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GRAPHS HAVING PLANAR COMPLEMENTARY LINE
(TOTAL) GRAPHS

Slobodan K. Simi�c1

The planarity of graphs (see [1] for basic de�nitions and notation) obtained
by some graph operations (or graph valued functions) has bean considered in many
papers by di�erent authors. Here we shall mention only a few results. In [2] J.
Sedla�cek settled, historically the most famous result, which characterizes the graphs
having planar line graphs. The same problem was treated by D. L. Greenwell and
R. L. Hemminger [3] but with forbidden subgraphs involved. As far as the total
graphs are concerned, the analogous problems were solved by M. Behzad [4] and
J. Akiyama [5]. The purpose of this paper is to consider the planarity of the
complements of line (total) graphs. The main feature of the latter problem is that
planarity occurs now in the very restricted cases.

We shall �rst consider the graphs (isolated vertices will be ignored) having
planar complementary line graphs. Denote the set of these graphs by G, i.e. let

G = fG j L(G) is planar and G has no isolated verticesg:

Thus we have to characterize the graphs from G. For that purpose, the
following de�nitions are helpful.

A sequence of mutually di�erent edges x1; . . . ; xn (n � 2) of a graph is an
i-sequence if members xi; xi+1 (i = 1; . . . ; n � 1) are independent edges. The
members x1 and xn are re�ered as exterior ones, while others are interior. Two
i-sequences are disjoint if they have no interior members in common.

Now, by restating Kuratowski's theorem, we get:

Proposition 1. Graph G 2 G, if and only if both (i) and (ii) hold:

(i) for any 5 edges e1; . . . ; e5 of G, there does not exist a family of mutually
disjoint i-sequences such that ei, ej (1 � i < j � 5) are their exterior members;

1The results of this paper were communicated at International Colloqium Oberhof (DDR),
10{16 Apri1 1977.
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(ii) for any 3+3 edges e1, e2, e3, f1, f2, f3 of G, there does not exist a family
of mutually disjoint i-sequences such that ei, fi (1 � i; j � 3) are their exterior
members.

The immediate consequences of the above proposition are the following:

(a) if G 2 G, then �(G) � 4;

(b) if Gi is a component of some G 2 G, then d(Gi) � 6;

(c) if G 2 G and �(G) � 9, then g(G) � �(G) + 22.

From (a) and (b) we conclude that the set of graphs G0 = fG j G 2 G and
�(G) � 8g is �nite; on the other hand the graphs from G00 = GnG0 are of a very
simple structure. Hence, we may expect to �nd much better insight into the graphs
from G, than Proposition 1 o�ers. For that purpose the following transformations
on graphs are of interest:

t1 { deletion of an edge,

t2 { identi�cation of a pair of nonadjacent vertices.

Now if G 2 G, denote by J (G) the set of all graphs obtained from G by
combining t1 and t2 (isolated vertices are ignored, again). Then the next lemma is
obvious.

Lemma 1. If G 2 G, then J (G) � G.

This lemma suggests the following de�nition. Graph G is called a t-maximal
if for any other graph G0 2 G, G 62 J (G0). Clearly, since G0 is �nite it can be
described by the �nite collection of t-maximal represetatives; on the other hand G00

fails to satisfy that, but since the graphs of G00 are very simple in structure (see
(c)) it is possible (conditionally) to assume that the graph G2 from Fig. 1 (n is
being large enough) is a unique t-maximal graph from G00. Thus we can describe
all graphs from G by t-maximal representatives. Namely, we can prove:

2Recall that p(G), g(G), �(G), d(G), �(G), according to [1] denote the number of vertices,
the number of edges, the maximal vertex degree, the diameter, the number of components of some
graph G.
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Theorem 1. Graph G 2 G, if and only if G is one of the graphs G1; . . . ; G11

of Fig. 1 or G 2 J (Gi) for some i (1 � i � 11).

Outline of the proof. Insead of providing a complete proof (which is very
elementary but long) we shall give only an idea and a step supposed to be the most
illustrative.

Clearly, to prove the theorem it is suÆcient to generate all t-maximal graphs
of G, or equivalently, to point out that the graphs of Fig. 1 are the entire collec-
tion. For that purpose we �rst �x some invariants of graphs from G and try to �nd
all t-maximal graph under these restrictions. Namely, we can �rst �x the number
of components (or just the number of nontrivial components) and later the max-
imal vertex degree. Proceeding in such a way and letting the above quantities to
decrease, we shall obtain (up to order) the graphs of Fig. 1.

Here we shall deal only with the case when �(G) = 1 and �(G) = 5. In fact
we have to prove that G9 is the only t-maximal graph under the above restrictions.
So observe a vertex v having the degree �ve and its open neighbourhood N(v) =
fv1; . . . ; v5g (N(v) = N(v) [ fvg is its closed neighbourhood). Now assume u 62
N(v). Then the following cases can occur:

Case 1: deg u � 4. Assume �rst N(u) � N(v). Then let ei = uvi (i = 1; 2; 3)
and fj�2 = vvj (j = 3; 4; 5). Now all pairs of edges ei, fj except e3, f1 are mutally
disjoint i-sequences. Taking e3, e3

0 = vv1, e
00

3 = uv4, f1 we get the missing i-
sequence which is disjoint from the previous ones. Hence, (ii) is contradicted and
moreover if N(u) 6� N(v) the same happens as can be easily seen3.

Case 2: degu = 3. Now similarly to the foregoing, in order to avoid collisions
with (ii), N(u) � N(v). But then we get a graph that belongs to J (G9). Hence to
get a t-maximal graph we must add some more edges. But the latter contradicts
(ii).

Case 3: degu = 2. We �rst note that at least one neighbour of u must
be in N(v), since otherwise (ii) is being contradicted. If u is adjacent only to
v1 2 N(v), then, by (ii), any further edge (if it exists) must connect the vertices
from N(v) j fv1g. According to (i) or (ii) at most one new edge may exist. Thus
we get a graph which is not t-maximal since it belongs to J (G7). So, assume that
both neighbours of u are in N(v), and also let N(u) = fv1; v2g. Suppose w is a
vertex such that w 6= u and w 62 N(v). Now, since w is not isolated, applying (ii)
we get that w is adjacent to some vertex among v3, v4, v5. If w is adjacent to only
one vertex out of the mentioned ones then we get a graph belonging to J (G7).
Hence we must have more edges, but this contradicts either (i) or (ii). This implies
that no vertex such as w may exist and that the only possibility that can give a
t-maxiimal graph is to add more edges between vertices from N(v). Of course,
because of (ii) v1 and v2 must be nonadjacent. Assume now the that two vertices
among v3, v4, v5 are adjacent. Then because of (ii) there cannot exist an edge that
connects v1 or v2 to any vertex among v3, v4, v5. Using (ii) again, it follows that

3In further text we shall not display the i-sequences that are occurring in (i) or (ii).
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at most two edges can exist connecting vertices v3, v4, v5. But then we get a graph
belonging to J (G9). So any additional edge must connect vertices v1 or v2 to some
vertex among v3, v4, v5. The number of such edges, by (i) or (ii), cannot exceed
one, while the remaming possibility gives a graph that belongs to J (G7).

Case 4: deg u = 1, i.e. all vertices not belonging to N(v) are of degree one.
Assume �rst that there are at least three vertices of degree one not belonging to
N(v). Clearly, their neighbours must be in N(v) and, by (ii), they are all di�erent.
If just three vertices of degree one exist, then by (i) or (ii) no more edges exist and
the resulting graph belongs J (G7). So assume that just two vertices of degree one
exist outside N(v). If they have a common neighbour in N(v), say v1, then any
additional edge (if it exists) according to (ii) connects a pair of vertices from the
set N(v)nfv1g. More than one additional edge cannot exist according to (i) or (ii)
while otherwise we get a graph belonging to J (G7). Thus the vertices of degree one
are adjacent to di�erent vertices from N(v) and now following the analysis from
case 3 we get G9 as a t-maximal graph. Hence, it remains that at most one vertex
of degree one outstide N(v) may exist. Now all additional edges (if they exist)
connect the pairs of vertices from N(v) and by similar arguments we disprove the
existence of any more t-maximal graph.

Corollary 1. If G = L(H) for some H is a planar graph, then G is an
induced subgraph of some graph from Fig. 2.

With the complementary total graphs the situation is quite simple. Owing
to the fact that T (G) contains G and L(G) as an induced subgraph we can easily
check the validity of the following theorem.

Theorem 2. If T (G) is a planar graph, then it holds:

(a) if p(G) � 4, then G is any graph except 2K2, C4, K4;

(b) if p(G) > 4, then G is one of the graphs K1;2 [K2, K3 [ 2K1, K1;4.
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