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ON (N;Pn) AND (K; 1; �) SUMMABILITY METHODS

Vinod K. Parashar

1.1 Let �am
1 be a given in�nite series with the sequence of partial sums fsng.

The Ces�aro transform of order � of �an is de�ned by

(1:1:1) s�n = S�n=A
�
n; � > �1;

where S�n and A�
n are by the relations;

S�n =

nX
v=0

An
n�vav =

nX
v=0

A��1
n�vSv ;

(1:1:2)
1X
n=0

A�
nx

n = (1� x)���1; (jxj < 1):

The series �an is said to be summable (C;�) to s, if s�n ! s, as n!1, [2].

The series �an an is said to be summable (K; 1; �) to sum s, [5] if the series

(1:1:3) f(�; t) = B�1� t�+1
1X
n=1

S�n

�Z
t

sinnx

2 tanx=2
dx

converges in some interval 0 < t < t0 and limt!+0 f(�; t) = s, where

B� =

8><
>:

�=2 � = �1

(�+ 1)�1 sin(�+ 1)�=2 �1 < � < 0

1 � = 0

where � = �1, the method (K; 1; �) reduces to the method (K; 1) [11].

1unless or otherwise stated � denotes �1
0
.
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The method (K; 1; �) is not regular when �1 � � � 0 [5].

Let fpng be a sequence of constants, real or complex, such that

Pn =

nX
v=0

Pv 6= 0; P�1 = p�1 = 0;

and let us write

(1:1:4) tn =
Tn
Pn

=

nX
v=0

Pn�vsv
Pn

:

The series �an is said to be summable (N;Pn) to sum s, if limu!1 tn exists
and is equal to s ([7], [10]).

In the special cases in which

(1:1:5) pn =

�
n+ �� 1

�� 1

�
=

�(n+ a)

�(n+ 1)�(�)
(� > �1);

(1:1:6)

�
pn = (n+ 1)�1 (� > �1);

pn logn; as n!1;

The (N; pn) summability reduces to (C;�) summability, � > �1, [3] x 5.13 and
harmonic summability methods [3], x 5.13 respectively.

The conditions for the regularity of the method of summation (N; pn) de�ned
by (1.1.4), are

(1:1:7) lim
n!1

pn
Pn

= 0;

and

(1:1:8)
nX

v=0

jpvj = O(pn); as n!1; (see [3]):

If pn is real, non-negative and monotonic non-increasing, the conditions of
regularity (1.1.7) and (1.1.8) are autcmatically satis�ed and the method (N; pn)
is then regular and hence the harmonic summability method is also regular. It is
known that summability (N; 1=(n+1)) implies summability (C;�) for every � > 0.

1.2. We set

(1:2:1) (�pnxn)
�1 = �cnx

n (jxj < 1; C0 = 1)
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Then from (1.1.4) and (1.2.1), we get

(1:2:2) sn =

nX
v=1

cn�vTv

(1:2:3) an =

nX
v=1

cn�v(Tv � Tv�1):

In what follows we take a0 = 0, so that T0 = 0.

2.1. Giving relation between (N; pn) and (R; 1; �) summabilties recently the
authors [2] have proved the following theorem:

Theorem A. �an is (N; p) summable and if

(2:1:1) �n =

nX
k=1

jTk � Tk�1j = O(Pn);

then the series �an is summable (R; 1; �) for �1 � � � 0, provided that pn is a

non-negative, non-increasing sequence such that Pn !1, and

(2:1:2)

1X
k=n+1

jCk j = O

�
1

Pn

�
; n � 0;

(2:1:3)
1X
k=n

Pk�n
k(k + 1)

= O

�
Pn
n

�
; n � 1;

(2:1:4)

nX
k=0

1

Pk
= O

�
n

Pn

�
;

(2:1:5) for a positive number � and n = [�t�1]; � = [t�1]

Pn = O(P�P� ):

It has been proved by Izumi [6] that for Fourier series, summability (K; 1) is
equivalent to summability (R1). Since it is known that for Fourier series summabili-
ty (R; 1) and (R1) are mutually exclusive [4], it follows that in general, summability
(K; 1) and (R; 1) are also independent of each other. Therefore, the object of this
paper is to show that this Theorem A also holds for summability (K; 1; �).
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2.2. Our Main theorem is:

Theorem 1. Let fpng be a non-negative, non-increasing seguence, such

that Pn ! 1, and the conditions (2.1.2) through (2.1.5) hold. If �an is (N; pn)-
summable and if (2.1.1) holds, then �an is also summable (K; 1; �), for { 1 � � � 0.

Combining Theorem 1 with Lemma 5 below, we also get the following inter-
esting and simple result.

Theorem 2. Let fpng be a positive, non-increasing sequence, such that

p0 = 1, Pn ! 1 and fpn+1=png is non-decreasing sequence and the conditions

(2.1.3) through (2.1.5) hold. If �an is (N; pn) summable and if (2.1.1) holds, then
�an is also sumable (K; 1; �), for �1 � � � 0.

2.3. The following lemmas are pertinent for the proof of our theorems.

Lemma 1. ([1], Lema 1). If fpng is a non-negative, non-increasing sequence

such that the series
P
1

v=n Pv�n=v(v + 1) converges, then Pn
n ! 0, as n! 0.

Lemma 2. ([1], Lemma 2). Let fpng be a non-negative, non-increasing

sequence such that, for n � 1,

(2:3:1)

1X
v=n

Pv�n
v(v + 1)

= O

�
Pn
n

�
:

Then for n � 1,

(2:3:2)
1X
v=n

P

f(v + 1)
= O

�
Pn
n

�
:

Lemma 3. ([1], Lemma 3). Let fpng be a non-negative, non-increasing

sequence such that fPn=ng is a null sequence. If �ak is summable (N; pn) then

(i) Wn =

1X
v=n

Tv � Tv�1
v

= o

�
Pn
n

�
;

(ii) Wn
0 =

1X
v=1

Wv = o(Pn):

Lemma 4. ([3], Theorem 22). If p(x) = �pnx
n is convergent for jxj < 1 and

(2:3:3) p0 = 1; pn > 0;
pn+1
pn

�
pn
pn�1

(n > 0); then
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(2:3:4) fp(x)g�1 = 1 + C1x+ C2x
2 + � � �

where Cn � 0, for n = 1; 2; . . . ,
P
1

n=1 jCnj � 1. If �pn =1, then
P
1

n=1 jCnj = 1.

Lemma 5. ([9], Lemma 2). If fpng is a positive and non-increasing sequence

such that p0 = 1, Pn ! 1, and fpn+1=png in non-decreasing sequence, then for

n � 0,

(2:3:5) dn =

1X
v=n+1

jCnj =

nX
v=0

Cv = O

�
1

Pn

�
:

Remark. The identity

(2:3:6) dn =
1X

v=n+1

jCv j =
nX

v=0

Cv

is obtained by virtue of the Lemma 4.

Lemma. ([2], Lemma 9) Let fpng be a non-negative sequence such that

Pn !1, and the conditions (2.1.2) to (2.1.4) of Theorem A hold. Then (N; pn) {
summability of the series �an to the sum s implies its (C; 1) { summability to the

same sum. In particular, if Tn = o(Pn), then S1n = o(n).

Lemma 7. Let �(n; t) =
R �
t

� sinnu
2 tanu=2du. Then

(2:3:7) �(n; t) = O(1=nt)

and

(2:3:8) �m�(n; t) = 0

�
tm�1

n

�

where �m�(n; t) denotes the m-th di�erence of �(n; t) with respect to n and m is

a non-negative number.

Proof. �(n; t) =

�Z
t

sinnu

2 tanu=2
du = 2(tan t=2)�1

�Z
t

sinnu du, t < � < �

= (2 tan t=2)�1 �
h
�
cosnu

n

i�
t
= O(1=nt):
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Again

�(n; t) = �

2
4 �Z
t

sinnu

2 tanu=2
du

3
5

=

�Z
t

sinnu� sin(n+ 1)u

2 tanu=2
du

= �

�Z
t

2 cos(n+ 1=2)u sinu=2

2 tanu=2
du;

= �
1

2

�Z
t

cos(n+ 1)u+ cosnu)du;

=
t

2

�
sin(n+ 1)t

(n+ 1)t
+

sinnt

nt

�
:

Hence

�m�(n; t) = �m�1�(n; t) = t=2�m�1

�
sin(n+ 1)t

(n+ 1)t
+

sinnt

nt

�

= O

�
tm�1

n

�
;

by virtue of

�m

�
sinnt

nt

�p
= O(n�ptm�p); (see Obrechko� [8] Lemma 1):

This completes the proof.

Lemma 8. Let Gv(t) = t�+1
P
1

n=0A
��1
n�v�(n; t); �1 � � � 0. Then

(2:3:9) Gv(t) = O(1=v);

and for positive integer k,

(2:3:10) �kGv(t) = O

�
tk

v

�
:

Proof. Let G(t) = t�+1

�Pv+�
n=0+

P
1

n=v+�+1

�
= U1 + U2, say, where

� = [1=t].
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Now by (2.3.8) we have for �1 < � < 0,

U2 = t�+1
1X

n=v+�+1

A��1
n�v�(n; t)

= O

 
t�(v + �+ 1)�1

1X
n=v+�+1

(n� v)��1

!

= O(t�v�1��) = O(v�1);

and applying Abel's transformation to U1 we have

U1 = t�+1
�X

n=0

A��1
n �(n+ v; t);

= t�+1
��1X
n=0

A�
n�(n+ v; t) + t�+1A�

��(�+ v; t)

= O

 
t�+1

��1X
n=2

A�
n(n+ v)�a

!
+O(v�1)

+O(t�+1��+1v�1) +O(v�1) = O(v�1):

Hence, Gv(t) = O(v�1), for �1 < � < 0. When � = 0 Gv(t) = t �(v; t) =
O(v�1). Similarly, we hawe the result when � = �1.

Now

Gv(t) = t�+1
1X
n=v

A��1
n�v�(n; t)

= t�+1
1X
n=0

A��1
n �(n+ v; t);

hence by using the method of proof of (2.3.9), we have

�kGv(t) = t�+1
1X
n=0

A��1
n �k(n+ v; t) = O

�
tk

v

�
;

Hence, the Lemma.

Lemma 9. Let Kv(t) =
P
1

n=v Gn(t), then

(2:3:11) Kv(t) = O(v�1t�1):
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Proof. We have

Kv(t) =

1X
n=v

Gn(t) = t�+1
1X
n=v

1X
k=n

A��
k�n�(k; t)

= t�+1
1X
n=v

1X
k=0

A��1
k �(n+ k; t)

= t�+1
1X
k=0

A��1
k

1X
n=v

�(n+ k; t);

the change of order of summation can be easily justi�ed. To prove the lemma we
just show that

v+k(t) =

1X
n=v

�(n+ k; t) = O((v + k)�1t�2)

We have,

1X
n=v

�(n+ k; t) =

1X
n=v

�Z
t

sin(n+ k)x

tanx=2
dx

=

1X
n=v

1

2 tan t=2

�Z
t

sin(n+ k)xdx; t < � < �;

= (2 tan t=2)�1
1X
n=v

�
�
cos(n+ k)x

n+ k

��
t

= O

�
t�2

(v + k)

�
;

since
P
1

n=v
cosnt
n = O

�
1
nt

�
.

Now for �1 < � < 0, we write

t�+1
1X
k=0

A��1
k v+k(t) =

�X
k=0

+

1X
�+1

= V1 + V2; say.

We have

V2 = O

0
@t�+1 1X

k=�+1

k��1(v + k)�1t�2

1
A

= O((v + �+ 1)�1t��1��) = O(v�1t�1); and

V1 = t�+1
��1X
k=0

A�
k�k(k+v(t) + t��1A�

� �+v(t)) = O(v�1t�1):
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Hence, (2.3.11) follows for �1 < � < 0. The result for � = 0 is quite obvious. This
completes the proof.

Lemma 10. If S1n = o(n), then we have

t�+1
1X
n=1

S�n�(n; t) =

1X
n=1

snGn(t);

where

Gn(t) = t�+1
1X
v=n

A��1
v�n�(v; t) (�1 < � � 0):

Proof. We have

t�+1
1X
n=1

S�n�(n; t) = t�+1
1X
n+1

�(n; t)
nX

k=1

A��1
n�ksk;

= t�+1
1X
k=1

sk

1X
n=k

A��1
n�1�(n; t);

=
1X
k=1

skGk(t):

Here we shall prove the change of order of summation is justi�ed. For this
purpose it is suÆcient to prove that, for �xed t > 0,

In =
NX
k=1

sk

1X
n=N+1

A��1
n�k�(n; t) = o(1); as N !1:

Using Abel's transformation, we have

In =
N�1X
k=1

S1k

1X
n=N+1

A��2
n�k�(n; t) + S1N

1X
N=n+1

A��1
n�N�(n; t)

=

 
N�1X
k=1

js1kjN
�1(N �K)��1

!
+ o(NN�1) = o(1); as N !1:

This proves the lemma.

Lemma 11. Let Gn(t) and Kn(t) be the same as de�ned in lemmas 8 and 9
respectively. If snKn+1(t) = o(1), n !1, then the convergence of

P
1

n=1 anKn(t)
implies the convergence of

P
1

n=1 snGn(t) and

1X
n=1

an(Kn(t) =

1X
n=1

snGn(t):
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The proof of this lemma follows from the identity

mX
v=1

svGv(t) =
mX
v=1

avKv(t) = smKm+1(t):

Lemma 12. If pn is such that it satis�es all the conditions of the theorem

(2.1.3), then the series

(2:3:12)
1X
n=0

cnKn+v(t) = Hv(t);

is absolutely convergent and for m = 0; 1; 2,

(2:2:13) �mHv(t) = O

�
t�m�1

vP�

�
:

where �mHv(t) denote the mth di�erence of Hv(t), with respect to v.

Absolute convergence of (2.3.12) follows from the hypotheses (2.1.2) since
�cn <1. To prove (2.3.13), we have

�mHv(t) = �m

 
1X
n=0

cnKn+v(t)

!
= �m�1

 
1X
n=0

cnKn+v(t)

!

= �m�1
1X
n=0

cnGn+v(t) =

1X
n=0

cn�
m�1Gn+v(t)

=

 
�X

n=0

+

1X
n=�+1

!
cn�

m�1Gn+v(t) = H(1)
v (t) +H(2)

v (t);

say.

Now, by hypotheses and lemmas 8 and 11, we have, for m = 1; 2; . . . ,

H(2)(t) =

1X
n=�+1

cn�
m�1Gn+v(t) =

 
1X

n=�+1

jcnj
tm�1

(n+ v)

!

= O

�
tm�1

v + � + 1

� 1X
n=�+1

jcnj = O

�
tm�1

vP�

�
:

And by applying Abel's transformation and lemmas 5 and 8, we have, m = 1; 2; . . . ,

H(1)
v (t) =

��1X
n=0

dn�
mGn+v(t) + d�m�1G�+v(t)

= O

 
��1X
n=0

1

Pn

tm

(n+ v)

!
+O

�
tm�1

vP�

�
= O

�
tm�1

vP�

�
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By hypothesis, and for m = 0,

mHv(t) = Hv =

1X
n=0

cnKn+v(t)

=
�X

n=0

cnKn+v(t) +
1X

n=�+1

cnKn+v(t);

=

�X
n=0

dnHn+v(t) + d�Kn+v+1(t) +O

 
1

vt

1X
n=�+1

jcnj

!

= O

 
1

v

X
n=0

1

Pn

!
+O

�
1

vtP�

�
+O

�
1

vtP�

�
= O

�
1

vtP�

�
;

by hypotheses and lemmas 5 and 9.

2.4. Proof of theorem 1. We may assume, without loss of generality that
Tn = (Pn), as n!1. By virtue of Lemmas 6 and 10, we have

t�+1
1X
n=1

S�n�(n; t) =

1X
n=1

snGn(t):

Again, by (1.2.2) and lemma 6, we have, as n!1

SnKn+1(t) = Kn+1(t)
nX

v=1

(t)cn�vTv

= O

�
Pn

(n+ 1)t

� n�1X
v=1

jcn�vj+O
�pn
nt

�
= o(1)

for �xed t > 0 and by hypothesis (2.1.2) and (2.1.3) and Lemma 1.

Therefore, by virtue of lemma 11, it is suÆcient to prove that �anKn(t)
converges in 0 < t < t0 and tends to zero as t! +0.

Employing (1.2.3), we have

1X
n=1

anKn(t) =

1X
n=1

Kn(t)

1X
v=1

cn�v(Tv � Tv�1)

=

1X
v=1

(Tv � Tv�1)

1X
n=v

cn�vKn(t);

the interchange of order of summations being legitimate, since the double series is
absolutely convergent.

Since by hypothesis and the fact that
P
1

n=0 jcnj < 1 for every �xed t > 0,
we have

1X
v=1

jTv � Tv�1j

1X
n=0

jcnKn+v(t)j =

 
1X
v=1

1

v
jT � Tv�1j

!
:
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Now, as n!1,

nX
v=1

1

v
jTv � Tv�1j = O(n�1�n) +O

 
n�1X
v=1

�v

v(v + 1)

!

= 0(1)
Pn
n

+ 0(1)
n�1X
v=1

Pv
v(v + 1)

= 0(1);

by hypotheses and lemmas 1 and 2.

Thus

(2:4:2)

f(�; t) =

1X
v=1

(Tv � Tv�1)

1X
n=v

cn�vKn(t) =

1X
v=1

(Tv � Tv�1)Hv(t)

=

 
nX

v=1

1X
v=n+1

!
Tv � Tv�1)Hv(t)

= �1 +�2; say;

Now

(2:4:3)

j�2j =

�����
1X

v=n+1

(Tv � Tv�1)Hv(t)

����� =
 

1X
v=n+1

jTv � Tv�1j
1

vtP�

!

= O

"
1

tP�

 
1X

v=n+1

�v

v(v + 1)
�

�n
n+ 1

!#

= O

�
�

P�

Pn
n

�
= O

�
P�
�

�
;

= O(1)
P�
�

by hypotheses and lemmas 2 and 12.

Next by lemma 2, we hawe

�1 =

nX
v=1

(Tv � Tv�1)Hv(t) =

nX
v=1

(Wv �Wv+1)vHv(t)

=

nX
v=1

Wv [vHv(t)� (v � 1)Hv�1(t)]� nWn+1Hn(t)

= �

nX
v=1

Hvv[Hv�1(t)�Hv(t)] +

nX
v=1

WvHv�1(t)� nWn+1Hn(t)

= ��1;1 +�1;2 � nWn+1Hn(t); where, by Lemma 3 (ii) and 12,
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�1;1 =

nX
v=1

vWv�Hv�1(t) =

nX
v=1

(
nX

�=1

�W�

)
�2Hv�1(t)�Hn(t)

nX
v=1

vWv

= o

 
nX

v=1

vPv
t

vP�

!
+ o

�
1

nP�
nPn

�
= o

�
nt
Pn
P�

�
+

�
Pn
P�

�

= o(1)�P� + o(1)p� = o(1)

since
Pn

v=1 vWv = o
�Pn

v=1 v
Pv
v

�
= 0(n; Pn), and by applying Abel's transforrma-

tion twice, writng W 0

m =
Pm

�=1W� and by virtue of Lemma 1, 3 (ii) and 11, we
hawe

�1;2 =

nX
v=1

 
vX

m=1

W 0

m

!
�2Hv�1(t) + �Hn(t)

nX
v=1

W 0

v +Hn(t)W
0

n

= o

 
nX

v=1

vPv
t

vP�

!
+ o

 
1

nP�

nX
v=1

Pv

!
+ o

�
Pn
ntP�

�

= o(1)�P� + o(1)P� + o(1)
P�
�

= o(1):

Hence,

(2:4:4) �1 = o(1)

Therefore, from (2.4.2), (2.4.3) and (2.4.4), we have

f(�; t) = o(1) +O(1)
P�
�
; as t! 0:

Consequently, limt!0 sup f(�t) � O(1)
P�
� , being arbitrary large and O (1) inde-

pendent of � we get �nally

f(�; t)! 0; as t! 0:

This completes the proof of our theorem.
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