
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie, tome 29 (43), 1981, pp. 283{288

A NOTE ON STARSHAPED SETS

Sini�sa Vre�cica

Abstract. We �nd the smallest Lipschitz constant for the radial projection of the unit
sphere on the boundary of a compact star-shaped set containing the origin in the interior of its
convex kernel. We also �nd the least upper bound of the upper outer surface area in the sense of
Minkowski of the boundary of a compact star-shaped set contained in the unit ball and containing
a concentric ball of radius a (0 < a � 1) in its convex kernel.

1. Introduction. In this note we shall by S, B, � denote the unit sphere,
the unit ball and the origin of the Euclidean space En respectively.

In [5., Problem 3.2.] F. A. Valentine posed the question of �nding the smallest
Lipschitz constant for the function de�ned by f : S ! E1, f(x) = kf�x j � >
0g \ bdKk, where K is a compact star-shaped set in Euclidean space En whose
convex kernel C has a nonempty interior and � 2 intC. In [4.] F. A. Toranzos
solved this problem. In the second part of this note we shall determine the smallest
Lipschitz constant for the function f : S ! bdK, f(x) = f�x j � > 0g \ bdK. Of
course, the function f is well de�ned.

In the third part of this note we shall determine the least upper bound of the
upper outer surface area in the sense of Minkowski of a compact star-shaped set
contained in the unit ball and containing a concentric ball of radius a (0 < a � 1)
in its convex kernel. This will give an answer to a question posod by Z. A. Melzak
[3., Problem 25]. Another proof of this statement is also given in the special case
n = 2, using the estimation of Lipschitz constant.

2. Theorem 1. Let K be a compact star-shaped set in Euclidean space En
whose convex kernel C has a nonempty interior and � 2 intC. Let us denote M =
maxx2K kxk, and m = maxfr j K[�; r] � Cg. Then the function f : S ! bdK,

f(x) = f�x j � > 0g \ bd�K is Lipschitzian on the unit sphere S and the smallest

Lipschitz constant is M2=m.
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Proof. De�ne a function g : S �Sn�! R, g(x; y) = kf(x)� f(y)k=kx� yk.
We shall prove thatM2=m is an upper bound for g(x; y). Without lost of generality,
we can suppose kf(x)k � kf(y)k.

Consider, �rst, the case when ^x�y = �, where � is the �xed angle and
0 < � � �. Then, kx� yk is �xed too.

When the angle ^�f(x)f(y) is �xed; g(x; y) has the greatest value when
kf(x)k = M ; and when kf(x)k is �xed, g(x; y) has the greazest value when the
angle ^�f(x)f(y) attains one of its extremal values.

a) [f(x); f(y)] \K[�;m] 6= ;
Let z = f�f(y) j � > 0g \ S(�;m).

The relation ^�zf(x) � �=2 holds, so that g(x; y) has the greatest value when the
angle ^�f(x)f(y) attains its maximal value, i.e. when kf(y)k = kf(x)k and then
we have

g(x; y) = kf(x)k �M �M2=m

b) [f(x); f(y)] \K[�;m] = ; ) arc sin(m=M) � ^�f(x)f(y) � ���
2

(i) ^�f(x)f(y) = (� � �)=2) g(x; y) = kf(x)k �M �M2=m

(ii) ^�f(x)f(y) = arc sin(m=M)

Let us denote u = f(x)f(y) \K[�;m] and � = ^f(x)�u = arc cos m
M
. Then we

have

g(x; y) =

p
M2 �m2 �m tg (� � �)

2 sin(�=2)

=

p
M2 �m2 �m(

p
M2 �m2 �m tg�)=(m+

p
M2 �m2 tg�)

2 sin(�=2)

=
M2tg�

2 sin(�=2) � (m+
p
M2 �m2 � tg�)

=
M2

p
1 + tg 2(�=2)

m+ 2
p
M2 �m2 � tg (�=2)�m � tg 2(�=2)

Put tg (�=2) = t(0 < t � p
M2 �m2=m)

g(x; y) =
M2

p
1 + t2

M + 2 � pM2 �m2 � t�m � t2 = g0(t)

g00(t) =M2m
t3 + 3t� 2

p
M2 �m2=mp

1 + t2(m+ 2
p
M2 �m2 � t�m � t2)2

h(t) � t3 + 3 � t� 2 �
p
M2 �m2=m) sign g00(t) = signh(t)

We have h0(t) = 3t2 + 3 > 0 and h(0) < 0.
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There is a unique point t0 > 0 such that h(t0) = 0. On (0; t0)g0 is decreasing

and on (t0;
p
M2 �m2=m)g0 is increasing. The greatest value of g0(t), for 0 < t �p

M2 �m2=m, is then limt!0+ g0(t) = g0(0) or g0(
p
M2 �m2=m). But,

g0(0) =M2=m and g0(
p
M2 �m2=m) =M �M2=m:

Hence we have proved that g(x; y) �M2=m holds, for arbitrary angle �(0 <
� � �). Hence we have

kf(x)� f(y)k � (M2=m) � kx� yk

From the given proof it is easy to see that supfg(x; y) j x, y 2 S, x 6= yg =
M2=m, when bdK contains a segment [x; y] of line p such that kxk = M and
d(�; p) = m. In particular, such an example is the following K = conv (K[�;m] [
fxg), where kxk =M > m.

3. In [3.] Z. A. Melzak posed the question of �nding the least upper bound of
the surface area of the boundaiy of a compact star-shaped set K � En contained
in a ball of radius 1 and containing a concentric ball of radius a (0 < a � 1) in its
convex kernel. In this note we shall determine the least upper bound of the upper
outer surface area in the sense of Minkowski of the boundary of such sets.

The upper outer surface area in the sense of Minkowski is de�ned by

�A+(K) = lim
"!0+

(V (K + "B)� V (K))="

and the surface area in the sense of Minkowski is

A(K) = lim
"!0

(V (K + "B)� V (K))=";

if this limit exists. If there exists the surface area in the sense of Minkowski of the
boundary of some set, then it, obviously, coincides with the upper outer surface
area of the boundary of this set. In the case of a polytope (not necessarly convex)
or a convex set, this limit exists and the surface area in the sense of Minkowski
coincides with a usual meaning of the surface area (see [2]). So, it is enough to
determine the least upper bound of the upper outer surface area in the sense of
Minkowski of those sets.

Theorem 2. Let B1 and B2 be two concentric balls in Euclidean space En,
B1 of radius 1 and B2 of radius a (0 < a � 1). A compact set K is contained in

B1 and is starshaped at every point of B2. Then the least upper bound of the upper

outer surface area in the sense of Minkowski of the boundary of K is A(B)=a.

Proof. Without lost of generality, we can suppose that B1 is the unit ball
B. First, we shall prove the inclusion K + "B � (1 + "=a)K. Let x 2 (K + "B)nK
and [�; x]\ bdK = fyg, and z 2 K such that d(z; x) � ". Let us denote with p the
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line through y and z. Then p\ intB2 = ;, since y is the boundary point of K, and
so d(�; p) � a. Also d(x; p) � d(x; z) � ". Hence, we have

d(x; y) =
d(x; p)

d(�; p)
d(�; y) � "

a
d(�; y)

d(�; x) �
�
1 +

"

a

�
d(�; y)

K + "B �
�
1 +

"

a

�
K

Using the well known equality nV (B) = A(B) we get

�A+(K) = lim
"!0+

V (K + "B)� V (K)

"
� lim

"!0+

((1 + "=a)n � 1)V (K)

"

=
nV (K)

a
� nV (B)

a
=
A(B)

a
:

Now, we shall prove, that there is a polytope with the surface area arbitrary
close to A(B)=a, satisfying the conditions of the theorem, what will end the proof.
We can take here the surface area of the boundary of a polytope and of sphere,
which is the boundary of the convex set, in its usual meaning, because it coincides
with the surface area in the sense of Minkowski for these sets. Also, we shall take
the same symbol for these two meanings of the surface area. So, for example, A(B)
and A(S) both denote the surface area of the unit sphere.

Let FÆ be a �nite Æ-net for a sphere S. For every point p 2 FÆ , let �p be
a simplex with p as a vertex and such that the faces which have p as a vertex are
congruent one to each other, and the hyperplanes of those faces support B2. Let
us choose other vertices of �p to be the nearest points to the origin � on the lines
which ate the intersections of those supporting hyperplanes of B2. Then, for every
real positive number ", there is Æ > 0 such that K" = B1�" [ ([f�p j p 2 FÆg) is a
polytope whose each face containing p is contained in a hyperplane supporting B2

and such that B1�" � K" � B.

Let L be a triangulated boundary of K". For each simplex V of L let V 0 be a
simplex whose vertices are thc radial projections of the vertices of V on S, and let
K 0 be a set bounded by those simplices. For each simplex V in L the inequality

A(V ) � (1� ")n�1
1

cos'
A(V 0);

holds, where ' is the angle between the hyperplanes of V and V 0. Then, the angle
between the perpendiculars on those hyperplanes through the origin is also ' and
we have

A(V ) � (1� ")n�1
1� "

a
A(V 0) =

(1� ")n

a
A(V 0)

A(K") � (1� ")n
1

a
A(K 0) � (1� ")n

1

a
A(convK 0)! A(B)=a; "! 0:
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So, for " small enough, A(K") is arbitrary close to A(B)=a.

Remark. In the same way we can prove, for " > 0, K � "B � (1� "=a)K,
where K � "B = fx 2 K j d(x; bdK) � "g. So, we have also

�A�(K) = lim
"!0

�

(V (K + "B)� V (K))=" � A(B)=a

Hence, A(B)=a is also the least upper bound of the upper inner surface area in the
sense of Minkowski of bdK.

Applying Theorem 1. we shall give another proof of the above statement in
the special case n = 2. This time, we shall use usual de�nition of a length of a
curve in E2.

Proposition 1. Let B1 and B2 be two concentric solid circles in Euclidean
plane E2, B1 of radius 1 and B2 of radius a (0 < a � 1). A compact set K is
contained in B1 and is star-shaped at every point of B2. Then the least upper
bound of the length of the boundary of K is 2�=a.

Proof. Without lost of generality, we can suppose that the origin is the
center of the solid circles B1 and B2. Let x1; x2; . . . ; xn 2 bdK be the ver-
tices of a closed, polygonal line in succesive order, i.e. such that the angles
^x1;�x2;^x2�x3; . . . ;^xn�x1 have the same orientation. Let f be as in The-
orem 1. de�ned function. Then the points f�1(x1); f

�1(x2); . . . ; f
�1(xn) are the

vertices of the closed, convex, polygonal line inscribed in B1. Then by Theorem 1.
we have

kx2 � x1k+ kx3 � x2k+ � � �+ kxn � xn�1k+ kx1 � xnk
= kf(f�1(x2))� f(f�1(x1))k+ � � �+ kf(f�1(x1))� f(f�1(xn))k
� (kf�1(x2)� f�1(x1)k+ � � �+ kf�1(x1)� f�1(xn)k)=a � 2�=a

Let x1; x2; . . . ; xn be now the vertices of a regular n-gon inscribed in S. Let
us put

Kn = con v(fx1g [ B2) [ con v(fx2g [ B2) [ � � � [ con v(fxng [ B2):

Then the boundary of Kn is polygonal line with 2n equal line segments. Let one
of these segments is [x1; y1]. Then

kx1 � y1k =
p
1� a2 � a

p
1� a2=a� tg (�=n)

1 + (
p
1� a2=a) � tg (�=n) =

tg (�=n)

a+
p
1� a2tg (�=n)

Then, the length of this polygonal line is

pn = 2n
tg (�=n)

a+
p
1� a2 � tg (�=n) = 2�=a

tg (�=n)

�=n

1

1 + (
p
1� a2=a) � tg (�=n)

pn ! 2�=a; n!1
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Hence, Kn is a sequence of compact sets satisfying the conditions of the
proposition, whose length of the boundary converges to 2�=a. So, 2�=a is the least
upper bound of the length of the boundary of such sets.
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