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APPLICATION OF CHAPLIGIN’S THEOREM TO
AUTONOMOUS SYSTEMS!

Zvezdana Radisin

The aim of this paper is to apply the Chapligin’s method for constructing
boundary curves to some first order differential equations. For these equations
other authors observed the topological structure of integral curves or the existence
and the number of limit cycles.

Since in the Poincaré-Bendixson theory, which deals with these problems,
there occur systems

(1) LMy, BNy

(autonomous systems) and having in mind that solutions of (1) are paths z = g(¢),
y = h(t) in a phase plane, we may ask if the Chaplygin’s method might be extended
to be valid not only for solutions of the differential equation but even for solutions
of the system (1). We shall state a theorem for an autonomous system which is an
analogue to the Chapligin’s theorem for a first order differential equation.

THEOREM. Consider the system (1), where M(x,y) and N(x,y) are con-
tinuous functions defined on some domain D and satisfy Lipschitz condition with
respect to x and y in every closed domain of D, and in that domain let M (z,y) > 0.
Let x = ¢g(t), y = h(t) be a unique solution of the system (1), satisfying the initial
condition go(to) = zo, h(to) = yo, which defines a path v(t) in a phase plane. Let
u(z) and v(x) be functons such that u(xo) = v(xo) = yo and let

(2) M (z,u)u'(z) < N(z,u),
M (x,v)v'(z) > N(z,v)
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in the domain D for x > xo9. Then the path ~(t) does not intersect the curves
defined by x =t, y = u(t) and x = t, y = v(t) for t > to.

PrOOF. — According to the hypothesis, the function %

in D and satisfies Lipschitz condition in every closed domain in D, since from the
inequalities

is continuous

|M (22,y2) — M(z1,y1)| < k1(|z2 — 21| + Y2 — 011),
IN(z2,y2) = N(21,y1)| < k2 (|22 — 1] + [y2 — 91])

we obtain

N(z,y2)  N(z,y1)
M(z,y2) M(z,y1)

< M@, y)lIN(,y2) = N, yu)| + [N (2, y) | M (@, y2) = M(@,y1)]
|M (2, y2)|| M (z,y1)]

< Mikalys — y1| + Maky|y2 — y1]

<

m2 = k|y2 - y1|7
where M, M- and m are constans such that

in every closed domain in D. Thus there exists a unique solution y(z) of the
differential equation

y = N(z,y)
M(z,y)
such that y(zp) = yo. From the positivity of the derivative fl—”t” we see that z > xg

for t > ty. Consequently, according to the Chapligin’s theorem for a first order
differential equation, there follows

u(z) < y(z) < v(z).

This completes the proof.

REMARK 1. —If M(z,y) < 0, the formulation of the theorem is analogous,
but v(t) does not intersect the corresponding curves for ¢ < tg.

REMARK 2. - If the inequalities (2) hold for x < xg, y(t) does not intersect
the corresponding curves for ¢t < ty if M(x,y) > 0, and for t > to if M(z,y) < 0.

REMARK 3. -If the function N(z,y) is constant sign (let N(z,y) > 0), the
formulation of the theorem is analogous; instead of functions u(x) and v(z), one
considers functions u(y) and v(y), the inequalities (2) change to

N(u,y)u'(y) < M(u,y), N(v,y)u'(y) > M(v,y),
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and the corresponding curves are defined by = = u(t), y = ¢ and = v(t), y = ¢.

The question is whether the assumption M (z,y) > 0, which leads to the
existence of a function as a solution of an autonomous system instead of any path in
a phase plane, is necessary or not. In order to show the necessity of this assumption,
consider the system

dx dy
I =r—-y, T =r+y.
One the solutions of this system, whose path passes trought the point (1,0) as
t=0,is z = e’ cost, y = e’ sint. The function u(z) = 0 satisfies the inequality

(z—0)-0<z+0

for x > 1 and passes trough (1,0) but still the corresponding curve and the integral
curve intersect in every point (e?*7 0) for k =1,2,...

Thus, we have only an anlogue to the Chapligin’s theorem for a first order
differential equation and a proper extension to an autonomous system cannot be
made.

1. Observe the differential equation

z(ax 4+ by + ¢)
ylaz +by+c)+ 2> +y>2—1"

® v = -

The boundary curves of the solution y(x) passing trough the point (xg,yo) in the
domain
Q= {(z,y):2 # 0, (ax + by + ¢)(z° + y* — 1)y > 0},

where (z9,y0) € 1, are the straight line y = yo and the circle 2 + y? = 22 + y2.

To prove this, notice that if az + by +¢ >0, 22 +y>2—-1>0,y >0, z > 0,
there holds

x z(ax 4+ by + ¢)
T 2 2 <0,
y ylax+by+e)+az2+y> -1
and, according to the solutions of the equations y’ = —z/y and y’ = 0 we find that

for x > xo

Vs +ys — a2 <y(@) <o

One obtains the same inequality for ax +by+c¢ <0, 22 +3*>-1<0,y > 0, z > 0.

In the same manner we obtain that for az +by+c¢ > 0,22 +y?>-1< 0,y <0,
z>0,aswellasforar +by+¢c¢<0,224+9y2-1>0,y<0,2>0

Yo < y(z) < —y/ag +yg — a2

Ifar+by+c>0 224+y>-1>0,y >0,z <0orazx+by+c <0,
22 +y>—1<0,y >0,z <0, there follows

yo < y(x) < y/xf +y5 — 2.
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For az +by+c¢>0,224+y?> -1<0,y <0,z <0 and for azx + by + ¢ < 0,
22 +y>—1>0,y <0,z <0 we have

—\/ 75 + 5 — 22 <y(x) < Yo-

Qin Yuan-xun |2| proved that a necessary and sufficient condition for a qua-
dratic system to have algeabraic limit cycles of second degree is that it may be
transformed by a nonsingular linear transformation into the form (3), where con-
stants a, b and ¢ satisfy conditions ¢ > a?+b%, a # 0. He also proved the uniqueness
and stability and presented practical computational procedures of such limit cycles.
These conclusions follow from the characteristics of the equations (3). Obviously,
the unit circle 2 + y? = 1 is one of the solutions, which is, due to ¢ > a® + b?,
periodic. If a = 0, one obtains that the critical point inside the unit circle is a
center. If a # 0 the critical point is a focus (precisely, the author proves that
for b # 1 the critical point inside the circle is a focus or a node; a later result of
Vorobyew in 1960, that a critical point inside a closed curve is not a node defines
this). A qualitative picture of the paths is studied first for ¢ = 0 and then for
a # 0. Consequently, the author proves that for b = —1 there is only one critical
point i.e. a center for a = 0 and a focus for a # 0, for b < —1 there are two centers
(two focal points), and for b > —1 a center (a focus) and a saddle.

2. The equation

—z 4 bry + cy® + ay
y+y?

(4) y' =

has been studied in several papers. Ye Yan-qian, He Chang-you, Wang Ming-shu,
Xu Ming-wei and Luo Ding-jun proved in 1963. that for ¢ = 0 there are no limit
cycles. Averin proved in 1966. that one can find numbers a > 0 and b > 2 such
that there are two limit cycles enclosing the origin. Cherkas and Zilevich |7], |8],
|9] proved for a > 0, ¢ > 0 the existence of a most one limit cycle enclosing (0, 0).

Here we assume that a > 0, ¢ > 0. Suppose b > 0; then we find that a
solution y(x) with an initial condition y(xo) = yo, in the domain z > 0, y > 0
satisfies for > z( the inequalities

b b+ ac _ b b+ ac
oo <o) < (Lo ban+ TEE etero gy DI (o

b
m%+y3—x2<y(m)<g(g;2_a:(2))+a(x—g;0) (¢ =0).
These inequalities follow from

xr —z+bry+cy:+a
——< Y 2y y<bx+cy+a
Yy y+y

and from the solutions of the corresponding differential satisfying the initial condi-
tion y(zo) = yo-
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Suppose b < 0; in the same domain there hold the inequalities
a a
(@) <yla) < o+ 2) e =L (e >0,
¢ Hz) <y(x) < alr —x0) + yo (c=0),

where ¢! (z) is the inverse function of the function

2 2 1—bzx

This follows from

by — 1 — + bry + cy® + ay
T <

y Ut 2 <cy+a

163

and one obtains the above inequalites by intergrating the corresponding equations.

A possibility of the existence of a limit cycle follows also from our results.

The lower boundary curve is a circle for b > 0; for b < 0 is given by

2 2 1—by
= 2 — — —1
T \/xo + b(y yU) + b2 n 1 _ byO

and this curve intersect z axis as # = /a3 + Z{—byo — In(1 — byo)} > zo. Thus

the integral curve passing through (zo,yo) does not necessarily remain in a domain

bounded by boundary curves.

3. For an equation

aoa:" + alm”_ly +...+ anyn

5 =
(5) Y box™ + bz~ ly + ...+ by™’
where
n n
Y ai>0, > b>0,
i=0 =0
and a; or b;(i = 0,1,... ,n) are of the same sign or egual to zero, the boundary

curves passing through (xg,yo) in the domain

Q=A{(z,y):y # =2y > 0}

are

= | "M - ot 4 gt
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and
-1
B 1 1 1
|y| = i/M (xn—l - xgl) + y(r)zfl ’
where
_ata+...+ap
bo+bi+...+b,
More precisely, under the assumptions that a;(i = 0,1, ... ,n) are of the same

sign as b;(i =0,1,... ,n) and y >z > 0, or that a;(i =0,1,... ,n) are of opposite
sign reffered to b;(i = 0,1,...,n) and £ > y > 0, there holds for z > z

1

-1 1 1 1
" M (In—l - n71) + ynfl

Y M@ =2t 4t < (o) <

If a; are of the same sign as b; and z > y > 0, or a; are of opposite sign
refered to b; and y > x > 0, one gets for = > g

<ylz) <™ \1/M(a:”+1 — gt +ygth

If a; are of the same sign as b; and y < = < 0, or a; are of opposite sign
refered to b; and z < y < 0, one obtains

=M (et — gt 4yt < y() <

for z > xo.

If a; are of the same sign as b; and =z < y < 0, or a; are of opposite sign
refered to b; and y < = < 0, there holds for = > xg

- <ylz)<-" \1/M(91:”+1 — gt +ygth

Lee Shen-ling |4| calculated thhe number of topological classes of dispositions
of paths in a phase plane foe the equation (5), by constructing some special numer-
ical functions. Chhang Die |3| observed the equation (5) for n = 3; under various
assumtions on the coefficients of the equation he obtained the number of invariant
half-line paths, and in that manner the topological structure of paths has been
divided into fifteen classes.
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4. Consider the equation

g =t 20+ f@y)
y

(6) (1 #0).

Gukyamuhow |12] assumed that f(x,y) is an analytic function about (0,0) such
that in expansion in power series the constant and first order terms are missing.
He also assumed that the roots of the characcteristic equation are real (of the same
sigh, of opposite sign and double, i.e. respectively u > 0, —a®? < pu < 0, p = —a?)
and studied the nature of integral curves near the origin.

Here we do not necessarily need that f(z,y) is analitic; our assumptions deal
only with certain types of boundary conditions.

Let ¢ < 0 and
Q:{(m,y):y>0, —2a<@<M},

where M is any real constant. Then for the solution y(z) of the equation (6) passing
through (zo,yo) in the domain Q for > 2o we have

\ 1u(@? = 3) + v < y(x) < (2a+ M)(z — z0) + yo.

If £ >0 and
Q:{(m,y):y>k>0, —2&<@<M},
in Q for x > xy we find

M
u(a® — xg) + 3 < y(z) < 57 (@ —a5) + (2a+ M)(@ — o) + yo-

Letting ¢ > 0 and
Q={(z,y):x >0, y>0, —2ay < f(z,y) < —pzx}
for x > ¢ in Q we obtain
(2 — a3) + 43 < y(x) < 2a(z — o) + yo.

The error of this approximation in the interval zg < z < g + «a is

R(z) < 2a(x — xo) + yo — \/u(:nQ —23) +y2) < 2aa.
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On the other hand, letting 4 < 0 and
Q:{(l',y)21’>0, y>07 —,ux<f(:r,y)<—2ay}

for x > x( in  we get

2a(z — x0) + yo < y(x) < \/p(z? — 23) + 3,

and hence for the error in xg < x < zg + o we have
R(z)y/p(z? — 22) + y2 — 2a(z — xo) — yo < 2aa.

5. Consider the equation

) y,:amQ—m+bxy+cy+dy2
y(z+1) ’

where 0 < c+d < a,b>1,0<a<a?l—d) —ab(ais any positive number).
For the solution y(z) such that y(0) = 1 there holds for > 0

1<y(z) <az+l.

To prove this, notice the function u(z) = 1 satisfies the inequality

,ar? —x + bry + cu + du? ar’ +(b—1)z+c+d
u =—
u(z + 1) z+1

<0

for x > 0, and v(z) = az + 1 satisfies for x >0

,_amQ—m—l-ba:v—l-cv—l-va
v(z+1)
(@®—a—ab—a?d)x> + (> +a+1—-b—ac—2ad)z +a—c—d

= (az + 1)(z + 1) >0

v

The last inequality follows from

a?—a—ab—a%d >0,
a—c—d>0,

and by multiplying the first inequality by é and the second one by « and adding
them we get

a2+a+1—b—ac—2ad>1+2>0.
«a
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The equation (7) has been studied by Cherkas, Zilevich and Rychkow |5/, |7],
9], |10]. They proved that the equation (7) has at most one limit cycle. Due to
our result, if there is a limit cycle, then the point (0, 1) lies outside it.

6. Consider the equation

—z 4+ My + az® + by + cy?
y(1+ p)

(8) y' =

)

where p > 0,0 < A+c<a,b>1,0<a < a?(u—c)— abla is any positive
number). For the solution y(z) such that y(0) = 1 there holds for x > 0

1<y(z) <az+l.

To prove this, notice that the function u(x) = 1 satisfies for z > 0 the
inequality

, —z+ A u+ar? +bru+cu® a4+ (b-—Lz+A+c <
u(1 + px) B 1+ px

0,

and in the same interval for the function v(z) = az + 1 we have

—x + X+ az? + bav + cv?
v(1 + px)
(@*u—a—ab—a?c)z’ + (@*+ap—al+1—-b—2ac)r+a—-A—c

- (az + 1)(1 + px) >0

!

due to
A tap—ar+1—-b—2ac>a’+ap—a\—ac+1—ap>1.

Kukles and Rozet |11] obtained some necessary and sufficient conditions for
the nonlocal generation of a limit cycle from singular separatix cyccles for the
equation (8).

7. Consider the equation

,  a+br+cy+dr® +exy + fy?
(9) y' =

1+ 2y

Where0<a<a,0§b§—ac,dZO,ega,0<f§1—£—%. For the solution

[e3

y(z) such that y(0) = 0 in the domain z > 0, y > 0 one gets

0 < hi(z) <y(z) < ha(z) < ax,
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where hj(z) and ha(x) are respectively the solutions of the differential equations

y' = {—da® — b2’ + (e —a)z + c} y + dz® + bz + q,

—da® — ba _
y = T z? + (af +e a)m+cy+dm2+bm+a
1+ az?

such that h1(0) = h2(0) = 0.
0

The function u(x) = 0 satisfies for > 0 the inequality

,  a+ bz +cu+ds® +eru+ fu?
u —

(2
T2 =—(dz" + bz + a) <0.

and the function v(z) = ax satisfies for z > 0 the inequality

, a+br+cv+da® + exv + foP
14+ 2v
a?—d—ea— fa?)r? +(-=b—ca)r+a—a
= > 0.
1+ ax?

To find the second pair of aproximate solutions hi(z), ha(z) we solve the
linear differential equations

y' = f,(z,0)y + f(,0),

yl — f(a:,a:r) — f(x)o)y + f(l‘,O),
axr

where

a+ bx + cy + dz® + exy + fy?

flz,y) = T+

Differentiating with respect to y we find

—dz® — ba? + (e — a)y + ¢+ fay® + 2fy

' —
" (@) :2da:4+ba:3+(a—e)a:2 —ca:+f‘
(1 + zy)?

Tanja do ovde ispravljeno Due to the posivity of the second derivative, the
second, better approximating, pair of solutions may be obtained.

If ~a<a<0,ac<b<0,a?(l—-f)+ae<d<0andy(0) =0, in the
interval 0 < z < 1/4/a there holds

—azx < y(z) <0.
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This follows from the inequalities

,  a+br+cu+ds® +eru+ fu?
u —
14 zu

(e —d+ea—fa?)r? + (ca—br—a—a
B 1 — ax? <0

and
,  a+bx +cv+dr? +exv+ fo?
v —

14 xv

= —(dz® + bz +a) >0

satisfied by the functions u(z) = —az and v(z) = 0 in the interval 0 <z < 1/4/a.

Cherkas and Zilevich |6] proved that the equation (9) has no limit cycle if the
polynomial
Py(z) = fa* —cx® + (a —e)a® + bx +d

can be written as a product
Py(z) = P2(2)Q2(7),

where
Py(z) = (1+2f)a* —cx—e

and Q2(x) is a polynomial of degree most two.

8. Consider the equation

(10) y,:a+bm+cy+da:2+ea:y+fy2
z2 4y ’

where 0 <a+c+ f<a,0<b+te<ala—c—2f),0<d<a(l —e—af). For
the solution y(z) such that y(0) =1 for £ > 0 there holds

1<y(z) <az+l.
This follows from the inequalities

,  a+bz+cu+dr® +eru+ fu? de’ + (b+e)r+a+c+ f
U — -

2 +u - z2 +1 <0,
, a+br+cv+de® 4 exv+ fo?
v 2+ B
_(a—d-ae—a’flz*+(@® —b—ac—e—2af)r+a—a—c— f 50
2 +ar+1

satisfied by the functions u(z) = 1 and v(z) = 1 4+ az for z > 0.
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If -a<at+c+f<0,ala+c+2f)<b+e<0,ale—af—-1)<d<0
(0 < a < 2), for the solution y(z) such that y(0) = 1 we have

l—az<y(z)<l1

in the interval z > 0.

To prove this, notice that for u(z) = 1 — ax and v(z) = 1 in the interval
x > 0 there holds

,a+br+cu+de? +exu+ fu?
2+ u
—a—d+ae—a?’f)?+(?-b+ac—e+2af)zr—a—a—c—
= <0
(r-9)"+1-9 |

. a+bz+cv+da® +exu+ fu? dm2+(b+e)m+a+c+f>0
v — =— )

2 4 v 2 +1

Cherkas and Zilevich |8] proved that the equation (10) has no limit cycle if
the polynomial
Py(z) = fa* —ex® + (d— )2 + bz +a

can be written in the form

Py(z) = P2(2)Q2(7),
where
Py(z) = 2fz* — (2+e)z +c

and Q2(x) is polynomial of degree most two.
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