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A NOTE ON SETS OF CONSTANT WIDTH

Sini�sa Vre�cica

Abstract. We prove here that each convex set in Euclidean space can be extended to a
set of constant width having the same diameter and being contained in same Jung's ball. We also
prove a characterization of the sets of constant width, which gives the answer to a problem of
F. A. Valentine.

Introduction. In this note, we prove that each convex set C in Euclidean
space can be extended to a set of constant width having the same diameter and
being contained in the Jung's ball of the set C. An inequality between the radii of
the corresponding Jung's ball and the inscribed ball and the diameter of the set C
is proved.

In the third part of this note, we prove a characterization of the sets of
constant width whose specialization gives the answer to a problem of F. A. Valentine
[3., Problem 12.6.].

Our terminology and notations are according to F. A. Valentine [3]. Note
that Jung's ball of the convex set C is the ball of the smallest diameter containing
C. A set of constant width in a Minkowski space is de�ned in the usual manner, as
a compact convex set for which every two parallel support hyper-planes are at the
same distance apart. A complete set in a Minkowski space is a subset of the space
whose each superset is of bigger diameter. In case of Euclidean spaces the class of
complete sets and the class of sets of constant width coincide.

2. Theorem 1. Let C be a set of diameter d in Euclidean space En and

K(x;R) its Jung's ball. Then, there is a set B of constant width d such that

C � B � K(x;R):

The author recently proved that it could be required for the set B (if diamC < 2R) to
satisfy the equality B \ S(x;R) = �C \ S(x;R) too (S(x;R) being the sphere of radius R about
the center x). The proof will be published in the following paper.
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Proof. Consider the family

F = fA j C � A ^ A � K(x;R) ^ diamA = dg

and the inclusion relation as an ordering on F . The family F is non-empty, because
C is an element of F . Every chain in F has an upper bound, because the union of
the elements of each chain in F is again an element of F . So by Zorn's lemma the
family F has at least one maximal element. Let B be a manimal element of F . We
shall prove that B is a set of constant width. Suppose the contrary and consider a
set B0 of constant width d, which contains B. The set B0 is not contained in the
ball K(x;R) because of maximality of the set B in the family F

Let z be one of the farthest points of B0 from the point x and let y be a point
on the line through the points x and z chosen so that x is between z and y and that
kx� yk = d� R. Because of ky � zk = ky � xk+ kx� zk = d� R+ kz � xk > d,
it follows that y 62 B0. Then, y 62 B0 implies y 62 B. Because of d � 2R we have
kx� yk = d�R � R and y 2 K(x;R). For u 2 B we have u 2 B � K(x;R) what
implies ky � uk � ky � xk+ kx� uk � d�R+R = d.

So, we have for the set B0 = conv (B [ fyg)

C � B � B0 and B0 � K(x;R) and diamB0 = d:

Hence, B0 2 F what contradicts the maximality of B. Hence, B is a set of constant
width, which was to be proved.

Let us note that the same arguments would show the validity of Theorem 1.
in case of a Minkowski space if the term "set of constant width" is replaced by the
term "complete set", i.e. it holds

Proposition 1. Let C be a set of diameter d in Minkowski space Ln and
K(x;R) one of the balls of the smallest diameter containing C. Then, there is a
complete set B of diameter d such that

C � B � K(x;R):

Applying the Theorem 1, we give a simple proof of the following statement.

Corollary 1. Let C be a subset of En of diameter d with the radii of its
Jung's ball and the inscribed ball being R and r respectively. Then, the inequality

r � d�R

holds.

Proof. Let B be a set of constant width d such that

C � B � K(x;R);
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whereK(x;R) is the Jung's ball of the set C, and let r0 be the radius of the inscribed
ball of the set B. Then, by Theorem 53. in [2], the inequality

r � r0 = d�R

holds, which was to be proved.

3. Theorem 2. A compact convex body B in a Minkowski space Ln is the

set of constant width if and only if for each pair of interior points x; y 2 intB,

there is a set C of constant width such that x; y 2 bdC and C � intB.

Proof. Let B be a set of constant width. Let x; y 2 intB. There is a set B0

homothetic to B with y being the center of homothety such that x 2 bdB0. There
is now a set C homothetic to B0 with x being the center of homothety such that
x; y 2 bdC and C � B0 � intB.

Let B be a compact convex body which is not the set of constant width and
diamB = d. Then, there is a hyperplane H such that w(H) = d0 < d(w(H)
being the distance between the two parallel hyperplanes of support to B which are
parallel to H). Because of diamB = d, there exist points x; y 2 intB such that
kx� yk > d0. Then, every set of constant width which contains the points x and y
has the width bigger then d0 and it can not be contained in the set B.

Remark. From the �rst part of the proof of Theorem 2. it is easy to see that
the set C of constant width is homothetic to B. Hence, we shall have following

Proposition 2. Let B0 be any set of constant width in Euclidean space
En:A compact convex body B in En is a set similar to B0 if and only if for each pair
of points x and y, being both either interior or exterior points of B, there exists a
set C similar to B0 such that x and y belong to bdC and the sets C and B have
disjoint boundaries.

Proof. Let B be a set of constant width similar to B0 and let x and y be
the exterior points of B.

If the sets B and [x; y] are disjoint, there is a hyperplane H which contains
the point x and strictly separates the set B and the point y or contains the point
y and strictly separates the set B and the point x. Let, for example, H contains
x and strictly separates B and y. Then, there exists a set B, congruent to B such
that x 2 bdB1 and H is a hyperplane of support to B1 and y belongs to the interior
of the cone of support to B1 at the point x. So, there is a set C homothetic to B1

with x being the center of homothety, and thus similar to B0, such that x; y 2 bdC

and C \ B = ; .

If the sets B and [x; y] are not disjoint, then there is a set B1 homothetic to
B with an interior point of B being the center of homothety such that x 2 bdB1

and y 62 intB1 or y 2 bdB1, and x 62 intB1. Let be x 2 bdB1 and y 62 intB1.
Because of B \ [x; y] 6= ; the point y belongs to the interior of the cone of support
to B1 at the point x and so there is now a set C homothetic to B1 with x being
the center of homothety such that x; y 2 bdC and B � intC holds.
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According to Theorem 2., that is all what we had to prove.

When the set B'is a ball, Proposition 2. gives one possible generalization
of Proposition 12.14 in [3.], while Theorem 2. is a further generalization of this
proposition, and is a solution of Problem 12.6 from [3].
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