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ON THE FOURIER COEFFICIENTS OF A FUNCTION OF
A — BOUNDED VARIATION

Masaaki Shiba
1. One of generalization of a concept of bounded variation is studied by S. J.

Perlman [6], R. Pleissner [5], R. Pleissner [5], S. J. Perlman and D. Waterman [7]
and D. Waterman [8] [9] [10] [11] [12].

DEFINITION. f is of A-bounded variation on the interval I = [a,b], (A—BV),

if
Z |F(L)]/Ai < o0
i=1
for any decomposition {I;} of I, where A = {\;} is an increasing sequence of

positive numbers such that > )\;1 =00 and
fLi) = f(bi) — f(a;) for I; = [a, bi].

The fundamental prorerties of function of this class are given in the following.

] A— BV C L*.

[IT] The function of A — BV has only discontinuous points of the first kind,
so, at most denumerable. A — BV C W, (c.f. B. I. Golubov [2]).

[ITT] The Helly’s selection theorem holds for these functions.

[IV] The followings are equivalent.

i) feA—BV.

(ii) There exists a M > 0 such that Y | f(L;)|/ i < M for every decomposition
{Li} of I,

(iii) There exists a M > 0 such that for every finite collection {I;} (i =

1,2,...,N)C,
N

Do/ < M.

I
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[V] A — BV is a Banach space with the norm

Iflla-Bv +[f(a)] < Va(b),

where Vi (b) = sup{>_ | f(L;)|/N\i; {I;} such that I = UI;}.
[VI] If {\:i} is a stretly sequence, BV;A — BV.

[VII] BV = U{A — BV;A}.
[VIIT] A — BV N C is a closed subspace of A — BV.

2. Let f be an 27-periodic integrable function on [0,27) and {a,} and {b,}
are Fourier coefficients of f. At first we show the order of the magnitude {a,,} and
{bp} of fe A—BV.

LEMMA. If A€ A— BV, then
(1) an, by, = O(Ap/n).

CoroLLARY. If f € {n®*} —BV,0< a <1, then

(2) Ay by = O(1/n' ).

PROOF OF LEMMA. From (iii) of [IV], we have

2N
S SN < M

for some M >0, where If =z + (i — 1)n/N, ¢+ in/N] (i = 1,2,...2N), that is

2N
D IFID)] = 0(en).

From the properties of A,, we assume that Ay, = O(\,), so,

2N
(3) S AT = O0(AN).

It is well known (c.f. N. K. Bari [1] and M. and S. Izumi [3])

Jaw] < (1/2) / F@+7/N) — f(2)|de

< (1/27r)/|f([f)|dm, (i=1,2,...,2N).



On the Fourier coefficients of a function of A-bounded variation 201

Adding such inequalities for ¢ = 1,2, ... ,2N, we have (1) by (3). Similarly, we have
b, = O(A\n/n).

Now, we give the necessary condition for continuity of A — BV.

(5) In = (N/Ay) Z p2 sin?(nm/2N) = o(1).
(6) JN = (N/AN)™ Zn
(7) Ty = N*1A§1/2 ann =o(1).
(8) Sy = (log N) 7 A* 3" o = o(1).
N
(9) Hy =N Y ok = o(D).

THEOREM 1. If f € A — BV, then we have

(i) feC=(5=(6)=(7)=(8).
(i) (9) = (6),
where p, = {a2 + b2 }/2,
(5" I](\?) =N'"@ Zpi sin?(n7/2N) = o(1).
1 N
(6/) J](\?t) — N7(1+a) Zn2p2 _
N
(7) T](Va) = N~ (1+a/2) ann =o(1).

N
N*“”an; 0<a<l
(8 Sy = =o(1)
(log N)~ an, a=1

(9) HY = NS 2 = of)
N

COROLLARY 2. If f € {n®} — BV (0 < a < 1), then we have
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i) feC= ()= (6)=(7)=(8).
(i) (97) = (6").
THEOREM 2. If f € {n*} —BV (0<a <1/2) and

[N?]
(10) J§) = N0 37 20 = 0(1)
1

for same B > (1 — a/1 — 2a), then we have (6').

REMARK 1; For f € BV, these results have been got by N. Wiener [13] and
S. M. Lozinskii [4].

REMARK 2; If f is of rth bounded variation, the similar results are given by
B. I. Golubov [2].

PROOF OF THEOREM 1
i) feC= (5) From (iii) of [IV], we have
2N
Z |FUIE)] Z [FIDI/ i NIF(IE)] < MAsNuwy (7/N)
where wy(.) is a modulous of continuity of f. Then, from Aony = O(An), we get
2N [ £ = 00w (x/)),
where I* = [x — /N, z + w/N]. By Parseval’s equality,
In = (N/AN) Zpi sin?(nm/2N) = O(ws(7/N)) = o(1).
1
(6) = (7); From Schwartz’s inequality and (6), we get
2
T? = (N?Ay)~ (Z npn) ) (NAN)~ Zn =o(1).
(7) = (8); Putting uny = El npn, then uy = o(N)\%z) and

N 1
Z Z_ _Ufnl
1 1

N-1
= (un/N) + Z (n+1)” un/n)
1

3

N-—-1

=o(AY") + oAy Y (1/n+1)

1
= 0()\}\{2 -log N).
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(ii) (9) = (6); Putting Ay = Y ¥ p2, we hawe Ay = o(Ax/N) from (9). So,

JN— N)\N ZTL

N-1
(NAn)™t {N?AN - @n+ I)An}

1

N-1
=o(l) 4o (1/N>\N ) (@2n+ 1)(An/n)> =o(1).

1

PROOF OF THEOREM 2.

I](\?) =N an sin?(nm/2N)

Nz]
{ansm nw/2N) + Z p2 sin? nﬂ/?N}

[Nz]+1

=1

J(V’ + II(\?% for some z > 0.

From Corollary 1, we have p, = O(n®~'). So, accounting of 0 < o < 1/2,

II(\?j)Q =0 (Nla Z n2a2)

[Nz]+1

0 = (Nla /t2a2dt)

Nz
0 = (Nl_a(N$)2a_1) — O(Na$2a_1).

Putting = N®~1, then

Iy = O(N(=0)=00=20)) — o(1),

Further,
[NB]
II(\?)l = N'—@ Z pi(n7r/2n)2
n=1

[N6]
:0< —(1+a) Zp ) 0(J) = o(1).
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