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OSCILLATIONS OF n-TH ORDER RETARDER

DIFFERENTIAL EQUATIONS1

Cheh-Chih Yeh

1. Introduction

The purpose of this paper is to �nding the oscillatory criteria for the following
equation

(1) y(s)(t) + (�1)n+1
mX
i=1

fi(t; y(t); y(gi(t))) = h(t):

Throughout this paper, we assume that the following conditions are satis�ed:

(a) fi 2 C[R+ � R2; R], i; 2; . . . ;m, and for some index j; 1 � j � m,

fj(t; u; vj) is increasing in u and vj for �xed large t.

(b) fi; (t; u; vi), has the same sign as that of u and v, for i = 1; 2; . . . ;m.

(c) gi 2 C[R+; R] and gi(t) � t, gi(t) is nondecreasing, limt!1 gi(t) =1 for

i = 1; . . . ;m, and gj(t) is strictly increasing, index j associate with fj(t; u; vj) in

(a).

(d) there exists a function r(t) such that r(n)(t) = h(t), r(i)(t)! 0 as t!1,

i = 0; . . . ; n� 1.

In what follows, we consider only such solutions which are de�ned for all
large t. The oscillatory character is considered in the usual sense, i.e. a continuous
real-valued function which is de�ned for all large t is called oscillatory if it has no
last zero, and otherwise it is called nonoscillatory.

Similar dicussions to that given here have been obtained in [1 - 5] for the
solutions of the following retarded di�erential equations of the particular forms
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y00(t)�

mX
i=1

pi(t)y(gi(t)) = 0;

y00(t)�

mX
i=1

fi(t; y(t); y(gi(t))) = 0;

y(n)(t) + (�1)n+1p(t)y(g(t)) = 0;

y(n)(t) + (�1)n+1p(t)h(y[g(t)]) = 0;

and
y(n)(t) + (�1)n+1p(t)y(g(t)) = f(t):

2. Main Results

Theorem 1. Let the conditions (a){(d) hold. Asume that y(t) is a bounded

solution of (1) with jy(t)j � L, for large t, and L > 0. Let there exist a nonempty

set of indices K = fc1; . . . ; cMg, 1 � c1 � c2 < � � � < cM � m and functions

GL
i 2 C[R+; R+], i 2 K such that for vi 6= 0, i 2 K and large t

(2) GL
i(t) � vi

�1fi(t; u; vi):

Suppose

(3) lim
t!1

inf

tZ

g�(t)

X
i2K

[gi(t)� gi(s)]
n�1GL

i(s)ds > 1

where g�(t) = maxi2Kfgi(t)g. If

'(t) =
X
i2k

tZ

g�(t)

r(gi(s))GL
i(s)ds :

is oscillatory or nonnegative, then y(t) is oscillatory.

Proof. Without any loss in generality, we may assume y(t) > 0 and in view
of (c), y(gi(t)) > 0 for t � t1, and i = 1; 2; � � � ;m. Let

(4) x(t) = y(t)� r(t):

Then it follows from (1) and (4) that

(5) x(n)(t) + (�1)n+1
mX
i=1

fi(t; y(t); y(gi(t))) = 0



Oscillations of n-th order retarded di�erential equations 295

which implies for t � t,

(6) (�1)nx(n)(t) > 0:

From (d), (4), (6) and x(t) is bounded, there exists a t2 � t1 such that for t � t2

(7) (�1)ix(i)(t) � 0; i = 1; 2; . . . ; n� 1:

Now by mean value theorem we have

(8)

x(a) = x(b) + (a� b)x0(b) +
(a� b)2

2!
x00(b)

+ � � �+
(a� b)n�1

(n� 1)!
x(n�1)(b) +

(a� b)n

n!
x(n)(�)

where � 2 (a; b). Let t2 < s < t, then by (c) we have gi(s) � gi(t). Let a = gi(s),
b = gi(t) in (8) and invoking (7) we have

(9) x(gi(s)) � x(gi(t)) +
(gi(s))� gi(t))

n�1

(n� 1)!
x(n�1)(gi(t)):

Multiplying (9) by GL
i(s) and summing up for all i 2 K, we have by (2)

X
i2k

GL
i(s)x(gi(t)) +

X
i2K

GL
i(s)

(gi(s)� gi(t))
n�1

(n� 1)!
x(n�1)(gi(t))

�
X
i2K

GL
i(s)x(gi(s)) �

mX
i=1

fi(s; y(s); y(gi(s)))�
X
i2K

r(gi(s))GL
i(s)

= (�1)nx(n)(s)�
X
i2K

r(gi(s))GL
i(s):

Integrating it with respect to s from g�(t) to t,

X
i2K

(�1)n�1x(n�1)(gi(t))

tZ

g�(t)

(gi(t)� gi(s))
n�1GL

i(s)ds

� (�1)nx(n�1)(t)� (�1)nt(n�1)(g�(t))�
X
i2K

tZ

g�(t)

r(gi(s))GL
i(s)ds

or

(10)

(�1)n�1x(n�1)(g�(t))

2
64X
i2K

tZ

g�(t)

(gi(t)� gi(s))
n�1GL

i(s)ds � 1

3
75

� (�1)nx(n�1)(t)�
X
i2K

tZ

g�(s)

r(gi(s))GL
i(s)ds
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Choose T large enough so that '(T ) � 0. Then from (10) we have

(11)
'(T ) + (�1)n�1x(n�1)(g�(T ))

2
64X
i2K

TZ

g�(T )

(gi(T )� gi(s))
n�1GL

i(s)ds � 1

3
75

� (�1)nxn�1(T ):

Thus, by (3), we have a contradiction to the fact that the left-hand side of (11) is
nonnegative, while the right-hand side is negative. The proof is now complete.

Remark 1. If L is the common bound of all bounded solutions of (1), as

in Theorem 1, GL
i and fi for i 2 K satisfy the conditions (2) and (3), then, by

Theorem 1 every bounded solution of (1) is oscillatory.

Example 1. We see easily that

y00(t)� 2y(t� �) = cos t

has y(t) = cos t as a bounded oscillatory solution. Here

r(t) = � cos t; G(s) = 2;

tZ

t��

r(g(s))G(s)ds = 4 sin t; lim inf
t!1

tZ

t��

(t� s)ds =
�2

4
> 1:

Example 2. Consider the following equation

y00(t)� 2y(t� �) = sin t

which has y(t) = sin t as a bounded oscillatory solution. Here

r(t) = � sin t; G(s) = 2;

tZ

t��

r(g(s))G(s)ds = 0:

Similarly, we can prove the following theorem.

Theorem 2. Let the conditions (a), (d) hold. Assume that for any L > 0,

there exist a nonempty set of indices K as in Theorem 1 and functions GL
i 2

C[R+; R+], i 2 K such that (2), (3) hold. Then, every bounded solution of (1) is

oscillatory.

Corollary 1. Assume that fi(t; u; vi) in (1) for i = 1; 2; . . . ;m are contin-

uously di�erentiable with respect to u and vi, and

(12) fi(t; u; v) =
Æfi

Æu
(t; 0; 0)u+

Æfi

Ævi
(t; 0; 0)vi + Fi(t; u; vi)
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with
Pm

i=1
Æfi
Æu

(t; 0; 0),
Pm

i=1
Æfi
Ævi

(t; 0; 0) are nonnegative and continuous functions

on R+ and Fi(t; u; vi) for i = 1; . . . ;m satis�es the conditions (a)� (c). Let

lim inf
r!1

X
i2K

tZ

g�(t)

(gi(t)� gi(s))
n�1 Æfi

Ævi
(s; 0; 0)ds � 1

where g�(t) = maxi2Kfgi(t)g. Then every bounded solution of (1) is oscillatory.

Proof. For any L > 0, set Gi(t) = Æfi
Ævi

(t; 0; 0) for i 2 K. Obviously (1)

satis�es the condition (2) in view of (12). Thus Theorem 2 implies the conclusion
of this corollary is true.
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