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THE NIKODYM THEOREMS FOR OPERATOR MEASURES

Charles Swartz

Two of the most interesting and useful results in measure theory are the
Nikodym Boundedness Theorem ([9] IV. 9.8) and the Nikodym Convergence The-
orem ([9] III. 7.4). In recent times these theorems have received a great deal of at-
tention and have been generalized in several directions. For example, in [8], 8.6, the
Nikodym Convergence Theorem has been generalized to the case of group-valued
measures and in [10] the condition that the domain of the set functions is a �-
algebra has been relaxed. (See the discussion on pages 31{36 of [3].) When dealing
with an integration theory that involves the integration of vector-valued functions
with respect to operator-valued measures ([1], [2], [4]), it would be desirable to
have versinos of the Nikodym Theorems that are appropriate for operator-valued
measures. When dealing with vectorvalued measures the natural norm that is em-
ployed on the measures is the scalar semi-variation norm ([2], [3]) whereas when one
deals with operator-valued measures the semi-variation norm ([3], [4]) is employed.
For in�nite dimensional spaces it is well-known that these norms are not equivalent
([12]). In this note we consider versions of the two Nihodym Theolems that seem
appropriate for the case of operator-valued measures.

Throughout the paper let X , Y be (real) B-spaces with L(X;Y ) the space of
bounded linear operators from X into Y equipped with the uniform norm. Let S
be a non-void set and � a �-algebra of subsets of S. If �: � ! L(X;Y ) is �nitely
additive, its semi-variation (with respect to L(X;Y )) is

(1) �̂(E) = sup


nX
i=1

�(Ei)xi

 ;

where the supremum is taken over all �nite partitions fEig of E and all xi 2 X
with kxik � 1 ([2] I. 4.1). If �: � ! L(X;Y ) is �nitely additive, � is said to be
strongly bounded if �̂(Ej) ! 0 whenever fEjg from � decreases to the empty set
(Dobrakov ([4]) uses the term continuous.) A strongly bounded operator measure
has �nite semi-variation ([5] Th. 5 Cor.), and since k�(E)k � �̂(E) for E 2 �, a
strongly bounded operator measure is countably additive in the uniform operator
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topology. (The converse is false, [4), Example 7.) Let sca (�; L(X;Y )) = sca be
the space of all strongly bounded set functions from � into L(X;Y ) and equip sca
with its semi-variation norm.

One of the vector versions of the Nikodym Boundedness Theorem ([3] I. 3.I)
is the following:

Theorem 1. Let ��: �! X (� 2 I) be a family of bounded �nitely additive
measures. If

(2) supfk��(E)k:� 2 Ig <1 for each E 2 �; then

(3) supf�̂�(S):� 2 Ig <1;

where �̂,is the scalar semi-variation of �, (i.e., with respect to X = L(R;X)).

We now formulate the analogue of Theorem 1 for operator-valued measures
belonging to sca. Let S(�; X) be the space all X-valued �-simple functions
equipped with the uniform norm; if X is the scalar �eld, set S(�; X) = S(�).
A �nitely additive set function �: � ! (X;Y ) with �nite semi-variation induces a
bounded linear operator, still denoted by �, from S(�; X) into Y via �(f) =

R
S fd�

and k�k = �̂(S) ([4]). Theorem 1 can be rephrased to read, if the ��:S(�) ! X
are pointwise bounded on S(�), then f��g is norm bounded. Thus, analogues of
conditions (2) and (3) for operator measures would be

(20) f��g is pointwise bounded on S(�; X) and

(x0) f��g is norm-bounded in L(S(�; X); Y ):

(From the Uniform Boundedness Principle (20) is equivalent to sup� k��(E)k <1
for each E.) The following example shows that (30) does not follow from (20) for
operator measures, i.e., the straight-forward analogue of Theorem 1 is not valid for
measures in sca .

Examle 2. Let fekg1k=1 be the canonical basis vectors in lp, ek = fÆkjg1j=1.
De�ne Tk: I

p ! lp(1 � p � 1)bxTkx = xkek, where x = fxjg 2 lp. Let P be the
power set of the positive integersN and � � N and n 2 N set �(n) = �\f1; . . . ; ng.
De�ne �n:P ! L(lp; lp) by �n(�) =

P
j2�(n) Tj . Since the series �Tj is subseries

convergent in the strong operator topology the set fk�n(�)k:ng is bouned for each
� � N . However, for each n; �̂n(N) � kPn

k=1 Tkekk = n1=p so that f�̂n(N):ng is
unbounded.

We now show that a boundedness result similar to Theorem 1 can be obtained
by replacing the space S(�; X) in (20) bu a slightly larger space. Let E(�; X) be the
space of all bounded, X-valued, �-elementary functions, i.e.; f :S ! C of the form
f =

P1
j=1 CEjxj , where the fEjg � � are disjoint and the fxjg � X are bounded.
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(Here, CE denotes the characteristic functions of the set E.) Recall E(�; X) is
not generally complete with respect to the sup-norm but is dense in the space of
all bounded X valued �-measurable functions, B(�; X) ([3], II, 1.2). If � 2 sca ,
�, induces a bounded linear operator �: E(�; X) ! Y via �(f) =

R
S
fd� and

k�k = �̂(S). ([4] Th. 5); the strong boundedness of � is needed here to guarantee
the integrability of each f 2 E(�; X). By replacing the space E(�; X) of condition
(2') by E(�; X), we obtain a version of the Nikodym Boundedness Theorem for sca.

Theorem 3. Let �� 2 sca , � 2 I. If

(200) f��:�Ig is pointwise bounded on E(�; X);

then (3)0 holds.

Proof: The semi-variation of any � 2 sca has the properties that �̂ is
countably subadditive ([2] I. 4.2.3), strongly bounded and �̂(A[B)+ �̂(B) � �̂(A)
for A, B 2 �, A\B = ;. Suppose (30) does not hold. Then from the properties of
�̂ observed above end the proofs of either Theorem 4.4 of [7] or the Lemma of [6],
there is disjoint sequence fEjg � � and a sequence f�ng such that sup �̂(En) =1.
Then there is a subsequence such that �̂nk(Enk ) ! 1; assume for convenience
nk = k. For each k there exist a �nite partition fEkjgnkj=1 of Ek and fxkjgnkj=1 with
kxkjk � 1 such that ak =

Pnk
j=1 �k(Ekj)xkj

 ! 1. Set vk = (1=
p
ak)�k). Now

vk(f)! 0 for each f 2 E(�; X) by (200). We may now apply Theorem 11 of [11] to
obtain that the series

P1
k=1

Pnk
j=1 vn(Ekj )xkj converge uniformly with respect to

n (the proof of Theorem 11 of [11] remains valid if the space B(�; x) is replaced by
E(�; X)). In particular, 

nkX
j=1

vk(Ekj)xkj

 =
p
ak ! 0

contradicting ak !1.

Remarh 4. Theorem 3 can thus be regarded as a version of the Nikodym
Boundedness Theorem for operator-valued measures. The statement of Theorem 1
for the case of vector-valued measures is equivalent to the statement that the space
S(�) is a barrelled space. This suggests the following question: is the space E(�; X)
barrelled? Theorem 3 seems to suggest that this may be the case; however, to traet
this problem it seems necessary to have a description of E(�; X) or B(�; X)). There
does not seem to be such a description in the literature.

We now consider the Nikodym Convergence Theorem. We have the following
version of theorem ([9], III. 7.4).

Theorem 5. Let �: �! X be countably additive. If

lim�n(E) = �(E) exists for each E 2 �; then(4)

� is countably additive and(5)

f�ng1n=1 is uniformly countably additive:(6)
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Again the appropriate analogue of conditions (4) and (5) for operator measures in
sca would be

(40) lim�n(f) = �(f) exists for f 2 S(�; X) and

(50) � 2 sca :

The appropriate analogue for (6) would be

(60) f�ng1n=1 is uniformly strongly bounded;

where a sequence f�ng in sca is uniformly strongly bounded if supn �̂n(Ej) ! 0
whenever fEjg � � decreases to the empty set. We give an example which shows
that in general (40) does not imply (50) or (60). For this we require the following
criteria for uniform strong boundedness.

Proposition 6. Let �n 2 sca . Then (6') is equivalent to the condition (600)
for each disjoint seguence fEjg � � and bounded sequence fxjg � X the seriesP1

j=1 �k(Ej)xj converge uniformly with request to n.

Proof: If (60) holds, the inequality kPj2� �n(Ej)xjk � �̂n([j2�Ej sup kxjk
shows (600) holds.

If (60) does not hold, we may assume there exist an " > 0 and a disjoint
sequence fEjg such that supn �̂(Ej) > " for all j. Thus, for each j there is an nj
such that �̂nj (Ej) > ". For each j there is a �nite partition fEjkgNjk=Mj , of Ej and

fxjkgNjk=Mj ,kxjkk � 1, such that kPNj
k=Mj �nj(Ejkxjkk > ", where we may assume

M1 < N1 < M2 < N2 < � � � . But then the series
P1

j=1

PNj
k=Mj �n(Ejk)xjk doesn't

converge uniformly with respect to n so that (600) does not hold.

Remark 7. It follows from Proposition 6 and the proof of Theorem 3 that
if f�ng is uniformly strongly bounded, then f�̂n(S)g is bounded.

Example 8. Partition N into disjoint sets �k = f2k�1; 2k�1 + 1; . . . ; 2k�1g
and note each �k contains 2k�1 integers. If j 2 �k , de�ne yj 2 c0 by yj =
(1=2k�1)ek. For each k de�ne Tk 2 L(l1; c0) by Tkx = xkyk, where x = fxjg.
For n 2 N and � � N , set �\ (n) = �\f1; . . .ng. De�ne measures �n:P ! (l1; c0)
by �n(�) =

P
k2�(n) Tk. Each �n is countably additive in the uniform operator

topology and �̂n(�) = 1 for � 6= ;. De�ne �:P ! L(l1; c0) by �(�) =
P

k2� Tk.
Since the series �Tk is subseries convergent with respect to the uniform operator
topology, � is countably additive with respect ot this topology and, moreover, � has
�nite semi-variation with �̂(�) = 1 for � 6= ;. Now for � � N�n(�)! �(�) in norm
but � is not strongly bounded by the observation above, and, moreover, f�ng is
not uniformly strongly bounded by Proposition 6 since the series

P1
n=1 �j(n)en are

not uniformly convergent. Again, we obtain an analogue of Theorem 5 by replacing
the space S(�; X) in (40) by E(�; X).
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Theorem 9. Let �n 2 sca . If

(400) lim�n(f) = �(f) exists for each f 2 E(�; X);

then (50) and (60) hold.

Proof: The result follows from Theorem 11 of [11] (again noting that the
proof of Theorem 11 of [11] is valid if the space B(�; X) is replaced by E(�; X)).

Remark 10. Theorem 9 can thus be regarded as a version of the Nikodym
Convergence Theorem for operator measures in sca and again suggests that the
space E(�; X) is the appropriate vector substitute for the space S(�).

A result closely related to the Nikodym Convergence Theorem is the Vitali-
Hahn-Saks Theorem (VHS) ([9] III. 7.2). Using a result of Drewnowski ([7] 6.2) it
is easily seen that we also have a version of VHS for measures in sca .

Theorem 11. Let �n 2 sca . Suppose there is a positive, �nite, countably
additive measure � on � such that each �n is absolutely continuous with respect to
�. Then (60) holds i�

(7) f�̂ng is uniformly absolutely continuous with respect to �.

Corollary 12. Let �n 2 sca be such that f�ng is uniformly strongly
bounded. Then there is a �nite positive countably additive measure � on � such
that f�̂ng is uniformly absolutely continuous with respect to �.

Proof: For each �n there is a positive, �nite, countably additive measure
�n such that �̂n is absolutely continuous with respect to �n ([4]� { Th). Set
� =

P1
n=1 �=2

n(1 + �n(S)) and apply Theorem 11.

As an application of the results above we consider the relationships between
condition (40) and conditions (50), (60).

Proposition 13. Let �n 2 sca satisfy (40) The following conditions are
equivalent:

(I) conditions (50) and (60)

(II) (400)

(III) lim�n(f) = �(f) exists for each f 2 B(�; X).

Proof: Clearly (III) implies (II) and (II) implies (I) is just Theorem 8. It
remains to show (I) implies (III). Let f 2 B(�; X). Pick f�ng simple such that
�n ! f pointwise on S with k�n(t)k � f(t)k �M for t 2 S. Let � be the measure
of Corollary 12. Let " > 0. There is a Æ > 0 such that �̂n(E) < ", �(E) < "
whenever �(E) < Æ, E 2 �. Egoro�'s Theorem implies there exest N and E 2 �
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such that k�N (t) � f(t)k < " when t 2 SnE and �(E) < Æ. From Remark 7 there
is a P > 0 such that �̂n(S) � P for all n and �̂(S) � P . We thus have

(8)

k�n(f)� �(f)k �

Z

S

�Nd�n �
Z

S

�Nd�

+

Z

S

(f � �N )d�n

+

+


Z

E

(�N � f)d�

+

Z

SnE

(f � �N )d�n


+


Z

SnE

(�N � f)d�



�

Z

S

�Nd�n �
Z

S

�Nd�

+ 4M"+ 2P";

and the �rst term on the right hand side of (8) goes to zero by (40).
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