x_3$, then (Q^+, A) is a ternary group, with identity element 1, but there exist derived quasigroups which are not isomorphic to (Q^+, A) . For example, if $\bar{a} = 1, 2$, we have $L_1(\bar{a})x = x \cdot 2 \cdot 1 = 2x$, $L_1^{-1}(\bar{a})x = 2^{-1}x$, $A_{\bar{a}}^1(x, y, z)) = 2xyz$, and $(\forall x \in Q^+)2xyy = x \Rightarrow y = \sqrt{2}/2$. Hence, $(Q^+, A_{\bar{a}}^1)$ is a ternary group without identity element, and it is not isomorphic to (Q^+, A) .

REFERENCES

- [1] В. Д. Белоусов, Основы теории квазигрупп и луп, Наука, Москва, 1967.
- [2] В. Д. Белоусов, *п-арные квазигруппы*, "Штиинца" Кишинеёв, 1972.
- [3] B. Alimpić, On nuclei and pseudo-automorphisms of n-ary quasigroups, Algebraic conference, Skopje, 1980, 15-21.

Institut za matematiku Prirodno-matematički fakultet 11000 Beograd, Studentski trg 16