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APPLICATION OF CHAPLIGIN'S THEOREM TO

AUTONOMOUS SYSTEMS
1

Zvezdana Radi�sin

The aim of this paper is to apply the Chapligin's method for constructing
boundary curves to some �rst order di�erential equations. For these equations
other authors observed the topological structure of integral curves or the existence
and the number of limit cycles.

Since in the Poincar�e-Bendixson theory, which deals with these problems,
there occur systems

(1)
dx

dt
=M(x; y);

dy

dt
= N(x; y)

(autonomous systems) and having in mind that solutions of (1) are paths x = g(t),
y = h(t) in a phase plane, we may ask if the Chaplygin's method might be extended
to be valid not only for solutions of the di�erential equation but even for solutions
of the system (1). We shall state a theorem for an autonomous system which is an
analogue to the Chapligin's theorem for a �rst order di�erential equation.

Theorem. Consider the system (1), where M(x; y) and N(x; y) are con-

tinuous functions de�ned on some domain D and satisfy Lipschitz condition with

respect to x and y in every closed domain of D, and in that domain let M(x; y) > 0.
Let x = g(t), y = h(t) be a unique solution of the system (1), satisfying the initial

condition g0(t0) = x0, h(t0) = y0, which de�nes a path 
(t) in a phase plane. Let

u(x) and v(x) be functons such that u(x0) = v(x0) = y0 and let

(2)
M(x; u)u0(x) < N(x; u);

M(x; v)v0(x) > N(x; v)

1Presented at Colloquium on Oualitative Theory of Di�erential Equations, Szeged (Hun-
gary), 30th of August, 1979. The paper is a part of my Doctoral dissertation, which was led by
prof. M. Bertolino.
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in the domain D for x � x0. Then the path 
(t) does not intersect the curves

de�ned by x = t, y = u(t) and x = t, y = v(t) for t > t0.

Proof. { According to the hypothesis, the function N(x;y)
M(x;y) is continuous

in D and satis�es Lipschitz condition in every closed domain in D, since from the
inequalities

jM(x2; y2)�M(x1; y1)j < k1(jx2 � x1j+ jy2 � y1j);
jN(x2; y2)�N(x1; y1)j < k2(jx2 � x1j+ jy2 � y1j)

we obtain

����N(x; y2)

M(x; y2)
� N(x; y1)

M(x; y1)

���� <
<
jM(x; y1)kN(x; y2)�N(x; y1)j+ jN(x; y1)kM(x; y2)�M(x; y1)j

jM(x; y2)kM(x; y1)j <

<
M1k2jy2 � y1j+M2k1jy2 � y1j

m2
= kjy2 � y1j;

where M1, M2 and m are constans such that

m � jM(x; y)j �M1; jN(x; y) �M2

in every closed domain in D. Thus there exists a unique solution y(x) of the
di�erential equation

y0 =
N(x; y)

M(x; y)

such that y(x0) = y0. From the positivity of the derivative dx
dt

we see that x > x0
for t > t0. Consequently, according to the Chapligin's theorem for a �rst order
di�erential equation, there follows

u(x) < y(x) < v(x):

This completes the proof.

Remark 1. { If M(x; y) < 0, the formulation of the theorem is analogous,
but 
(t) does not intersect the corresponding curves for t < t0.

Remark 2. { If the inequalities (2) hold for x � x0, 
(t) does not intersect
the corresponding curves for t < t0 if M(x; y) > 0, and for t > t0 if M(x; y) < 0.

Remark 3. {If the function N(x; y) is constant sign (let N(x; y) > 0), the
formulation of the theorem is analogous; instead of functions u(x) and v(x), one
considers functions u(y) and v(y), the inequalities (2) change to

N(u; y)u0(y) < M(u; y); N(v; y)u0(y) > M(v; y);
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and the corresponding curves are de�ned by x = u(t), y = t and x = v(t), y = t.

The question is whether the assumption M(x; y) > 0, which leads to the
existence of a function as a solution of an autonomous system instead of any path in
a phase plane, is necessary or not. In order to show the necessity of this assumption,
consider the system

dx

dt
= x� y;

dy

dt
= x+ y:

One the solutions of this system, whose path passes trought the point (1; 0) as
t = 0, is x = et cost, y = et sint. The function u(x) = 0 satis�es the inequality

(x� 0) � 0 < x+ 0

for x � 1 and passes trough (1; 0) but still the corresponding curve and the integral
curve intersect in every point (e2k�; 0) for k = 1; 2; . . .

Thus, we have only an anlogue to the Chapligin's theorem for a �rst order
di�erential equation and a proper extension to an autonomous system cannot be
made.

1. Observe the di�erential equation

(3) y0 = � x(ax + by + c)

y(ax+ by + c) + x2 + y2 � 1
:

The boundary curves of the solution y(x) passing trough the point (x0; y0) in the
domain


 = f(x; y):x 6= o; (ax+ by + c)(x2 + y2 � 1)y > 0g;
where (x0; y0) 2 
, are the straight line y = y0 and the circle x2 + y2 = x20 + y20 .

To prove this, notice that if ax + by + c > 0, x2 + y2 � 1 > 0, y > 0, x > 0,
there holds

�x

y
� x(ax+ by + c)

y(ax+ by + c) + x2 + y2 � 1
< 0;

and, according to the solutions of the equations y0 = �x=y and y0 = 0 we �nd that
for x > x0 q

x20 + y20 � x2 < y(x) < y0:

One obtains the same inequality for ax+ by+ c < 0, x2 + y2� 1 < 0, y > 0, x > 0.

In the same manner we obtain that for ax+by+c > 0, x2+y2�1 < 0, y < 0,
x > 0, as well as for ax+ by + c < 0, x2 + y2 � 1 > 0, y < 0, x > 0

y0 < y(x) < �
q
x20 + y20 � x2:

If ax + by + c > 0, x2 + y2 � 1 > 0, y > 0, x < 0 or ax + by + c < 0,
x2 + y2 � 1 < 0, y > 0, x < 0, there follows

y0 < y(x) <
q
x20 + y20 � x2:
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For ax + by + c > 0, x2 + y2 � 1 < 0, y < 0, x < 0 and for ax + by + c < 0,
x2 + y2 � 1 > 0, y < 0, x < 0 we have

�
q
x20 + y20 � x2 < y(x) < y0:

Qin Yuan-xun j2j proved that a necessary and suÆcient condition for a qua-
dratic system to have algeabraic limit cycles of second degree is that it may be
transformed by a nonsingular linear transformation into the form (3), where con-
stants a; b and c satisfy conditions c2 > a2+b2, a 6= 0. He also proved the uniqueness
and stability and presented practical computational procedures of such limit cycles.
These conclusions follow from the characteristics of the equations (3). Obviously,
the unit circle x2 + y2 = 1 is one of the solutions, which is, due to c2 > a2 + b2,
periodic. If a = 0, one obtains that the critical point inside the unit circle is a
center. If a 6= 0 the critical point is a focus (precisely, the author proves that
for b 6= 1 the critical point inside the circle is a focus or a node; a later result of
Vorobyew in 1960, that a critical point inside a closed curve is not a node de�nes
this). A qualitative picture of the paths is studied �rst for a = 0 and then for
a 6= 0. Consequently, the author proves that for b = �1 there is only one critical
point i.e. a center for a = 0 and a focus for a 6= 0, for b < �1 there are two centers
(two focal points), and for b > �1 a center (a focus) and a saddle.

2. The equation

(4) y0 =
�x+ bxy + cy2 + ay

y + y2

has been studied in several papers. Ye Yan-qian, He Chang-you, Wang Ming-shu,
Xu Ming-wei and Luo Ding-jun proved in 1963. that for c = 0 there are no limit
cycles. Averin proved in 1966. that one can �nd numbers a > 0 and b > 2 such
that there are two limit cycles enclosing the origin. Cherkas and Zilevich j7j, j8j,
j9j proved for a � 0, c � 0 the existence of a most one limit cycle enclosing (0; 0).

Here we assume that a � 0, c � 0. Suppose b � 0; then we �nd that a
solution y(x) with an initial condition y(x0) = y0, in the domain x > 0, y > 0
satis�es for x > x0 the inequalitiesq

x20 + y20 � x2 < y(x) <

�
b

c
x0 + y0 +

b+ ac

c2

�
ec(x�x0) � b

c
x0 � b+ ac

c2
(c > 0);q

x20 + y20 � x2 < y(x) <
b

c
(x2 � x20) + a(x� x0) (c = 0):

These inequalities follow from

�x

y
<
�x+ bxy + cy2 + ay

y + y2
< bx+ cy + a

and from the solutions of the corresponding di�erential satisfying the initial condi-
tion y(x0) = y0.
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Suppose b < 0; in the same domain there hold the inequalities

q�1(x) < y(x) <
�
y0 +

a

c

�
ec(x�x0) � a

c
(c > 0);

q�1(x) < y(x) < a(x� x0) + y0 (c = 0);

where q�1(x) is the inverse function of the function

q(x) =

s
x20 +

2

b
(x� y0) +

2

b2
ln

1� bx

1� by0
:

This follows from

by � 1

y
x <

�x+ bxy + cy2 + ay

y + y2
< cy + a

and one obtains the above inequalites by intergrating the corresponding equations.

A possibility of the existence of a limit cycle follows also from our results.
The lower boundary curve is a circle for b � 0; for b < 0 is given by

x =

s
x20 +

2

b
(y � y0) +

2

b2
ln

1� by

1� by0

and this curve intersect x axis as x =
q
x20 +

2
b2
f�by0 � ln(1� by0)g > x0. Thus

the integral curve passing through (x0; y0) does not necessarily remain in a domain
bounded by boundary curves.

3. For an equation

(5) y0 =
a0x

n + a1x
n�1y + . . . + any

n

b0xn + b1xn�1y + . . . + bnyn
;

where
nX
i=0

a2i > 0;

nX
i=0

b2i > 0;

and ai or bi(i = 0; 1; . . . ; n) are of the same sign or egual to zero, the boundary
curves passing through (x0; y0) in the domain


 = f(x; y): y 6= x; xy > 0g

are

jyj =
���� n+1
q
M(xn+1 � xn+10 ) + yn+10

����
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and

jyj =
����� n�1
s
M

�
1

xn�1
� 1

xn�10

�
+

1

yn�10

�����
�1

;

where

M =
a0 + a1 + . . . + an
b0 + b1 + . . . + bn

:

More precisely, under the assumptions that ai(i = 0; 1; . . . ; n) are of the same
sign as bi(i = 0; 1; . . . ; n) and y > x > 0, or that ai(i = 0; 1; . . . ; n) are of opposite
sign re�ered to bi(i = 0; 1; . . . ; n) and x > y > 0, there holds for x > x0

n+1

q
M(xn+1 � xn+10 ) + yn+10 < y(x) <

1

n�1

r
M
�

1
xn�1

� 1
x
n�1

0

�
+ 1

y
n�1

0

:

If ai are of the same sign as bi and x > y > 0, or ai are of opposite sign
refered to bi and y > x > 0, one gets for x > x0

1

n�1

r
M
�

1
xn�1

� 1
x
n�1

0

�
+ 1

y
n�1

0

< y(x) <
n+1

q
M(xn+1 � xn+10 ) + yn+10 :

If ai are of the same sign as bi and y < x < 0, or ai are of opposite sign
refered to bi and x < y < 0, one obtains

� n+1

q
M(xn+1 � xn+10 ) + yn+10 < y(x) <

1

n�1

r
M
�

1
xn�1

� 1
x
n�1

0

�
+ 1

y
n�1

0

for x > x0.

If ai are of the same sign as bi and x < y < 0, or ai are of opposite sign
refered to bi and y < x < 0, there holds for x > x0

� 1

n�1

r
M
�

1
xn�1

� 1
x
n�1

0

�
+ 1

y
n�1

0

< y(x) < � n+1

q
M(xn+1 � xn+10 ) + yn+10 :

Lee Shen-ling j4j calculated thhe number of topological classes of dispositions
of paths in a phase plane foe the equation (5), by constructing some special numer-
ical functions. Chhang Die j3j observed the equation (5) for n = 3; under various
assumtions on the coeÆcients of the equation he obtained the number of invariant
half-line paths, and in that manner the topological structure of paths has been
divided into �fteen classes.
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4. Consider the equation

(6) y0 =
�x+ 2ay + f(x; y)

y
(� 6= 0):

Gukyamuhow j12j assumed that f(x; y) is an analytic function about (0; 0) such
that in expansion in power series the constant and �rst order terms are missing.
He also assumed that the roots of the characcteristic equation are real (of the same
sigh, of opposite sign and double, i.e. respectively � > 0, �a2 < � < 0, � = �a2)
and studied the nature of integral curves near the origin.

Here we do not necessarily need that f(x; y) is analitic; our assumptions deal
only with certain types of boundary conditions.

Let � < 0 and


 =

�
(x; y): y > 0; �2a < f(x; y)

y
< M

�
;

whereM is any real constant. Then for the solution y(x) of the equation (6) passing
through (x0; y0) in the domain 
 for x > x0 we have

q
�(x2 � x20) + y20 < y(x) < (2a+M)(x� x0) + y0:

If � > 0 and


 =

�
(x; y): y > k > 0; �2a < f(x; y)

y
< M

�
;

in 
 for x > x0 we �ndq
�(x2 � x20) + y20 < y(x) <

M

2k
(x2 � x20) + (2a+M)(x� x0) + y0:

Letting � > 0 and


 = f(x; y):x > 0; y > 0; �2ay < f(x; y) < ��xg

for x > x0 in 
 we obtain

q
�(x2 � x20) + y20 < y(x) < 2a(x� x0) + y0:

The error of this approximation in the interval x0 < x < x0 + � is

R(x) < 2a(x� x0) + y0 �
q
�(x2 � x20) + y20) < 2a�:
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On the other hand, letting � < 0 and


 = f(x; y):x > 0; y > 0; ��x < f(x; y) < �2ayg

for x > x0 in 
 we get

2a(x� x0) + y0 < y(x) <
q
�(x2 � x20) + y20 ;

and hence for the error in x0 < x < x0 + � we have

R(x)
q
�(x2 � x20) + y20 � 2a(x� x0)� y0 < 2a�:

5. Consider the equation

(7) y0 =
ax2 � x+ bxy + cy + dy2

y(x+ 1)
;

where 0 < c + d < �, b � 1, 0 � a � �2(1 � d) � �b (� is any positive number).
For the solution y(x) such that y(0) = 1 there holds for x > 0

1 < y(x) < �x+ 1:

To prove this, notice the function u(x) = 1 satis�es the inequality

u0
ax2 � x+ bxy + cu+ du2

u(x+ 1)
= �ax2 + (b� 1)x+ c+ d

x+ 1
< 0

for x � 0, and v(x) = �x+ 1 satis�es for x � 0

v0 � ax2 � x+ bxv + cv + dv2

v(x + 1)
=

=
(�2 � a� �b� �2d)x2 + (�2 + �+ 1� b� �c� 2�d)x + �� c� d

(�x+ 1)(x+ 1)
> 0:

The last inequality follows from

�2�a� �b� �2d � 0;

�� c� d > 0;

and by multiplying the �rst inequality by 1
�
and the second one by � and adding

them we get

�2 + �+ 1� b� �c� 2�d > 1 +
a

�
> 0:
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The equation (7) has been studied by Cherkas, Zilevich and Rychkow j5j, j7j,
j9j, j10j. They proved that the equation (7) has at most one limit cycle. Due to
our result, if there is a limit cycle, then the point (0; 1) lies outside it.

6. Consider the equation

(8) y0 =
�x+ �y + ax2 + bxy + cy2

y(1 + �x)
;

where � � 0, 0 < � + c < �, b � 1, 0 � a � �2(� � c) � �b(� is any positive
number). For the solution y(x) such that y(0) = 1 there holds for x > 0

1 < y(x) < �x+ 1:

To prove this, notice that the function u(x) = 1 satis�es for x � 0 the
inequality

u0 � �x+ �u+ ax2 + bxu+ cu2

u(1 + �x)
=

ax2 + (b� 1)x+ �+ c

1 + �x
< 0;

and in the same interval for the function v(x) = �x + 1 we have

v0 � �x+ �v + ax2 + bxv + cv2

v(1 + �x)
=

=
(�2�� a� �b� �2c)x2 + (�2 + ��� �� + 1� b� 2�c)x+ �� �� c

(�x + 1)(1 + �x)
> 0

due to

�2 + ��� ��+ 1� b� 2�c � �2 + ��� ��� �c+ 1� �� > 1:

Kukles and Rozet j11j obtained some necessary and suÆcient conditions for
the nonlocal generation of a limit cycle from singular separatix cyccles for the
equation (8).

7. Consider the equation

(9) y0 =
a+ bx+ cy + dx2 + exy + fy2

1 + xy
;

where 0 < a < �, 0 � b � ��c, d � 0, e � a, 0 < f � 1� e
�
� d

�2
. For the solution

y(x) such that y(0) = 0 in the domain x > 0, y � 0 one gets

0 < h1(x) < y(x) < h2(x) < �x;
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where h1(x) and h2(x) are respectively the solutions of the di�erential equations

y0 =
��dx3 � bx2 + (e� a)x+ c

	
y + dx2 + bx+ a;

y0 =
�dx3 � bx2 + (�f + e� a)x + c

1 + �x2
y + dx2 + bx+ a

such that h1(0) = h2(0) = 0.

The function u(x) = 0 satis�es for x � 0 the inequality

u0 � a+ bx+ cu+ dx2 + exu+ fu2

1 + xu
= �(dx2 + bx+ a) < 0:

and the function v(x) = �x satis�es for x > 0 the inequality

v0 � a+ bx+ cv + dx2 + exv + fv2

1 + xv
=

=
�2 � d� e�� f�2)x2 + (�b� c�)x + �� a

1 + �x2
> 0:

To �nd the second pair of aproximate solutions h1(x), h2(x) we solve the
linear di�erential equations

y0 = f 0y(x; 0)y + f(x; 0);

y0 =
f(x; �x)� f(x; 0)

�x
y + f(x; 0);

where

f(x; y) =
a+ bx+ cy + dx2 + exy + fy2

1 + xy
:

Di�erentiating with respect to y we �nd

f 0y(x; y) =
�dx3 � bx2 + (e� a)y + c+ fxy2 + 2fy

(1 + xy)2

f 00yy(x; y) = 2
dx4 + bx3 + (a� e)x2 � cx+ f

(1 + xy)2
:

Tanja do ovde ispravljeno Due to the posivity of the second derivative, the
second, better approximating, pair of solutions may be obtained.

If �� < a < 0, �c � b � 0, �2(1 � f) + �e � d � 0 and y(0) = 0, in the
interval 0 < x < 1=

p
� there holds

��x < y(x) < 0:



Application of Chapligin's theorem to autonomous system 169

This follows from the inequalities

u0 � a+ bx+ cu+ dx2 + exu+ fu2

1 + xu

=
(�2 � d+ e�� f�2)x2 + (c�� b)x� �� a

1� �x2
< 0

and

v0 � a+ bx+ cv + dx2 + exv + fv2

1 + xv
= �(dx2 + bx+ a) > 0

satis�ed by the functions u(x) = ��x and v(x) = 0 in the interval 0 � x < 1=
p
�.

Cherkas and Zilevich j6j proved that the equation (9) has no limit cycle if the
polynomial

P4(x) = fx4 � cx3 + (a� e)x2 + bx+ d

can be written as a product

P4(x) = P2(x)Q2(x);

where

P2(x) = (1 + 2f)x2 � cx� e

and Q2(x) is a polynomial of degree most two.

8. Consider the equation

(10) y0 =
a+ bx+ cy + dx2 + exy + fy2

x2 + y
;

where 0 < a+ c+ f < �, 0 � b+ e � �(� � c � 2f), 0 � d � �(1 � e � �f). For
the solution y(x) such that y(0) = 1 for x > 0 there holds

1 < y(x) < �x+ 1:

This follows from the inequalities

u0 � a+ bx+ cu+ dx2 + exu+ fu2

x2 + u
= �dx2 + (b+ e)x+ a+ c+ f

x2 + 1
< 0;

v0 � a+ bx+ cv + dx2 + exv + fv2

x2 + v
=

=
(�� d� �e� �2f)x2 + (�2 � b� �c� e� 2�f)x+ �� a� c� f

x2 + �x+ 1
> 0

satis�ed by the functions u(x) = 1 and v(x) = 1 + �x for x � 0.
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If �� < a + c + f < 0, �(� + c + 2f) � b + e � 0, �(e � �f � 1) � d � 0
(0 < � < 2), for the solution y(x) such that y(0) = 1 we have

1� �x < y(x) < 1

in the interval x > 0.

To prove this, notice that for u(x) = 1 � �x and v(x) = 1 in the interval
x � 0 there holds

u0 � a+ bx+ cu+ dx2 + exu+ fu2

x2 + u
=

=
(��� d+ �e� �2f)x2 + (�2 � b+ �c� e+ 2�f)x� �� a� c� f�

x� �
2

�2
+ 1� �2

4

< 0;

v0 � a+ bx+ cv + dx2 + exu+ fu2

x2 + v
= �dx2 + (b+ e)x+ a+ c+ f

x2 + 1
> 0:

Cherkas and Zilevich j8j proved that the equation (10) has no limit cycle if
the polynomial

P4(x) = fx4 � ex3 + (d� c)x2 + bx+ a

can be written in the form

P4(x) = P2(x)Q2(x);

where
P2(x) = 2fx2 � (2 + e)x+ c

and Q2(x) is polynomial of degree most two.
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