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Abstract. In the famous semigroup-theoretical paper of D. Rees (1940) the author intro-
duced a special congruence for semigroups and proved some fundamental isomorphism theorems.
We generalize the ideas of Rees to universal algebras and introduce the notion of Rees congruence
in a universal algebra. We prove an isomorphism theorem and apply it to study the notion of
Rees series in universal algebras; this is a generalization of the notion of normal series in group
theory. Further we study the structure of the set of all Rees congrunces and in the last part of
the paper we present some applications of this theory to algebras of polynomial functions.

1. Introduction

Let A be a nonempty set and 
 = fwi: i < o, o an ordinal numberg a
nonempty set of ni-ary operations on A. Then A = (A;
) is called a universal
algebra. We introduce a notion of a special of subalgebra of A.

Definition 1.1. Let M � A be a subalgebra of A, and for every n-ary op-
eration w 2 
 and every (a; b) 2M2 and x1; . . . ; xn�1 2 A the following condition
might hold:

(�)

8>>>>>>>>>>><
>>>>>>>>>>>:

!(a; x1; . . . ; xn�1); !(b; x1; . . . ; xn�1) 2M or

!(a; x1; . . . ; xn�1) = !(b; x1; . . . ; xn�1)

!(x1; a; . . . ; xn�1); !(x1; b; . . . ; xn�1) 2M or

!(x1; a; . . . ; xn�1) = !(x1; b; . . . ; xn�1)

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

!(x1; . . . ; xn�1; a); !(x1; . . . ; xn�1; b) 2M or

!(x1; . . . ; xn�1; a) = !(x1; . . . ; xn�1; b)

Then M is called a Rees subalgebra of A = (A;
).
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In the following proposition we generalize the wellknown semigroup-the-
oretical notion of Rees congruence to universal algebras.

Proposition 1.2. Let M be a Rees subalgebra of A = (A;
) and �M the
following binary relation on A:x � y(�M ):x; y 2 M or x = y. Then �M is a
congruence on A.

If � is a congruence on A with at most one non-singleton class M and M is
a subalgebra of A, then M is a Rees subalgebra and � = �M .

The proof of this proposition is obvious.

Remark 1.3. If the algebra A = (S; �) is a semigroup, then every semigroup
ideal I is a Rees subalgebra. But there are Rees subalgebras that are not ideals of
S. Let S be a semigroup without null and S� = S [ f0g with a � 0 = 0 � a = 0 for
every a 2 S�, then S is a Rees subalgebra of S� but not a semigroup ideal.

In Szasz (1968) Rees congruences on lattices (L;^;_) are studied; the author
proved, Theorem 1., p. 261, that an ideal I is a Rees subalgebra, if the following
condition holds:

a 2 L� I; b 2 I : a � b:

2. General theory of Rees congruence

In this chapter we study for an arbitrary Rees subalgebra M the Rees con-
gruence �M . First we prove an isomorphism theorem that formally looks like the
second isomorphism theorem in group theory.

Proposition 2.1. If M � A is a Rees subalgebra and T � A is a subalgebra
of A such that M \ T 6= ;, then M [ T is a subalgebra of A, too.

Proof: Obviously, nullary and unary operations preserve an arbitrary union
of subalgebras. Let ! be an n-ary operation, n � 2, and a = (a1; . . .an) 2 (M[T )n,
b 2 M [ T 6= ;. If a 2 Tn, then !(a) 2 T � M [ T . If a 62 Tn, then let a0

denote the vector obtained from a by substituting all its components from M with
b. Then a0 � a(�M ) componentwise, but a0 2 Tn, hence !(a0) 2 T . Because
of a � a(�M ) we have !(a) = !(a0) or !(a), !(a0) 2 M . In the �rst case we
obtain !(a) = !(a0) 2 T and in the second case !(a) 2 M ; and so in both cases
!(a) 2M [ T and the proposition is proved.

Theorem 2.2. Let M be a Rees subalgebra of A = (A;
) and T � A a
subalgebra of A such that M \T 6= ;. If A=M denotes the Rees factor algebra, of A
with respect to the congruence �M , then the following isomorphism can be stated:

T= [ T �=M [ T=M :

Proof: Under the condition of this theorem it is clear that �M\T is a
congruence on T , the restruction of �M on T , and similary �M is a congruence on
M [ T . Now obviously the two algebras T=M\T and M [ T=M are isomorphic.
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Definition 2.3. Let A = (A;
) be a universal algebra. Then a Rees series
of A is a �nite descending series

A = A0 � A1 � . . . � Ar = ;

such that A0; . . . ; Ar�1 are Rees subalgebras of A, Ar = ; and Ai+1 is properly
contained in the algebra Ai. We de�ne the factors of the Rees series to be the
Rees factor algebras Ai=Ai+1 for i = 0; . . . ; r � 1. The length of the Rees series is
the number of factors. A re�nement of a Rees series is any Rees series containing
every term Ai of the orginal series. Two Rees series are termed isomorphic if we
can put their factors in 1 � 1 correspondence so that corresponding factors are
isomorphic. Further we de�ne a composition series to be a Rees series without
proper re�nements.

Proposition 2.4. Let A = (A;
) be a universal algebra and S, T Rees
subalgebras of A such that S \ T 6= ;. Then S [ T is a Rees subalgebra, too.

Proof: Because of Proposition 2.1. S [ T is a subalgebra of A. Let ! be
an n-ary operation of A(n � 2) and x1; . . . ; xn�1 2 A and (a; b) 2 (S [ T )2 and
d 2 S \ T 6= ;. If a; b 2 S we obtain

!(a; x1; . . . ; xn�1); !(b; x1; . . . ; xn�1) 2 S or

!(a; x1; . . . ; xn�1) = !(b; x1; . . . ; xn�1); hence

!(a; x1; . . . ; xn�1); !(b; x1; . . . ; xn�1) 2 S [ T or

!(a; x1; . . . ; xn�1) = !(b; x1; . . . ; xn�1):

If a; b 2 T this results similary. Now let a 2 S, b 2 T ; we obtain a � d(�S) and
b � d(�T ). �S and �T are congruences, �S[T is an equivalence relation such that
�S , �T � �S[T ; therefore

!(a; x1; . . . ; xn�1) � !(d; x1; . . . ; xn�1) (�S)

!(b; x1; . . . ; xn�1) � !(d; x1; . . . ; xn�1) (�T );

and so

!(a; x1; . . . ; xn�1) � !(b; x1; . . . ; xn�1) (�S[T ):

Hence

!(a; x1; . . . ; xn�1); !(b; x1; . . . ; xn�1) 2 S [ T or

!(a; x1; . . . ; xn�1) = !(b; x1; . . . ; xn�1):

If a 2 T , b 2 S this results similary. So condition (�) of De�nition 1.1. can be be
veri�ed, therefore S [ T is a Rees subalgebra of A.
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Remark 2.5. We consider two groupids G1 and G2 de�ned by the following
multiplication tables:

G1 0 a b
0 0 0 0
a 0 a 0
b 0 0 b

G2 0 a e f
0 0 0 0 0
a 0 a 0 e
e 0 0 e e
f 0 e e f

The groupoid G1 shows that we cannot omit the condition S \ T 6= ; for
the Rees subalgebras in Proposition 2.4., because S = fag and T = fbg are Rees
subalgebras of G1 with S \ T 6= ;, but S [ T = fa; bg is not a Rees subalgebra of
G1.

We write S <
R
T , if S is a Rees subalgebra of T . Then the binary relation

<
R
is not transitive in general. We take the groupoid G2 and put S = fe; fg and

T = f0; e; fg; then S <
R
T , T <

R
G2, but S is not a Rees subalgebra of G2.

Lemma 2.6. Let A = (A;
) be a universal algebra and R, S two subalgebras
and R�, S� be Rees subalgebras of A such that R� \ S� 6= ;. Write

T = R� [ (R \ S); T � = R� [ (R \ S�)

U = S� [ (R \ S); U� = S� [ (R� \ S):

Then T �, U� are Rees subalgebras of T , U , respectively, and

T=T� �= U=U�

Proof: Because of the condition R� \ S� 6= ; and Proposition 2.1. T =
R� [ (R \ S) is a subalgebra T � = R� [ (R \ S�) is a Rees subalgebra of T ; since
R \ S� <

R
A, R� <

R
A, we obtain R� [ (R \ S�) <

R
A by Proposition 2.4.; therefore

T � <
R
T , because T � A. Similary we obtain that U� is a Rees subalgebra of U .

We obtain

T � [ (R \ S) = (R� [ (R \ S�)) [ (R \ S) = R� [ (R \ S) = T:

Hence by Theorem 2.2.,
T=T� �= R \ S=T�\(R\S):

But
(R \ S) \ T � = (R� \ S) [ (R \ S�);

hence
T=T� �= R \ S=(R�\S)[(R\S�):
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U , U� are obtained from T , T � by interchanging R, R� with S, S�. Hence as above
we may prove that

U=U�
�= R \ S=(R�\S)[(R\S�);

and so
T=T� �= U=U� :

Theorem 2.7. Let A = (A;
) be a universal algebra and

A = S0 � S1 � . . . � Sr = ;

A = T0 � T1 � . . . � Ts = ;

two Rees series with Si \ Tj 6= ; for i = 0; . . . ; r � 1 and j = 0; . . . ; s � 1. Then
the two series have isomorphic re�nements.

Proof: The required ra�nements are, respectively,

A = S00 � S01 � . . . � S0s = S10 � . . . � Srs

A = T00 � T10 � . . . � Tr0 = T01 � . . . � Trs;

where
Sik = Si+1 [ (Si \ Tk); Tik = Tk+1 [ (Tk \ S):

De�ne R� = Si+1, R = Si, S
� = Tk+1, S = Tk; then R� is a Rees subalgebra of R

and S� is a Rees subalgebra of S and R� \ S� 6= ; (i < r; k < s). So we can apply
Lemma 2.5. and obtain:

Sik=Sik+1
�= Tik=Ti+1k ;

and so the above re�nements are isomorphic.

Corollary 2.8. Let A = (A;
) be a universal algebra, such that S \T 6= ;
for all subalgebras S, T of A. Then all composition series of A are isomorphic.

Remark 2.9. The condition S \ T 6= ;, for all subalgebras S, T , holds if A
contains nullary operations.

In the following let R(A) denote the set of all Rees subalgebras of A and the
empty set ;. Then the inclusion � de�nes a lattice ordering on R(A) with the
operations ^, _ de�ned by

M ^N = inf(M;N) =M \N

M _N = sup(M;N) for M;N 2 R(A):

For every subset T � A we introduce the Rees subalgebra hT i generated by T ; this
is the algebra hT i = \

T�M2R(A).

A Rees subalgebra M is called �netely generated in R(A), if a �nite set
T = fa1; . . . ; ang exists such that M = hT i.
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Now every n-ary operation ! 2 
 de�nes an n-ary operation !� on R(A) by

!�(M1; . . . ;Mn) = hf!(x1; . . . ; xn):x1 2M1; . . . ; xn 2Mngi

for M1; . . . ;Mn 2 R(A):


� denotes the set of all such operations !�.

Proposition 2.10. If A = (A;
) is a universal algebra, then (R(A);
�;�)
is a lattice-ordered algebra: so

!�(M1; . . . ;Mn) � !�(N1; . . . ; Nn)

for M1 � N1; . . . ;Mn � Nn and all operations !� 2 
�.

G3 a b c
a a c b
b c b a
c b a c

If S \ T 6= ; fon all Rees subalgebras S, T , the lattice R(A) is distributive;
generally this does not hold (see the groupid G3).

Theorem 2.11. Let A = (A;
) denote a universal algebra and S a proper
Rees subalgebra of A. If A is �nitely generated in R(A), then a maximal proper
Rees subalgebra M of A exists such that M � S.

Proof: Let M denote the set of all proper Rees subalgebras T � S and let
N be a totally ordered subset of M. We prove V = [T2nT 2 M. Let ! be an
n-ary operation and x1; . . . ; xn 2 V , then a Rees subalgebra T0 � S exists such
that x1; . . . ; xn 2 T0, so !(x1; . . . ; xn) 2 T0 � V and V is a subalgebra. If a; b 2 V
and x1; . . . ; xn�1 2 A, then a Rees subalgebra T1 � S exists, such that a; b 2 T1
and the condition (�) of De�nition 1.1. is valid; so V is a Rees subalgebra of A.

We show V 6= A. A is �nitely generated by the set fa1; . . . ; akg. If we suppose
V = A, we obtain a1; . . . ; ak 2 V ; therefore a Rees subalgebra T2 2M exists with
a1; . . . ; ak 2 T2 and so T2 = A, a contradiction to T2 2 M. So we obtain V 6= A
and V 2 M is proved. Now we apply Zorn's Lemma, so M contains a maximal
element and the theorem is proved.

In the following we say that the maximal chain-condition holds in R(A), if
every increasing chain S0 � S1 � S2 � . . . of Rees subalgebras of A contains only a
�nite number of terms Si. Similary we say that the minimal chain-condition holds
in R(A), if every descending chain S0 � Si � . . . of Rees subalgebras of A contains
only a �nite number of terms Si.

Theorem 1.12. Let A = (A;
) be a universal algebra. Then all Rees
subalgebras S of A are �nitely generated in R(A), if and only if the maximal chain-
condition holds in R(A).
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Proof: First we assume that the maximal chain-condition holds. Let S be
an arbitrary Rees subalgebra and a1 2 S. If S = ha1i, then S is �nitely generated;
if a2 2 S exists with a2 62 ha1i, then ha1i � ha1; a2i. So we construct an increasing
chain of Rees subalgebras

ha1i � ha1; a2i � ha1; a2; a3i � . . . ;

which must bo �nite because of the maximal chain-condition; so S is �nitely gen-
erated in R(A).

Now we assume that every Rees subalgebra S is �nitely generated in R(A)
and let S1 � S2 � S3 � . . . , be an increasing chain of Rees subalgebras. The
union S = [Si of all those Rees subalgebras Si is �nitely generated because of our
assumption; so S = ha1; . . . ; aki. Therefore a Rees subalgebra Sn exists such that
a1; . . . ; ak 2 Sn; hence Sn = S. So we have proved that S = Sn = Sn+1 = . . . and
the maximal chain-condition is valid in R(A).

Theorem 2.13. Let A = (A;
) denote a universal algebra such that for all
subalgebras S, T the condition S \ T 6= ; holds. Then a necesary and suÆcient
condition for A to have a composition series is that the maximal and minimal
chain-condition hold in R(A).

Proof: First we assume that a composition series with length k exists.
If the maximal or minimal chain-condition does not hold we easily obtain a Rees
series with length n > k, a contradiction, because we can apply Theorem 2.7. (for
all S, T with S\T 6= ;). If both chain-conditions hold, we construct a composition
series as follows. De�ne S0 = A and S1 a maximal Rees subalgebra with S1 � S0;
such S1 exists because of the maximal chain-condition. Then S2 is a maximal Rees
subalgebra of S1 and, generally, Sn a maximal subalgebra of Sn�1. So we obtain a
Rees series

A = S0 � S1 � S2 . . . � Sn�1 � Sn � . . . ;

which must be �nite because of the minimal chain-condition. Obviously, this Rees
series is a composition series.

Example 3.14. Let (N;+; �) be the natural numbers with addition and
multiplication; then all Rees subalgebras are of the form

S� = fx 2 N:x � �g:

Then S \ T 6= ; for all subalgebras S, T of (N;+; �); the maximal chain-
condition holds in R(N) and the minimal chain-condition does not hold. So N is
�nitely generated in R(N) (N = h1i) and N does not contain a composition series.

Example 2.15. Let  = (A; �; e) be a monoid; we de�ne an n-ary operation
! on A by !(x1; . . . ; xn) = x1 � . . . � xn. Then A = (A;!; e) is an algebra with
R(A) = R().
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Definition 2.16. Let ! be an n-ary operation of the algebra A = (A;
).
Then an element a 2 A is called idempotent with respect to !, if and only if
!(a; . . . ; a) = a; an element a 2 A is called idempotent with respect to all n-ary
operations (n � 1) of A.

An algebra is called idempotent, if and only if all its elements are idempotent.

Proposition 2.17. Let A = (A;
) be an idempotent algebra and � a con-
gruence on A with at most one non-singleton class M . If M contains all nullary
operations of A, � is a Rees congruence.

Proof: Using Proposition 1.2, we have to prove that the non-singleton
class M is a subalgebra of A. Let aj 2 M (j = 1; . . . ; n) and ! be an n-ary
operation of A. Then a1 � a2 � � � � � an(�), because � is a congruence. Since a1 is
idempotent, !(a1; . . . ; a1) = a1 2 M results; so we obtain !(a1; . . . ; an) 2 M and
the proposition is proved.

Remark 2.18. Proposition 2.17. does not hold for an arbitrary algebra A. If
we take the free semigroup (A; �) with A = fa; a2; a3; . . . g, the identity relation � is
a congruence with at most one non-singleton class, but it is not a Rees congruence.

Proposition 2.19. Let u = (A;
) be a universal algebra such that S\T 6= ;
for all Rees subalgebras S, T of A. If A does not contain an idempotent element,
then (R(A);^;_) is isomorphic to a sublattice of the congruence lattice S(A) of A.
Generally this does not hold (see the semilattice S0).

S0 0 e f p q
0 0 0 0 0 0
e 0 e e 0 0
f 0 e f 0 0
p 0 0 0 p p
q 0 0 0 p q

Proof: Because of Proposition 2.4. the union S[T of two Rees subalgebras
S, T is a Rees subalgebra again. So we have S_T = S [T for all Rees subalgebras
S, T of A.

We de�ne the mappipg ':R(A)! S(A) by '(S) = �S if S is a Rees subalge-
bra and '(;) = id. Since A does not contain an idempotent element, ' is injective;
we obtain

'(S ^ T ) = '(S \ T ) = �(S\T ) = �S ^ �T = '(S) ^ '(T )

'(S _ T ) = '(S [ T ) = �S[T = �S _ �T = '(S) _ '(T );

so ' is a lattice homomorphism; hence '(R(A)) is a sublattice of S(A).
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3. Applications to polynomial algebras

In this chapter we consider for an algebra A = (A;
) the algebra P(A; n) of
all polynomial functions in n variables over A, the operations of which are the oper-
ations of A pointwise and the n+1-ary composition on. If pi (i = 1; . . . ; n+1) are
n+1 polynomial functions of P(A; n) represented by the polynomials pi(x1; . . . ; xn),
then the composition on(p1; . . . ; pn+1) of the polynomial functions pi is just the
polynomial function represented by the polynomial

pi(p2(x1; . . . ; xn); . . . ; pn+1(x1; . . . ; xn));

where the variable xi occuring in p1 is substituted with pi+1(x1; . . . ; xn).

Proposition 3.1. Let A = (A;
) be an idempotent algebra such that for
every polynomial function f :A ! A f Æ f = f . Then P(A; n) is an idempotent
algebra.

Proof: We proceed by induction; for n = 1 it is clear because of the
condition of the proposition. We have to show that P(A; n + 1) is idempotent,
if P(A; n) is idempotent; the only operation we must consider is on. Let p =
p(x1; . . . ; xn+1) be such a polynomial function; if one variable does not occur in
the word representation of this function the proposition is clear by the assumption
of the induction. Let x be the vector (x1; . . . ; xn+1). We use the condition f Æf = f
for all f de�ned by f(xn+2) = p(x); x1; . . . ; xn �xed; therefore

(i) p(x1; . . . ; xn; p(x)) = p(x):

If we de�ne g(x1; . . . ; xn) = p(x) for �xed xn+1, we obtain

g(g(x1; . . . ; xn); . . . ; g(x1; . . . ; xn)) = g(x1; . . . ; xn);

and so

(ii) p(p(x); . . . ; p(x); xn+1) = p(x):

Put y = (p(x); . . . ; p(x); xn+1) and combining (i) and (ii) we obtain

p(p(x); . . . ; p(x)) = p(p(x); . . . ; p(x); p(y)) = p(y) = p(x);

Corollary 3.2. Let A = (A;
) be an idempotent algebra such that fÆf = f
for all polynomial functions f :A! A. If � is a congruence on P(A; n) with at most
one non-singleton class, then � is a Rees congruence.

This is obvious; because P(A; n) does not contain a nullary operation. One
can apply Proposition 2.17.

Remark 3.3. Considering the lattice (L;^;_) we obtain the following result:
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L is distributive if and only if P(L; n) is idempotent. For n = 1 this is a
wellknown theorem of Skhweigert (1975); for n 2 N it results, applying Proposition
3.1. So in the case of a distributive lattice L we can apply Corollary 3.2. to the
algebra P(L; n). Trivially all these facts remain true, if we consider the algebra
P�(L; n), which also consists of all polynomial functions in n variables over L, but
the only operation is on.

If A = (S; �) is a semilattice, then Proposition 3.1. and Corollary 3.2. are
applicable, too.

Proposition 3.4. Let A = (A; 
) be a universal algebra and M a Rees
subalgebra of A, such that for every p 2 P(A; n)p(x) 2M , if at least one coordinate
of x = (x1; . . . ; xn) is an element of M . If IM = fp: p(x) 2 M for every x 2 Ang
and IM 6= ;, then IM is a Rees subalgebra of P(A; n).

Proof: Let ! be a k-ary pointwise operation of P(A; n) and p1; . . . ; pk 2 IM .
Then !(p1; . . . ; pk)(x) = !(p1(x); . . . ; pk(x)) 2M for every x 2 An because of the
de�nition of IM . Similary for every x 2 Anon(p1; . . . ; pn)(x) 2 M results. So IM
is a subalgebra of P(A; n), if IM 6= ;. Trivially, for every pointwise operation the
condition of De�nition 1.1. holds. Let p1; . . . ; pn+1 2 P(A; n), and pj 2 IM , then

on(p1; . . . ; pn+1)(x) = p1(p2(x); . . . ; pj(x); . . . ; pn+1(x)) 2M

for every x 2 A; so the proposition is proved.

Remark 3.5. Let (S; �) be a semigroup without null and M an idea of S.
Then IM 6= ; is a Rees subalgebra of P(S; n) and de�nes a Rees congruence �M on
P(S; n). If N is an ideal di�erent from M , then IM 6= IN because P(S; n) contains
all constant functions. If we de�ne �; = id, the mapping M ! �M is a lattice
isomorphism from J (S) [ f;g into the congruence C(P(S; n)) where J (S) is the
ideal lattice of (S; �). So J (S) [ f;g is isomorphic to a sublattice of C(P(S; n)): S
must be convergence free if C(P(S; n)) is congruence free.

Remark 3.6. Let (L;^;_) be a lattice with more than two elements; then
a non-trivial ideal M exists; which de�nes IM as in Proposition 3.4. and IM 6=
;. IM de�nes a non-travial Rees congruence on P�(L; n); so P�(L; n) cannot be
congruence free. This result remains true, if we consider the algebra of all those
polynomial functions, in the representation of which all variables x1; . . . ; xn occur.
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