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Abstract. We introduce the notion of the spectrum of an in�nite denumerable graph,
with specially de�ned adacency matrix. Among other things, we investigate general properties of
spectra, spectra of bipartite graphs and in�nite graphs with �nite spectrum.

The main di�erence in comparision with spectra of �nite graphs is the non-uniqueness of
the spectrum of an in�nite graph.

1.Introduction.

1. { There were few attempts to extend the well developed theory of spectra
of �nite graphs [5] to the in�nite case (see, for example [2a]). Here and in the
forthcoming papers we o�er such an extension.

Thus our aim is to introduce and to investigate the spectrum of an in�nite
graph, and to obtain an analogue to the spectral theory of �nite graphs. But this
idea comes accross distinct diÆculties, and only a number of results rest valid for
in�nite graphs.

In this paper, we adopt without a special mention many general denotations
and de�nitions from the spectral theory of �nite graphs (for instance, bipartite
graphs, complete graphs, irreducible matrix, prenumeration of the vertex set i.e.
permutation of a graph etc).

Throughout the paper, under a graph G we always mean an in�nite denumer-
able graph with vertex set V (G) equal to the set N = f1; 2; . . .g of natural numbers,
which is in addition connected and undirected, and without loops or multiple edges.

1) { Communicated on VII Congress of Yugoslav Mathematicians, 6{12. 10. 1980, Be�ci�ci{
Budva.

2) { Izradu ovog rada je �nansirala Republi�cka zajednica za nau�cni rad SR Srbije.
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The adjacency matrix A(G) = [aij ] of G is an in�nite N �N matrih, which
is, in order to avoid several diÆculties, de�ned in a special way; we put

aij =

�
ai+j�2; if vertices i and j are adjacent;

0; if i and j are non-adjacent

where a is a �xed positive constant (0 < a < 1).

Next, since if i, j are adjacent, aij = ai�1aj�1, we can say that for any i 2 N
vertex vi supports the weight a

i�1, so that whole graph G is labelled or weighted.

As an essential di�erence in comparision with �nite case, we note that the
matrix A = A(G), at any relabelling of the vertex set V (G) transforms into a
matrix PAP 0, but the matrix P is never orthogonal (except in the trivial case).

Matrix A can be regarded as the matrix of a linear operator in a separable
Hilbert space H with an orthonormal basis fe1; e2; . . . g = feig and it is obviously
symmetric. In the sequel, we shall not di�er it from the corresponding linear
operator in space H .

We notice that in general case, spectrum of any bounded operator (or bounded
symmetric operator) in a Hilbert space, does not consists of the eigenvalues only,
so we need some auxilliary facts concerning symmetric Hilbert{ Schmidt operator
whose matrix has non-negative entries.

2. { Let A = [aij ] be any symmetric N �N matrix with complex entries such
that

n(A) =

0
@X

i;j

jaij j2
1
A
1=2

<1:

Then A is said to have �nite absolute norm n(A), it is bounded, and its
operator norm kAk � n(A).

The corresponding operator A is also called { Hilbert-Schmidt operator. It
is compact and self adjoint ([1], p.92), and its spectrum is the spectrum of the
matrix A.

Since A is compact and self-adjoint in H , its spectrum is real and consists
of a sequence �1; �2; �3; . . . of eigenvalues (each of �nite multiplicity), and of the
value � = 0 (which need not be an eigenvalue:

�(A) = f�1; �2; . . . g (j�1j � j�2j � . . . ):

Here, sequence f�ig is �nite or �n ! 0(n!1). The spectral radius r = r(A)
is equal to the maximal eigenvalue (and to the operator norm), r(A) = �1 = kAk.

Since j�nj � j�1j, the whole spectrum �(A) is concentrated in the interval
[�r(A); r(A)].

If � = �i is an eigenvalue of A, then N(A � �I) = fx 2 H jAx = �xg is the
corresponding proper subspace of the operator A.
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If now ffvg(v 2 �) is any subset of vectors in H , then �L = �Lffv j v 2 �g is
the corresponding closed subspace of H generated by vectors fv 2 H .

Next if x is an arbitrary vector in space H; x =
P

xiei, i.e. x = (x1; x2; . . . )
>,

it is said to be positive (non-negative), or negative (non-positive), if all its coordi-
nates xi(i = 1; 2; . . . ) are of the corresponding kind. Its norm is kxk = (

P jxij2)1=2,
and then

x+ =

1X
i=1

jxijei; x� = �x+ = �
1X
i=1

jxijei:

We note that kx+k = kx�k = kxk.
As in the �nite case, a Hilbert-Schmidt operator A is called "irreducible" (in

the matrix sence), if there is no any coordinate space � = �Lfei1 ; ei2 ; . . . g, which is
invariant for A.

It is easy to see that the adjacency matrix A = A(G) of an in�nite graph G
is an irreducible operator i� the corresponding graph G is connected.

In the following theorem we quote some known facts from the theory of irre-
ducible Hilbert-Schmidt operators with non-negative entries (see [8] and [9]).

Theorem 1. { Let A = [aij ] be an irreducible Hilbert-Schmidt symmetric
operator with non-negative entries.

Then �1 = kAk is (maximal) eigenvalue of A, and it is simple. There is at
least one positive eigenvector corresponding to this eigenvalue �1 = r(A).

If � = �r(A) is the (minimal) eigenvalue of A, then it is is simple also. �

2. Spectra of in�nite graphs.

1. { Let G be any in�nite graph with adjacency matrix A. Then

n(A)2 =
X
i;j

a2ij �
X
i6=j

ai+j�1 = n(A0)
2 <1;

where n(A0) = a
p
2=(1� a2)

p
1 + a2 is the absolute norm of the adjacency matrix

A0 of complete graph K1, thus A is a Hilbert-Schmid operator in the space H .

Then, spectrum �(G) of G is de�ned by �(G) = �(A), thus as the spectrum
of the corresponding Hilbert-Schmidt operator A = A(G).

Applying Theorem 1, we immediately have following basic properties of the
spectrum of an in�nite graph G.

Theorem 2. {Spectrum �(G) of any in�nite graph G consists from a se-
quence of real eigenvalues �1 = r(G); �2; �3; . . . , and of zero (�n ! 0; n ! 1),
each non-zero �n has a �nite multiplicity.

The spectrum

�(G) = f�1; �2; . . . ; 0g
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is concentrated in the interval [�r; r], where r = r(G) is the index (spectral radius
of G.

The maximal eigenvalue � = r(G) is simple.

If � = �r(G) is the (minimal) eigenvalue of G, it is simple too. �

In such a way, we conclude that spectra of all considered in�nite graphs lie in
the interval D = [�b;+b], where b = a

p
2=(1� a2)

p
1 + a2. It is an open question

to small this interval as much as possible.

Remark. { It is obviously that the spectrum �(G) of G depends on the
constant a(0 < a < 1) and of the way of its vertices. In a general case, it changes
under relabelling of the vertex set V (G) = N .

But in spite of these diÆculties, there is some number of spectral properties
of the graph G which does not depend on a constant a and of the way of labelling
(for instance, the property { to have the �nite spectrum). It is naturally to call
them { pure spectral properties of graph G. Hence, to have �nite spectrum (or to
have in�nite spectrum) { is a pure spectral property of G.

It is obviously of great interest to �nd as many as possible such (pure spectral)
properties of graph G.

2. { Consider especially relabelling (prenumeration) of the vertex set V G of
a graph G, which corresponds to an arbitrary permutation ! = (!(1); !(2); . . . ) of
the set N ; let the new graph so obtained be G1.

If A1 is the adjacency matrix of the graph G1, let de�ne a matrix P = [pij ]
(permutation matrix) by

pij =

�
ai�!(i); j = !(i)

0; j 6= !(i)
;

then A1 = PAP 0.

It can be easily checked that

PP 0 = diag (a2�2!(1); a4�2!(2); . . . );

P 0P = diag (a2!
�1(1)�2; a2!

�1(2)�4; . . . );

so that matrix P is never orthogonal (except in the trivial case).

It is the reason that we lose the property �(G1) = �(G), property of invari-
atneess of spectrum at any prenumeration of the vertex set. �

3. { Now add a new adge to the graph G; let the new graph be G1 (we note
that the vertex set V G1 is assumed to be indexed in the same way as V G).

Proposition 1. { Spectral radius r(G) < r(G1).

Proof. { Let A = [aij ], B = [bij ] be adjacency matrices of G and G1

respectively. Then aij � bij(i; j 2 N), and there is just one pair i0; j0(i0 < j0) such
that

ai0j0 = 0 < bi0j0 = ai0+j0�2:
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If x(kxk = 1) is a proper vector of A corresponding to the eigenvalue r(G) =
kAk, we can suppose it is positive, so that

r(G) = hAx; xi =
X
i;j

aijxixj <
X
i;j

bijxixj =

= hBx; xi � kBk = r(G1); q.e.d.�

Corollary. { If r0 = r(G0) is the spectral radius of complete graph G0 =
K1, then the spectrum �(G) of every graph G lies in the intervale (�r0; r0). �

Moreover we note that for complete graph K1, it holds the strong inequlity
r0 = kA0k < n(A0). Indeed, equality kAk = n(A) holds for an symmetric Hilbert-
Schmidt matrix A, i� the operator A is one dimensional, which is one dimensional,
which is impossible for any adjacency matrix A.

3. Spectrum of the complete graph K1.

Theorem 3. { Spectrum of the complete graph G = K1 consists of an
in�nite seguence of simple eigenvalues �0; �1; �2; . . . where

�0 > 0; �1 < �2 < �3 < . . . < 0:

It holds:

�0 > a2;1)

�n 2 (�a2n�2;�a2n) (n = 1; 2; . . . );2)

�0 = j�1j+ j�2j+ . . .3)

Proof. { Let � be any eigenvalue of G; x = (x1; x2; . . . )
> 6= 0 be a corre-

sponding eigenvector. Then from Ax = �x, we �nd:

(�)
�
f = x1 + ax2 + a2x3 + � � � = (�+ 1)x1

anf = (�+ a2n)xn+1 (n = 1; 2; . . . )

Using condition

kxk2 =
1X
i=1

x2i <1;

it can be eecily proved that � 6= 0 and � 6= �a2n�2(n = 1; 2; . . . ).

So we obtain:

(1) xn = (�+ 1)an�1x1=(�+ a2n�2) (� 2):
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Substituting xn in the �rst relation in (�), we get

(�+ 1)x1

1X
n=1

a2n=(�+ a2n) = �x1:

Since x1 6= 0, we conclude that all eigenvalues of G satisfy the equation

(2) g(�) =

1X
n=1

a2n=(�+ a2n) = �=(�+ 1):

We observe that, all roots of (2) are eigenvalues of G because

x2n =
(�+ 1)2a2n�2x21
(�+ a2n�2)2

� (1 + 1=�)x21a
2n�2(jaj < 1);

so the series
P

x2i converges.

Next, since it can be checked that g0(�) < 0 in all intervals (�1;�1),
(�1;�a2); (�a2;�a4); . . . ; (0;+1), the function g(�) is strongly monotonically de-
creasing in all these intervals.

On the other side, function h(�) = �=(� + 1) is strongly monotonically in-
cressing in intervals (�1;�1), (�1;+1), so we easily conclude that equation (2)
has exactely one root in each of the intervals In = (�a2n�2;�a2n), I0 = (0;+1).
Moreover, since the cooresponding proper vector is always unique de�ned, all these
eigenvalues are simple.

Next, since g(a2) > h(a2), we get that �0 > a2.

To prove the equality

�0 =
1X
n=1

j�nj;

let us �rst observe that in view of the estimation k�nk � a2n�2(n = 1; . . . ), the
series

o

1X
n=0

j�nj <1;

converges.
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But this is the characteristic property of so called nuclear operators, whose
class is denoted by L1(H) ([7], p. 88).

But then, spectral trace of A coincides to its matrix trace ([7], p. 127); i.e.

1X
n=0

�n =

1X
n=1

ann = 0;

thus

�0 =
1X
n=1

j�nj; q.e.d. �

Problem. { Does for every in�nite graph G, the adjacency matrix A is a
nuclear operator, and consequently equality

1X
n=0

�n = 0

holds. �

4. Spectra of bipartite graphs.

Theorem 4. { Spectrum of any (connected) bipartite graph G is symmetric
with respect to zero.

Proof. { Let the set N = V G of vertices be devided into two subsets
N1 = V G1; N2 = V G2, where N1, N2 are internel stabil:

aij = 0 (i; j 2 N1; or i; j 2 N2):

If we put: H1 = �Lfei j i 2 N1g, H2 = �Lfej j j 2 N2g, then H1, H2 are closed
mutually orthogonal subspaces of the space H , and H = H1 �N2.

Then the operator A in the permutated basis fei j i 2 N1g [ fej j j 2 N2g
has the form

A =

�
0 B0

B 0

�
:

Now Ax = �x(� 2 R; x 6= 0), where x = x1 + x2(x1 2 H1; x2 2 H2) is
equivalent to �

0 B0

B 0

� �
x1
x2

�
=

�
�x1
�x2

�
;

or to:

(1)

�
Bx1 = �x2

B0x2 = �x1
:
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Suppose that � 6= 0 and observe that (1) implies x1 6= 0, x2 6= 0.

Then from (1),

(2) B0Bx1 = �2x1 (x1 6= 0):

Thus if � 6= 0 is an eigenvalue of A, relation (2) must be satis�ed.

Conversely, if � = �2 > 0 is any eigenvalue of B0B 2 B(H1) whose corre-
sponding eigenvector is x1, then de�ning

x0 = x1 +Bx1=
p
�;

x00 = x1 �Bx1=
p
�;

one obtain the mutually orthogonal eigenvectors of A corresponding to eigenvaluesp
� and {

p
� respectively.

We remark that B0B is a non-negative Hilbert-Schmidt operator in the sub-
space H1, so its spectrum �(B0B) consists from a sequence �1; �2; . . . of real eigen-
values such that �n ! 0(n!1), including zero (if H1 is in�nite dimensional).

Hence the spectrum of G is quite described:

�(A)nf0g = f�� j �2 2 �(B0B)n(0)g:�

{ We do not know does the converse true, i.e. is an in�nite graph G bipartite
if its spectrum is symmetric about zero.

We conjecture { no, but we have not any counter-example until now.

5. Spectrum of complete bipartite graph K(N1; N2).

Let G = K(N1; N2) be complete bipartite graph, where

N1 = fi1; i2; . . . g; N2 = fj1; j2; . . . g

(some of N1, N2 can be �nite too).

Theorem 5. { Spectrum �(G) is �nite,

�(G) = f0;�rg;

where

r =

sX
p

a2ip�2
sX

q

a2jq�2:

Proof. { We have aij = 0 if i = j, or if i, j 2 N1, or if i, j 2 N2, and

aij = ai+j�2; otherwise.
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If � is any eigenvalue of G, and x 2 N(A� I)(x 6= 0), we �nd from Ax = �x:

(1)

8>><
>>:

X
q

aipjqxjq = �xip (ip 2 N1)

X
p

ajrisxis = �xjr (jr 2 N2)

Hence:

aip�2
X
q

ajqxjq = �xip (ip 2 N1)(2)

ajr�2
X
s

aisxis = �xjr (jr 2 N2):(3)

If now H1, H2 have the same meaning as in the preceeding section, and
x = x0 + x00(x0 2 H1; x

00 2 H2), we easily �nd for � = 0:X
s

aisxis = 0;
X
q

ajqxjq = 0;

so that x0 is orthogonal to the vector a0 = (ai1 ; ai2 ; . . . ) in H1 and x00 is orthogonal
(in H2) to the vector a00 = (aj1 ; aj2 ; . . . ). Hence, x is an arbitrary vector from the
orthogonal complement �Lff1; f2g?, where f1 =

P
i biei; f2 =

P
i ciei and�

bip � aip ; bjq � 0;

cip � 0; cjq � ajq :

Thus � = 0 is an eigenvalue, and the corresponding proper subspace N(A) is
of codimension 2.

If next � 6= 0, then substituting xjr from (3) to (2), we �nd:

1

�2
aip�2(

X
q

a2jq�2)(
X
s

aisxis) = xip (ip 2 N1):

Where from we obtain

�2 =
X
p

a2ip�2
X
q

a2jq�2;

or �1;2; = �r, where

r =

sX
p

a2ip�2
sX

q

a2jq�2 =
p
l
p
1=(1� a2)� l;

l =
X

a2ip�2:
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For these values of �, corresponding eigenvectors are for example:

x =
X
p

xipeip +
X
q

xjqejq ; where

xip = aip�2=(
X
q

a2jq�2);

xjq = ajq�2=�:

Hence, spectum �(G) = f0;�rg, q.e.d. �
If specially, N1 = fig, we get that �(G) = f0;�rg, where

r = ai�1
p
1=(1� a2)� a2i�2:�

Remark. { It can be proved that for distinct partitions N1, N2, all the
graphs G = K(N1; N2) have di�erent spectra.

We do not know too, any non trivial example of two cospectral graphs, or of
any graph G whose some non-zero eigenvalue is not simple. �

6. Line graph of an in�nite graph.

Let G be an in�nite graph. Then as in �nite case, the line graph L(G) of G
is the graph whose vertices are edges of G1, with two vertices of L(G) { adjacent if
and only if the corresponding edges of G have one vertex in common.

If now gi = (vp(i); vq(i))(p(i) < g(i); i = 1; 2; . . . ), we introduce the vertex-
edge incidence matrix R = [rij ] of G de�ning

rij =

�
aj�1; i = p(j); q(j)

0; otherwise

Then:
Rei = rp(i)iep(i) + rq(i)ieq(i) =

= ai�1[ep(i) + eq(i)] (i = 1; 2; . . . ):

If now A and B are adjacency matrices for G and L(G) respectively, one can
derive the basic formula

(1) R0R = B + 2D ;

where D = diag (1; a2; a4; . . . ) ([4], p. 103).

Remark. { For regular graphs with �nite degree d = d(G), in general we
lose relation

RR0 = A+ dI:

1For our aim, it is not important the way of denumeration of vertices in L(G).
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It is the reason that we lose satisfactory results for total graph of a graph. �

We observe that the operator R 2 B(H) is not symmetric, but it is of �nite
absolute norm because

X
i;j

r2ij = 2

1X
j=1

a2j�2 = 2=(1� a2) <1:

Hence, R0R is a Hilbert Schmidt operator too. �

Theorem 6. { For every in�nite graph G, all spectral values � 2 �(L(G))
satisfy the ineguality � > �2.

Proof. { We have from (1),

B = A(L(G)) = R0R� 2 diag (1; a2; a4; . . . );

B + 2I = R0R+ 2diag (0; 1� a2; 1� a4; . . . ) � 0;

because R0R � 0, and

diag (0; 1� a2; 1� a4; . . . ) � 0:

Hence �(B + 2I) = �(B) + 2 � 0, so that � � �2 for every � 2 �(B).

We yet prove that � = �2 is not an eigenvalue of B = A(L(G)).

If oppositely, x is an eigenvector corresponding to � = �2, we would have

< R0Rx; x >= 0; kRxk2 = 0; Rx = 0;

ane Dx = 0, which implies that x = x1e1(x1 6= 0).

But then:

Rx = x1Re1 = x1[rp(1)1ep(1) + rq(1)1eq(1)] = 0;

which is impossible.

In this way, we have obtained the strong estimation � > �2 for every � 2
�(B). �

A problem. { Does for every " > 0, there exists an in�nite graph G such that
its minimal eigenvalue �m(G) 2 (�2;�2 + "). �

7. Graphs with �nite spectra.

It is an important question { when an in�nite graphG has the �nite spectrum.

Proposition 2. { Spectrum �(A) of a compact selfadjoint operator A 2
B(H) is �nite,

�(A) = f�1; . . . ; �p; 0g (�i 6= 0)
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if and only if its range R(A) is �nite dimension p.

Then � = 0 is an eigenvalue of A such that the corresponding proper subspace
N(A) is of codimension p. �

Here �1; . . . ; �p can be distinct or not, but their total number is p.

Next, since columns C1; C2; . . . of the adjacency matrix A are in accordance
with vectors Ae1; Ae2; . . . in H , we get that spectrum �(A) is �nite if and only if
the adjacency matrix A has just p linearly independent columns.

Hence, �(A) contains p non-zero eigenvalues i� A has exactely p linearly
independent columns.

Wherefrom we obtain the following.

Proposition 3. { Spectrum �(G) of a graph G consists of exactly p non-
zero eigenvalues (and zero), i� there at Ieast one minor of the adjacency matrix of
order p di�erent from zero, and all other minors of order p+ 1 are egual to 0. �

Furher, if spectrum �(G) of a graph G is �nite, and consists of p non-zero
eigenvalues �1; . . . ; �p, the operator A is obviously nuclear, i.e.X

i

j�ij <1; A 2 L1(H):

But then
P

�i = 0, so that

(1) �1 + �2 + � � �+ �p = 0 :

Remark. { If p = 2, we get that �2 = ��1, i.e. �(G) = f0;�rg(r = r(G)).

If p = 3, graph G has exactely one positive eigenvalue, and two negative
eigenvalue (�2; �3 < 0), so that �1 = j�2j+ j�3j. �

If spectrum �(G) is �nite, it is an important question too { how determine
it.

We assume that for instance, columns Ci1 ; . . . ; Cip(i1 < i2 < � � � < ip) are
linearly independent, and all other depend on them.

Then non-zero spectrum �(G)n0 coincides to the spectrum �(A jR(A)) of
operator A in �nite dimensional subspace R(A).

Theorem 7. { Non-zero eigenvalues �1; . . . ; �p of A are just roots of a
\characteristic eguation"

det(B � �I) = 0;

where B = [b1m] is a square p� p matrix, and8>>>><
>>>>:

bim =
1X
i=1

cliairm

Aei =

1X
i=1

cliAerl (i = 1; 2; . . . )
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Matrix B is regular and in general case non symmetric. �

We omit the proof.

Example. { Let G be complete bipartite graph Kfig;1. Then its adjacency
matrix is

A =

2
66664
0 a

�� a2 a3 . . .

a 0
�� 0 0 . . .

a2 0
���

a3 0
�� 0

� � � ��

3
77775

so that columns C1; C2 obviously form a basis in R(A).

We obtain c11 = c22 = 1; c12 = c21 = 0; C1i = 0(i � 3); c21 = ai�2(i �
3); b11 = b22 = 0; b12 = a; b21 = a=(1� a2), and

B =

"
0 a
a

1� a2
0

#
:

Then the eigenvalues are � = �ap1� a2. �

8. Graphs with two non-zero eigenvalues.

We solve here a tipical problem of reconstruction of (in�nite) graphs. Deter-
mine all graphs with a \small" number of non-zero eigenvalues (in case when this
number is two).

If graph G has two non-zero eigenvalues �1; �2, then as we have seen,

�(G) = f0;�rg; where r = r(G):

Theorem 8. {All graphs with two non-zero eigenvalues �r are the complete
bipartite graphs K(N1; N2).

Proof. { For simplicity, take that columns C1; C2 of matrix A are inde-
pendent, and all other are their linear combinations (the proof is quite similar in a
general case too).

We observe that a12 6= 0, because in the opposite case, we can conclude that
a1i = a2i = 0(i 2 N), thus C1 = C2 = 0 which is impossible.

If now Ci = pC1 + qC2(i � 3; p = pi; qi) we have that

a1i = qa; a2i = pa (p2 + q2 6= 0);

so that ai1 = qa, ai2 = pa, but then

aii = pai1 + qai2 = 2pqa = 0;
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so that p = 0 or q = 0.

Hence, every column of the adjacency matrix A is proportinal with C1 or
with C2. If now N1 = fi j Ci � C1g (including 1 too), and N2 = fi j Ci � C2g,
by reconstruction the matrix A, one can can easily conclude that in the basis
fei j i 2 N1g [ fej j j 2 N2g matrix A take the form

A =

�
0 P 0

P 0

�

where P is a N2 �N1 matrix whose all entries are distinct from zero.

Hence G = K(N1; N2), q.e.d. �

{ Finally, we only remark that spectral radii r = r(G) of all complete bipartite
graphs K(N1; N2) cover the open segment I = 0; d), where d = 1=2(1�a2), so that
their spectra cover the open segment (�d;+d). �

We conclude with three open questions which we have concerned throughout
the text.

1. { Does there exist two (non-isomorphic) isospectral graphs.

2. { Are the non-zero eigenvalues of every in�nite graph G simple.

3. { Is there any non-bipartite graph whose spectrum is zero-symetric.

4. { Are all operators A = A(G) corresponding to in�nite graphs { nuclear,
and then

1X
n=1

�n = 0:

Remark. As C. Godsil informed the author, recently B.D. Mc Kay in
paper \The expected eigenvalue distribution of a random labelled regular graph"
(Math. Reas. Reports Univ. Melbourne, rep. no{9 (1979), investigated the limits
of eigenvalues of a class of �nite regular graphs.
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