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MEASURE AND INTEGRATION IN THE

ALTERNATIVE SET THEORY

Miodrag Ra�skovi�c

With the analysis point of view, there is a strong similarity between the
saturated models of analysis (NA) and the Alternative Set Theory (AST). So,
notions as for example \in�nite external set", \internal set" and \hyper-�nite set"
in NA have corresponding notions as \countable class", \set" and \in�nite" set in
AST (\in�nite" in AST meaning).

The internal de�nition principle is in relation with the comprehension schema
in AST, and comprehension property in NA is in relation with the prolongation
axiom.

This similarity between NA and AST becomes complete understandable, if
one knows that the ultra-power of the set of hereditary-�nite sets enriched with its
subsets is a model for AST (see [5]).

On the other hand, AST allows us to make a natural fundation of analysis.

Our intention will be translating the notions and theorems from [2] to AST.

For basic motivations, notions, axioms, de�nations and theorems for AST, one
may consult [1]. We recall, that the class of natural numbers is N,1 �nite natural
number is FN ,2 rational numbers is RN3, �nite rational numbers is FRN4 and
bounded rational numbers isBRN .5 All of this classes are class-teoreticly de�nable,
as theirs relations and operations �, + and � are. The set of real numbers is

Real = BRN=
�
=, where by

�
= \in�nitely near"6 relations is denoted.

Real has all topological and algebrical property as the classical reals does.
But for us, its selector R � BRN7 is more usuful than the such Real itself. R is

1We model natural numbers in the manner of von Neumann.
2n 2 FN i� (8X � n) (\X is a set").
3r 2 RN i� (8m;n 2 Z) (r = hm; ni) and we write r = m

n
, where Z = N[fh0; �i j � 2 Ng.

4r 2 FRN i� (9m;n 2 FZ)
�
r = m

n

�
, where FZ = FN [ fh0; �i j � 2 FNg.

5r 2 BRN i� (9n 2 FN) (jrj � n)
6x = y i� (8n 2 FN)

�
jx� yj � 1

n

�

7A class R is image of choice function on the class Real.
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topologicly isomorphic with Real, so that we can translate all interesting properties
from Real to R.

For each x 2 R, there is Æx 2 Real so that x 2Æ x, and for each y 2Æ x we
have st(y) = x. Observe that st(x) and Æx are not same.

For A � R, let ÆA = fx 2 Real j (9y) (y 2 A ^ y 2 x)g.

The topological notions as an interval, open and closed set, convergence and
so on, we can de�ne in the usual manner (if we exchange a set wigth a class), but
the role of N and RN play FN and FRN . The role of �R play RN .

The set R omits some algebric characteristic, which Real has. For example, in
R, (9x) (x = 2) is true, but not (9x) (x = 2). However, this is not of an importance
for us. R is more natural then Real , because R � BRN , while Real is the class of
classes.

We can replace the saturation with the following theorems (see [1]).

Theorem 1. Each countable class is proper semiset.

Theorem 2. Let X, Y be countable classes such that \X � [Y . Then there
is a set u such that [X � u � \Y .

Theorem 3. Let Z be set-theoretically de�nable class. Let X be a countable
subsemiset of Z. If X is directed then there is a u 2 Z which is an upper bound
of the elements of X ordered by inclusion. If X is dually directed then there is a
u 2 Z which is a lower bound of the elements of X oredered by �.

Theorem 4. Let fXn; n 2 FNg be a sequence of revealed classes (for
example, de�nable classes are revealed) such that for each m 2 FN , \fXn j n � mg
is non-empty. Then \fXn j n 2 FNg 6= ;.

1. Loeb aad Lebesque measure

Now, we will start to investigate Loeb measure in AST .

Let x � n i� (9f)(f :
on

�!
1�1

x).

Let 
 be a set, and �P(
) the set of its subsets. It is easy to see that �P(
)
is a �eld of sets.

Let �P and P be functions so that for 
 � n, A 2� P(
) and A�̂m, we have
�P (A) = jAj

j
j =
m

n
and P (A) = st �P (A).

If A � 
, we can de�ne inner measure so that Pinner(A) = supfP (B) j B �
A;B setg, and outer measure Pouter(A) = inffP (B) j A � B;B setg.

Def. 1. A class A � 
 is Loeb measureble i� Pinner(A) = Pouter(A) and let
us put P (A) = Pinner(A) = Pouter(A).

Let L(
) be a class of Loeb measurable classes (which are sets or semisets).

Lemma 1. For each a class A we have:
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(1) A 2 L(
) i� for each " > 0 there are classes B and C so that B � A � C
and P (CnB) < ".

(2) Pinner(A) = 1� Pouter(
nA).

Theorem 1. (Loeb) The class L(
) is a �-�eld and P is a �-additive
function.

Proof. A proof that L(
) is a �eld and P is additive is as in (2).

To complete the proof, we must show that, if for each i 2 FN , Ai � Ai+1,
Ai 2 L(
), P (Ai) = ri, and lim i!1

FN

ri = r, then \i2FNAi 2 L(
) and

P (\i2FNAi) = r. We may apply the lemma 1 . . . . In this case is enough to
choose sets B and C, so that for A = \i2FNAi and " > 0, we have B � A � C,
P (B) � r � " and P (C) � r + ".

The sequence frigi2FN is descending and lim i!1

FN

rl = r, so we can choose

n 2 FN8 and a set C, so that An � C and P (C) < rn +
"

2 . But then A � An � C
and P (C) < rn + "

2 < r + "

2 +
"

2 = r + ", as required.

Let us �nd B. We can chose sets B0
m � Am with P (B0

m) > rm � 2�m" .

Let Bm = B0
1 \ . . . \ B0

m. By induction, we can easily show that P (Bm) >
rm � (1� 2�m)".

The classXm = fB 2� P(
) j �P (B) > r�"^B � Bmg is revealed (and, more,
a set). Also, we have Bm 2 Xm, because Bm � Bm and �P (Bm) > rm�(1�2�m) >
r � ". Therefore, Xm 6= ; and X1 � X2 � . . . . So, by Theorem 4. we have
\m2FNXm 6= ;.

Let is B 2 \m2FNXm. Then, for eachm 2 FN , B � Bm and �P (B) _=P (B) >
r � ". For each m 2 FN , we have Bm � Am � SoB � \m2FNAm, as required.

Theorem 2. For each A 2 L(
), there is B 2� P(
) so that P (A4B) = 0.

The proof of the Theorem follows by the Theorem II.

Theorem 3. If P (A) = 0 and a semiset A is a countable union of sets, then
there is a set B � A, so that P (B) = 0.

The proof follows by the Theorem 3.

Our intention will be to de�ne Lebesques measure on R and Real , and to
show its conection with Loeb's measure.

Let H 2 NnFN and 4t = 1
H
. Then, the class T = f0;4t; 24t; . . . ; 1g =

fhk;Hi j k 2 Hg is a set.

Let [s; t] = fx 2 R j s � x � tg and stT :T ! [0; 1], where stT = st � T .
Further on, we will write st instead of stT , if it will not bring us to an ambiguity.

For A � [0; 1] we have st�1(A) � T and st(st�1(A)) = A, while for B � T
we have st(B) � [0; 1] and st�1(st(B)) � B.

Let �[s; t] = fx 2 RN j s � x � tg and (s; t) = [s; t]nfs; tg.

8So that r < rn +
"

2
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Now, we give the de�nition of Lebsque measure �, on [0, 1].

For A = [s; t] we have �([s; t]) = �((s; t)) = t� s.

If A � [0; 1], and A is open, then A can be written (uniquely) as a countable
union of disjoint open intervals, A = [n2FNAn, and then �(A) =

P
n2FN �(A).

If A � [0; 1] is closed, then [0; 1]nA is open, so �(A) = 1� �([0; 1]nA).

For all other A � [0; 1], we de�ne �inner(A) = supf�(B) j B � A, B is closedg
and �outer(A) = inff�(B) j A � B, B is openg.

The class of Lebesque measurable subclasses is Leb [0; 1] = fA � [1; 0] j
�inner(A) = �outer(A)g, and for A 2 Leb [0; 1] we have �(A) = �outer(A) =
�inner(A).

Now, we give Fisher's theorem, which is connection between Loeb's and
Lebesque's measure. We need several lemmas for the proof of the theorem. However
we omit theirs proofs, which are very similar to proofs in (2).

Only, we must use the Theorem 4. instaed of !-saturation.

Lemma 2. For each r 2 [0; 1], st�1(frg) = ft 2 T j t _=rg 2 L(T ) and has
Loeb measure but any set containing it has a positive Loeb measure.

Lemma 3. For all s; t 2 [0; 1], so that s � t we have P (T \� [s; t]) = t � s
and P (st�1[s; t] = �([s; t]) = t� s.

Lemma 4. If A � [0; 1] and A is closed, then st�1(A) 2 L(T ) and �(A) =
P (st�1(A)).

Lemma 5. Let B � T be set. Then st(B) is closed.

Theorem 5. (Fisher) for each A � [0; 1], A 2 Leb [0; 1] i� st�1(A) 2 L[T ),
and in this case, we have �(A) = P (st�1(A)).

The proof follows by the lemmas above.

We say ÆA �Æ [0; 1] is Lebesque measurable i� A 2 Leb [0; 1]. Let us de�ne
Æ� with Æ�(ÆA) = �(A).

By Fishers theorem, we have Æ�(A) = P (st�1(A)).

2. Loeb measurable functions

First, will introduce two notions, and will give the theorem, which connects
them.

Def. 2. A class function F is Loeb measurable i� for each r 2 R, we have
fw j F (w) � rg 2 L(
).

A set function f is lifting of a function F : 
! R i� f : 
! RN and st f(w) =
F (w) almost sure (on a set of measure 1).

Theorem 5. A class function F is Loem measurable i� it has a lifting f .
Moreover, if for each w 2 
, jF (w)j � n, then we can �nd a li�ng f such that
jf(w)j � n.
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Proof: Let f lifts F on x, where x = fw 2 
 j stf(w) = F (w)g and
P (x) = 1. For r 2 R, a class fw 2 x j F (w) � rg = \

�
w 2 x j f(w) � r + 1

n

	
is

measurable, as countable intersection of the measurable sets.

Let Q = fgn j n 2 FNg be a sequence of �nite rationals and F a Loeb
measurable function.

The classes An = fw j F (W ) � gng are Loeb measurable, for each n 2 FN .
By the Theorem 2. there is a set Bn so that P (Bn4An) = 0 and for gm � gn we
have Bm � Bn.

For each n 2 FN , there is an function fn such that:

(�) (8m � n)(x 2 Bm $ fn(x) � gm):

It is enough to take fn, so that fn(B0) = fg0g and f(Bm+1nBm) = fgmg, for
each 1 � m � n.

Let Xn = ff j \f is function" and (�)g. Then, we have Xn 6= ; and X1 �
X2 . . . . According the Theorem 4., there is f 2 \n2FNXn. So we have stf(w) =
F (w) for we 
n [n2FN (An4Bn) and

P

 

n

[
n2FN

(An4Bn)

!
= P (
)� P

 [
n2FN

(An4Bn)

!

= 1�
X
n2FN

P (An4Bn) = 1:

So we have st f(w) = F (w) almost surely.

The rest we can prove trivialy, if we bound f in Xn by n.

Def. 4. A set function f is lifting of F0: [0; 1] ! R i� f :T ! RN and
st f(t) = F0(st(t)) almost surely on T .

Lemma 6. A class function F0: [0; 1]! R is Lebesque measurable i� F0 has
a lifting f :T ! RN .

Proof:

Let us de�ne F :T ! R by F (t) = F0(st
�1(t)). By Fisher's theorem (Theorem

4) F0 is Lebesque measurable i� F is Loeb measurable i� (by Theorem 5.) F has
a lifting f .
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Remark: If f :T ! RN is almost surely �nite set, then f is a �fting of some
F , where is F (w) = stf(w). Such F is Loeb measurable.

Def. 5. A set function f is a uniform lifting of F i� for all w 2 T , st f(w) =
F (w).

Theorem 6. A class function F has a uniform lifting f i� fw j f(w) � r),
fw j f(w) � rg 2 fx j 9A(A:FN !� P(T )1X = \n2FNAg for aIl r 2 R.

The proof follows by Theorem 4.

Let F0:T ! Real , so that ÆF (w) = F0(w). The function F0 is Loeb measur-
able i� for all r 2 R, we have fw 2 T j F (w) � rg 2 L(T ).

3. Integration

Let 
 be in�nite set, then there is n 2 N and a set function f so that

f :n
on

�!
1�1


. Then, we have
P

w2
 F (w) =
Pn

m=1 F (f(m)).

A bounded and Loeb measurable function F : 
 ! R is simple i� range (F )
is �nite.

Def. 6. Let F be bounded and measurable function. If F is simple, thenR


F (w)dw =

P
r2range (F ) r � P (F

�1(frg)). In general

Z



F (w)dw = sup

8<
:
Z



G(w)dw j G is simple and G � F

Theorem 7. (Loeb) Let F : 
! R be bounded and Loeb measurable function
and let f : 
! RN be a bounded lifting of F , thenZ




F (w)dw = st
X
w2


f(w)4w:

The proof is similar to the proof in (2).

Theorem 8. Let F : [0; 1]! R be bounded Lebesgue measurable and let f be
a lifting function of f . Then, we have

R

 F (t)dt = st

P
w2
 f(w)4w.

The proof follows easily by Theorem 4. and Theorem 7.

Let F : 
 ! RN be Loeb measurable and non-negative. Let us denote
min(F (w); n) by (F ^ n)(w).

Then, we de�ne
R

 F (w)dw = limn!1

R

(F ^ n)(w)dw.

A function F is Loeb integrable i�
R

 F (w)dw is �nite.

We can denote max(F (w); 0) by F+(w) and min(F (w); 0) by F�(w). Then
we have F = F+ + F�.
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In general case, for unbounded F , we de�neZ



F (w)dw =

Z



F+(w)dw �

Z



�F�(w)dw:

So, we see that a function F is Loeb integrable i� both F+ and F� are.

Def. 7. Let f be non-negative set function so that f : 
! RN . The function
f is s-integrable i� sum

P
w2
 f(w)4w is �nite, and

lim
n!1

FN

st
X
w2


(f ^ n)(w)4w = st
X
w2


f(w)4w:

In general, a function f is s-integrable i� both f+ and f� are.

Theorem 9. A function F is Loeb integrable i� F has an s-integrable
lifting f .

The proof is similar to the proof in (2).

For F0: [0; 1]! Real and F0(w) =
Æ F (w) we can de�ne

1Z
0

F (t)dt =Æ

0
@ 1Z

0

F (t)dt

1
A :
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