OSCILLATIONS OF n-TH ORDER RETARDER DIFFERENTIAL EQUATIONS ${ }^{1}$

Cheh-Chih Yeh

1. Introduction

The purpose of this paper is to finding the oscillatory criteria for the following equation

$$
\begin{equation*}
y^{(s)}(t)+(-1)^{n+1} \sum_{i=1}^{m} f_{i}\left(t, y(t), y\left(g_{i}(t)\right)\right)=h(t) . \tag{1}
\end{equation*}
$$

Throughout this paper, we assume that the following conditions are satisfied:
(a) $f_{i} \in C\left[R^{+} \times R^{2}, R\right], i, 2, \ldots, m$, and for some index $j, 1 \leq j \leq m$, $f_{j}\left(t, u, v_{j}\right)$ is increasing in u and v_{j} for fixed large t.
(b) $f_{i},\left(t, u, v_{i}\right)$, has the same sign as that of u and v, for $i=1,2, \ldots, m$.
(c) $g_{i} \in C\left[R^{+}, R\right]$ and $g_{i}(t) \leq t, g_{i}(t)$ is nondecreasing, $\lim _{t \rightarrow \infty} g_{i}(t)=\infty$ for $i=1, \ldots, m$, and $g_{j}(t)$ is strictly increasing, index j associate with $f_{j}\left(t, u, v_{j}\right)$ in (a).
(d) there exists a function $r(t)$ such that $r^{(n)}(t)=h(t), r^{(i)}(t) \rightarrow 0$ as $t \rightarrow \infty$, $i=0, \ldots, n-1$.

In what follows, we consider only such solutions which are defined for all large t. The oscillatory character is considered in the usual sense, i.e. a continuous real-valued function which is defined for all large t is called oscillatory if it has no last zero, and otherwise it is called nonoscillatory.

Similar dicussions to that given here have been obtained in [1-5] for the solutions of the following retarded differential equations of the particular forms

[^0]\[

$$
\begin{gathered}
y^{\prime \prime}(t)-\sum_{i=1}^{m} p_{i}(t) y\left(g_{i}(t)\right)=0 \\
y^{\prime \prime}(t)-\sum_{i=1}^{m} f_{i}\left(t, y(t), y\left(g_{i}(t)\right)\right)=0 \\
y^{(n)}(t)+(-1)^{n+1} p(t) y(g(t))=0 \\
y^{(n)}(t)+(-1)^{n+1} p(t) h(y[g(t)])=0
\end{gathered}
$$
\]

and

$$
y^{(n)}(t)+(-1)^{n+1} p(t) y(g(t))=f(t) .
$$

2. Main Results

Theorem 1. Let the conditions (a)-(d) hold. Asume that $y(t)$ is a bounded solution of (1) with $|y(t)| \leq L$, for large t, and $L>0$. Let there exist a nonempty set of indices $K=\left\{c_{1}, \ldots, c_{M}\right\}, 1 \leq c_{1} \leq c_{2}<\cdots<c_{M} \leq m$ and functions $G_{L}{ }^{i} \in C\left[R^{+}, R^{+}\right], i \in K$ such that for $v_{i} \neq 0, i \in K$ and large t

$$
\begin{equation*}
G_{L}{ }^{i}(t) \leq v_{i}^{-1} f_{i}\left(t, u, v_{i}\right) \tag{2}
\end{equation*}
$$

Suppose

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \inf \int_{g^{*}(t)}^{t} \sum_{i \in K}\left[g_{i}(t)-g_{i}(s)\right]^{n-1} G_{L}{ }^{i}(s) d s>1 \tag{3}
\end{equation*}
$$

where $g^{*}(t)=\max _{i \in K}\left\{g_{i}(t)\right\}$. If

$$
\varphi(t)=\sum_{i \in k} \int_{g^{*}(t)}^{t} r\left(g_{i}(s)\right) G_{L}^{i}(s) d s
$$

is oscillatory or nonnegative, then $y(t)$ is oscillatory.
Proof. Without any loss in generality, we may assume $y(t)>0$ and in view of $(c), y\left(g_{i}(t)\right)>0$ for $t \geq t_{1}$, and $i=1,2, \cdots, m$. Let

$$
\begin{equation*}
x(t)=y(t)-r(t) \tag{4}
\end{equation*}
$$

Then it follows from (1) and (4) that

$$
\begin{equation*}
x^{(n)}(t)+(-1)^{n+1} \sum_{i=1}^{m} f_{i}\left(t, y(t), y\left(g_{i}(t)\right)\right)=0 \tag{5}
\end{equation*}
$$

which implies for $t \geq t$,

$$
\begin{equation*}
(-1)^{n} x^{(n)}(t)>0 \tag{6}
\end{equation*}
$$

From (d), (4), (6) and $x(t)$ is bounded, there exists a $t_{2} \geq t_{1}$ such that for $t \geq t_{2}$

$$
\begin{equation*}
(-1)^{i} x^{(i)}(t) \geq 0, \quad i=1,2, \ldots, n-1 \tag{7}
\end{equation*}
$$

Now by mean value theorem we have

$$
\begin{align*}
& x(a)=x(b)+(a-b) x^{\prime}(b)+\frac{(a-b)^{2}}{2!} x^{\prime \prime}(b) \\
& +\cdots+\frac{(a-b)^{n-1}}{(n-1)!} x^{(n-1)}(b)+\frac{(a-b)^{n}}{n!} x^{(n)}(\xi) \tag{8}
\end{align*}
$$

where $\xi \in(a, b)$. Let $t_{2}<s<t$, then by (c) we have $g_{i}(s) \leq g_{i}(t)$. Let $a=g_{i}(s)$, $b=g_{i}(t)$ in (8) and invoking (7) we have

$$
\begin{equation*}
x\left(g_{i}(s)\right) \geq x\left(g_{i}(t)\right)+\frac{\left.\left(g_{i}(s)\right)-g_{i}(t)\right)^{n-1}}{(n-1)!} x^{(n-1)}\left(g_{i}(t)\right) . \tag{9}
\end{equation*}
$$

Multiplying (9) by $G_{L}{ }^{i}(s)$ and summing up for all $i \in K$, we have by (2)

$$
\begin{aligned}
& \sum_{i \in k} G_{L}{ }^{i}(s) x\left(g_{i}(t)\right)+\sum_{i \in K} G_{L}{ }^{i}(s) \frac{\left(g_{i}(s)-g_{i}(t)\right)^{n-1}}{(n-1)!} x^{(n-1)}\left(g_{i}(t)\right) \\
\leq & \sum_{i \in K} G_{L}{ }^{i}(s) x\left(g_{i}(s)\right) \leq \sum_{i=1}^{m} f_{i}\left(s, y(s), y\left(g_{i}(s)\right)\right)-\sum_{i \in K} r\left(g_{i}(s)\right) G_{L}{ }^{i}(s) \\
& =(-1)^{n} x^{(n)}(s)-\sum_{i \in K} r\left(g_{i}(s)\right) G_{L}{ }^{i}(s) .
\end{aligned}
$$

Integrating it with respect to s from $g^{*}(t)$ to t,

$$
\begin{gathered}
\sum_{i \in K}(-1)^{n-1} x^{(n-1)}\left(g_{i}(t)\right) \int_{g^{*}(t)}^{t}\left(g_{i}(t)-g_{i}(s)\right)^{n-1} G_{L}{ }^{i}(s) d s \\
\leq(-1)^{n} x^{(n-1)}(t)-(-1)^{n} t^{(n-1)}\left(g^{*}(t)\right)-\sum_{i \in K_{g^{*}(t)}} \int_{t}^{t} r\left(g_{i}(s)\right) G_{L}{ }^{i}(s) d s
\end{gathered}
$$

or

$$
\begin{gather*}
(-1)^{n-1} x^{(n-1)}\left(g^{*}(t)\right)\left[\sum_{i \in K_{g^{*}(t)}} \int_{i}^{t}\left(g_{i}(t)-g_{i}(s)\right)^{n-1} G_{L}{ }^{i}(s) d s-1\right] \tag{10}\\
\leq(-1)^{n} x^{(n-1)}(t)-\sum_{i \in K_{g^{*}(s)}} \int^{t} r\left(g_{i}(s)\right) G_{L}{ }^{i}(s) d s
\end{gather*}
$$

Choose T large enough so that $\varphi(T) \geq 0$. Then from (10) we have

$$
\begin{gather*}
\varphi(T)+(-1)^{n-1} x^{(n-1)}\left(g^{*}(T)\right)\left[\sum_{i \in K_{g^{*}(T)}} \int^{T}\left(g_{i}(T)-g_{i}(s)\right)^{n-1} G_{L}^{i}(s) d s-1\right] \tag{11}\\
\leq(-1)^{n} x^{n-1}(T)
\end{gather*}
$$

Thus, by (3), we have a contradiction to the fact that the left-hand side of (11) is nonnegative, while the right-hand side is negative. The proof is now complete.

REmARK 1. If L is the common bound of all bounded solutions of (1), as in Theorem $1, G_{L}{ }^{i}$ and f_{i} for $i \in K$ satisfy the conditions (2) and (3), then, by Theorem 1 every bounded solution of (1) is oscillatory.

Example 1. We see easily that

$$
y^{\prime \prime}(t)-2 y(t-\pi)=\cos t
$$

has $y(t)=\cos t$ as a bounded oscillatory solution. Here

$$
\begin{gathered}
r(t)=-\cos t, \quad G(s)=2 \\
\int_{t-\pi}^{t} r(g(s)) G(s) d s=4 \sin t, \liminf _{t \rightarrow \infty} \int_{t-\pi}^{t}(t-s) d s=\frac{\pi^{2}}{4}>1
\end{gathered}
$$

Example 2. Consider the following equation

$$
y^{\prime \prime}(t)-2 y(t-\pi)=\sin t
$$

which has $y(t)=\sin t$ as a bounded oscillatory solution. Here

$$
r(t)=-\sin t, \quad G(s)=2, \quad \int_{t-\pi}^{t} r(g(s)) G(s) d s=0
$$

Similarly, we can prove the following theorem.
Theorem 2. Let the conditions (a), (d) hold. Assume that for any $L>0$, there exist a nonempty set of indices K as in Theorem 1 and functions $G_{L}{ }^{i} \in$ $C\left[R^{+}, R^{+}\right], i \in K$ such that (2), (3) hold. Then, every bounded solution of (1) is oscillatory.

Corollary 1. Assume that $f_{i}\left(t, u, v_{i}\right)$ in (1) for $i=1,2, \ldots, m$ are continuously differentiable with respect to u and v_{i}, and

$$
\begin{equation*}
f_{i}(t, u, v)=\frac{\delta f_{i}}{\delta u}(t, 0,0) u+\frac{\delta f_{i}}{\delta v_{i}}(t, 0,0) v_{i}+F_{i}\left(t, u, v_{i}\right) \tag{12}
\end{equation*}
$$

with $\sum_{i=1}^{m} \frac{\delta f_{i}}{\delta u}(t, 0,0), \sum_{i=1}^{m} \frac{\delta f_{i}}{\delta v_{i}}(t, 0,0)$ are nonnegative and continuous functions on R^{+}and $F_{i}\left(t, u, v_{i}\right)$ for $i=1, \ldots, m$ satisfies the conditions $(a)-(c)$. Let

$$
\liminf _{r \rightarrow \infty} \sum_{i \in K} \int_{g^{*}(t)}^{t}\left(g_{i}(t)-g_{i}(s)\right)^{n-1} \frac{\delta f_{i}}{\delta v_{i}}(s, 0,0) d s \geq 1
$$

where $g^{*}(t)=\max _{i \in K}\left\{g_{i}(t)\right\}$. Then every bounded solution of (1) is oscillatory.
Proof. For any $L>0$, set $G^{i}(t)=\frac{\delta f_{i}}{\delta v_{i}}(t, 0,0)$ for $i \in K$. Obviously (1) satisfies the condition (2) in view of (12). Thus Theorem 2 implies the conclusion of this corollary is true.

REFERENCES

[1] G. Ladas, G. Ladde and J. S. Papadakis, Oscillation of functional differential equations generated by delays, J. Differential Equations, 12 (1972), 385-395.
[2] G. Ladas, V. Laksmikantham and J. S. Papadakis, Oscillation of higher-order retarded differential equations generated by the retarded argument, University of Rhode Island, Technical Report No 20, January 1972.
[3] G. Lade, Oscilations of nonlinear functional differential equations generated by retarded actions, Delay and Functional Differential Equations and Their Applications (K. Schmitt, Ed.), pp. 355-368.
[4] B. Singh, Impact of delays on oscillation in generol functional equations, Hirochima Math. J. 5 (1975), 351-361.
[5] Y. G. Slicas and V. A. Staikos, The effect of retarded actions on nonlinear oscillations, Proc. Amer. Math. Soc., 46 (1974), 259-264.

Department of Mathematics
National Central University
Chung-Li, Taiwan

[^0]: ${ }^{1}$ This research was supported by the National Science Council.

