ON $\left(N, P_{n}\right)$ AND $(K, 1, \alpha)$ SUMMABILITY METHODS

Vinod K. Parashar

1.1 Let $\Sigma a_{m}{ }^{1}$ be a given infinite series with the sequence of partial sums $\left\{s_{n}\right\}$. The Cesàro transform of order α of Σa_{n} is defined by

$$
\begin{equation*}
s_{n}^{\alpha}=S_{n}^{\alpha} / A_{n}^{\alpha}, \quad \alpha>-1 \tag{1.1.1}
\end{equation*}
$$

where S_{n}^{α} and A_{n}^{α} are by the relations;

$$
S_{n}^{\alpha}=\sum_{v=0}^{n} A_{n-v}^{n} a_{v}=\sum_{v=0}^{n} A_{n-v}^{\alpha-1} S_{v}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{n}^{\alpha} x^{n}=(1-x)^{-\alpha-1}, \quad(|x|<1) \tag{1.1.2}
\end{equation*}
$$

The series Σa_{n} is said to be summable (C, α) to s, if $s_{n}^{\alpha} \rightarrow s$, as $n \rightarrow \infty,[2]$.
The series Σa_{n} an is said to be summable ($K, 1, \alpha$) to sum s, [5] if the series

$$
\begin{equation*}
f(\alpha, t)=B_{\alpha}^{-1} t^{\alpha+1} \sum_{n=1}^{\infty} S_{n}^{\alpha} \int_{t}^{\pi} \frac{\sin n x}{2 \tan x / 2} d x \tag{1.1.3}
\end{equation*}
$$

converges in some interval $0<t<t_{0}$ and $\lim _{t \rightarrow+0} f(\alpha, t)=s$, where

$$
B_{\alpha}= \begin{cases}\pi / 2 & \alpha=-1 \\ (\alpha+1)^{-1} \sin (\alpha+1) \pi / 2 & -1<\alpha<0 \\ 1 & \alpha=0\end{cases}
$$

where $\alpha=-1$, the method $(K, 1, \alpha)$ reduces to the method $(K, 1)$ [11].

[^0]The method $(K, 1, \alpha)$ is not regular when $-1 \leq \alpha \leq 0[5]$.
Let $\left\{p_{n}\right\}$ be a sequence of constants, real or complex, such that

$$
P_{n}=\sum_{v=0}^{n} P_{v} \neq 0, \quad P_{-1}=p_{-1}=0
$$

and let us write

$$
\begin{equation*}
t_{n}=\frac{T_{n}}{P_{n}}=\sum_{v=0}^{n} \frac{P_{n-v} s_{v}}{P_{n}} \tag{1.1.4}
\end{equation*}
$$

The series Σa_{n} is said to be summable (N, P_{n}) to sum s, if $\lim _{u \rightarrow \infty} t_{n}$ exists and is equal to $s([7],[10])$.

In the special cases in which

$$
\begin{gather*}
p_{n}=\binom{n+\alpha-1}{\alpha-1}=\frac{\Gamma(n+a)}{\Gamma(n+1) \Gamma(\alpha)} \quad(\alpha>-1) ; \tag{1.1.5}\\
\begin{cases}p_{n}=(n+1)^{-1} & (\alpha>-1) ; \\
p_{n} \log n, & \text { as } n \rightarrow \infty,\end{cases} \tag{1.1.6}
\end{gather*}
$$

The (N, p_{n}) summability reduces to (C, α) summability, $\alpha>-1$, [3] § 5.13 and harmonic summability methods [3], § 5.13 respectively.

The conditions for the regularity of the method of summation $\left(N, p_{n}\right)$ defined by (1.1.4), are

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{p_{n}}{P_{n}}=0 \tag{1.1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{v=0}^{n}\left|p_{v}\right|=O\left(p_{n}\right), \text { as } n \rightarrow \infty, \quad(\text { see }[3]) \tag{1.1.8}
\end{equation*}
$$

If p_{n} is real, non-negative and monotonic non-increasing, the conditions of regularity (1.1.7) and (1.1.8) are autcmatically satisfied and the method (N, p_{n}) is then regular and hence the harmonic summability method is also regular. It is known that summability $\left(N,{ }^{1} /{ }_{(n+1)}\right)$ implies summability (C, α) for every $\alpha>0$.
1.2. We set

$$
\begin{equation*}
\left(\Sigma p_{n} x_{n}\right)^{-1}=\Sigma c_{n} x^{n} \quad\left(|x|<1 ; C_{0}=1\right) \tag{1.2.1}
\end{equation*}
$$

Then from (1.1.4) and (1.2.1), we get

$$
\begin{gather*}
s_{n}=\sum_{v=1}^{n} c_{n-v} T_{v} \tag{1.2.2}\\
a_{n}=\sum_{v=1}^{n} c_{n-v}\left(T_{v}-T_{v-1}\right) . \tag{1.2.3}
\end{gather*}
$$

In what follows we take $a_{0}=0$, so that $T_{0}=0$.
2.1. Giving relation between $\left(N, p_{n}\right)$ and $(R, 1, \alpha)$ summabilties recently the authors [2] have proved the following theorem:

Theorem A. Σa_{n} is (N, p) summable and if

$$
\begin{equation*}
\sigma_{n}=\sum_{k=1}^{n}\left|T_{k}-T_{k-1}\right|=O\left(P_{n}\right) \tag{2.1.1}
\end{equation*}
$$

then the series Σa_{n} is summable $(R, 1, \alpha)$ for $-1 \leq \alpha \leq 0$, provided that p_{n} is a non-negative, non-increasing sequence such that $P_{n} \rightarrow \infty$, and

$$
\begin{equation*}
\sum_{k=n+1}^{\infty}\left|C_{k}\right|=O\left(\frac{1}{P_{n}}\right), \quad n \geq 0 \tag{2.1.2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=n}^{\infty} \frac{P_{k-n}}{k(k+1)}=O\left(\frac{P_{n}}{n}\right), \quad n \geq 1 \tag{2.1.3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{1}{P_{k}}=O\left(\frac{n}{P_{n}}\right) \tag{2.1.4}
\end{equation*}
$$

for a positive number μ and $n=\left[\mu t^{-1}\right], \tau=\left[t^{-1}\right]$

$$
\begin{equation*}
P_{n}=O\left(P_{\mu} P_{\tau}\right) \tag{2.1.5}
\end{equation*}
$$

It has been proved by Izumi [6] that for Fourier series, summability $(K, 1)$ is equivalent to summability $\left(R_{1}\right)$. Since it is known that for Fourier series summability $(R, 1)$ and $\left(R_{1}\right)$ are mutually exclusive [4], it follows that in general, summability $(K, 1)$ and $(R, 1)$ are also independent of each other. Therefore, the object of this paper is to show that this Theorem A also holds for summability $(K, 1, \alpha)$.

2.2. Our Main theorem is:

Theorem 1. Let $\left\{p_{n}\right\}$ be a non-negative, non-increasing seguence, such that $P_{n} \rightarrow \infty$, and the conditions (2.1.2) through (2.1.5) hold. If Σa_{n} is $\left(N, p_{n}\right)$ summable and if (2.1.1) holds, then Σa_{n} is also summable $(K, 1, \alpha)$, for $-1 \leq \alpha \leq 0$.

Combining Theorem 1 with Lemma 5 below, we also get the following interesting and simple result.

Theorem 2. Let $\left\{p_{n}\right\}$ be a positive, non-increasing sequence, such that $p_{0}=1, P_{n} \rightarrow \infty$ and $\left\{p_{n+1} / p_{n}\right\}$ is non-decreasing sequence and the conditions (2.1.3) through (2.1.5) hold. If Σa_{n} is $\left(N, p_{n}\right)$ summable and if (2.1.1) holds, then Σa_{n} is also sumable $(K, 1, \alpha)$, for $-1 \leq \alpha \leq 0$.
2.3. The following lemmas are pertinent for the proof of our theorems.

Lemma 1. ([1], Lema 1). If $\left\{p_{n}\right\}$ is a non-negative, non-increasing sequence such that the series $\sum_{v=n}^{\infty} P_{v-n} / v(v+1)$ converges, then $\frac{P_{n}}{n} \rightarrow 0$, as $n \rightarrow 0$.

Lemma 2. ([1], Lemma 2). Let $\left\{p_{n}\right\}$ be a non-negative, non-increasing sequence such that, for $n \geq 1$,

$$
\begin{equation*}
\sum_{v=n}^{\infty} \frac{P_{v-n}}{v(v+1)}=O\left(\frac{P_{n}}{n}\right) \tag{2.3.1}
\end{equation*}
$$

Then for $n \geq 1$,

$$
\begin{equation*}
\sum_{v=n}^{\infty} \frac{P}{f(v+1)}=O\left(\frac{P_{n}}{n}\right) \tag{2.3.2}
\end{equation*}
$$

Lemma 3. ([1], Lemma 3). Let $\left\{p_{n}\right\}$ be a non-negative, non-increasing sequence such that $\left\{P_{n} / n\right\}$ is a null sequence. If Σa_{k} is summable $\left(N, p_{n}\right)$ then

$$
\begin{equation*}
W_{n}=\sum_{v=n}^{\infty} \frac{T_{v}-T_{v-1}}{v}=o\left(\frac{P_{n}}{n}\right), \tag{i}
\end{equation*}
$$

$$
W_{n}^{\prime}=\sum_{v=1}^{\infty} W_{v}=o\left(P_{n}\right)
$$

Lemma 4. ([3], Theorem 22). If $p(x)=\Sigma p_{n} x^{n}$ is convergent for $|x|<1$ and

$$
\begin{equation*}
p_{0}=1, \quad p_{n}>0, \quad \frac{p_{n+1}}{p_{n}} \geq \frac{p_{n}}{p_{n-1}} \quad(n>0), \text { then } \tag{2.3.3}
\end{equation*}
$$

$$
\begin{equation*}
\{p(x)\}^{-1}=1+C_{1} x+C_{2} x^{2}+\cdots \tag{2.3.4}
\end{equation*}
$$

where $C_{n} \geq 0$, for $n=1,2, \ldots, \sum_{n=1}^{\infty}\left|C_{n}\right| \leq 1$. If $\Sigma p_{n}=\infty$, then $\sum_{n=1}^{\infty}\left|C_{n}\right|=1$.
Lemma 5. ([9], Lemma 2). If $\left\{p_{n}\right\}$ is a positive and non-increasing sequence such that $p_{0}=1, P_{n} \rightarrow \infty$, and $\left\{p_{n+1} / p_{n}\right\}$ in non-decreasing sequence, then for $n \geq 0$,

$$
\begin{equation*}
d_{n}=\sum_{v=n+1}^{\infty}\left|C_{n}\right|=\sum_{v=0}^{n} C_{v}=O\left(\frac{1}{P_{n}}\right) \tag{2.3.5}
\end{equation*}
$$

REmark. The identity

$$
\begin{equation*}
d_{n}=\sum_{v=n+1}^{\infty}\left|C_{v}\right|=\sum_{v=0}^{n} C_{v} \tag{2.3.6}
\end{equation*}
$$

is obtained by virtue of the Lemma 4.
Lemma. ([2], Lemma 9) Let $\left\{p_{n}\right\}$ be a non-negative sequence such that $P_{n} \rightarrow \infty$, and the conditions (2.1.2) to (2.1.4) of Theorem A hold. Then (N, p_{n}) summability of the series Σa_{n} to the sum s implies its $(C, 1)$ - summability to the same sum. In particular, if $T_{n}=o\left(P_{n}\right)$, then $S_{n}^{1}=o(n)$.

Lemma 7. Let $\Phi(n, t)=\int_{t}^{\pi} \frac{\pi \sin n u}{2 \tan u / 2} d u$. Then

$$
\begin{equation*}
\Phi(n, t)=O(1 / n t) \tag{2.3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{m} \Phi(n, t)=0\left(\frac{t^{m-1}}{n}\right) \tag{2.3.8}
\end{equation*}
$$

where $\Delta^{m} \Phi(n, t)$ denotes the m-th difference of $\Phi(n, t)$ with respect to n and m is a non-negative number.

$$
\text { Proof. } \begin{aligned}
\Phi(n, t) & =\int_{t}^{\pi} \frac{\sin n u}{2 \tan u / 2} d u=2(\tan t / 2)^{-1} \int_{t}^{\xi} \sin n u d u, \quad t<\xi<\pi \\
& =(2 \tan t / 2)^{-1}-\left[-\frac{\cos n u}{n}\right]_{t}^{\xi}=O(1 / n t)
\end{aligned}
$$

Again

$$
\begin{aligned}
\Phi(n, t) & =\Delta\left[\int_{t}^{\pi} \frac{\sin n u}{2 \tan u / 2} d u\right] \\
& =\int_{t}^{\pi} \frac{\sin n u-\sin (n+1) u}{2 \tan u / 2} d u \\
& =-\int_{t}^{\pi} \frac{2 \cos (n+1 / 2) u \sin u / 2}{2 \tan u / 2} d u \\
& \left.=-\frac{1}{2} \int_{t}^{\pi} \cos (n+1) u+\cos n u\right) d u \\
& =\frac{t}{2}\left[\frac{\sin (n+1) t}{(n+1) t}+\frac{\sin n t}{n t}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\Delta^{m} \Phi(n, t)=\Delta^{m-1} \Phi(n, t) & =t / 2 \Delta^{m-1}\left[\frac{\sin (n+1) t}{(n+1) t}+\frac{\sin n t}{n t}\right] \\
& =O\left(\frac{t^{m-1}}{n}\right)
\end{aligned}
$$

by virtue of

$$
\Delta^{m}\left(\frac{\sin n t}{n t}\right)^{p}=O\left(n^{-p} t^{m-p}\right),(\text { see Obrechkoff [8] Lemma } 1)
$$

This completes the proof.
Lemma 8. Let $G_{v}(t)=t^{\alpha+1} \sum_{n=0}^{\infty} A_{n-v}^{\alpha-1} \Phi(n, t),-1 \leq \alpha \leq 0$. Then

$$
\begin{equation*}
G_{v}(t)=O(1 / v) \tag{2.3.9}
\end{equation*}
$$

and for positive integer k,

$$
\begin{equation*}
\Delta^{k} G_{v}(t)=O\left(\frac{t^{k}}{v}\right) \tag{2.3.10}
\end{equation*}
$$

Proof. Let $G(t)=t_{\alpha+1}\left(\sum_{n=0}^{v+\rho}+\sum_{n=v+\rho+1}^{\infty}\right)=U_{1}+U_{2}$, say, where $\rho=[1 / t]$.

Now by (2.3.8) we have for $-1<\alpha<0$,

$$
\begin{aligned}
U_{2} & =t^{\alpha+1} \sum_{n=v+\rho+1}^{\infty} A_{n-v}^{\alpha-1} \Phi(n, t) \\
& =O\left(t^{\alpha}(v+\rho+1)^{-1} \sum_{n=v+\rho+1}^{\infty}(n-v)^{\alpha-1}\right) \\
& =O\left(t^{\alpha} v^{-1} \rho^{\alpha}\right)=O\left(v^{-1}\right),
\end{aligned}
$$

and applying Abel's transformation to U_{1} we have

$$
\begin{aligned}
U_{1} & =t^{\alpha+1} \sum_{n=0}^{\rho} A_{n}^{\alpha-1} \Phi(n+v, t) \\
& =t^{\alpha+1} \sum_{n=0}^{\rho-1} A_{n}^{\alpha} \Phi(n+v, t)+t^{\alpha+1} A_{\rho}^{\alpha} \Phi(\rho+v, t) \\
& =O\left(t^{\alpha+1} \sum_{n=2}^{\rho-1} A_{n}^{\alpha}(n+v)^{-a}\right)+O\left(v^{-1}\right) \\
& +O\left(t^{\alpha+1} \rho^{\alpha+1} v^{-1}\right)+O\left(v^{-1}\right)=O\left(v^{-1}\right)
\end{aligned}
$$

Hence, $G_{v}(t)=O\left(v^{-1}\right)$, for $-1<\alpha<0$. When $\alpha=0 G_{v}(t)=t \Phi(v, t)=$ $O\left(v^{-1}\right)$. Similarly, we hawe the result when $\alpha=-1$.

Now

$$
\begin{aligned}
G_{v}(t) & =t^{\alpha+1} \sum_{n=v}^{\infty} A_{n-v}^{\alpha-1} \Phi(n, t) \\
& =t^{\alpha+1} \sum_{n=0}^{\infty} A_{n}^{\alpha-1} \Phi(n+v, t)
\end{aligned}
$$

hence by using the method of proof of (2.3.9), we have

$$
\Delta^{k} G_{v}(t)=t^{\alpha+1} \sum_{n=0}^{\infty} A_{n}^{\alpha-1} \Delta^{k}(n+v, t)=O\left(\frac{t^{k}}{v}\right)
$$

Hence, the Lemma.
Lemma 9. Let $K_{v}(t)=\sum_{n=v}^{\infty} G_{n}(t)$, then

$$
\begin{equation*}
K_{v}(t)=O\left(v^{-1} t^{-1}\right) \tag{2.3.11}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
K_{v}(t)=\sum_{n=v}^{\infty} G_{n}(t) & =t^{\alpha+1} \sum_{n=v}^{\infty} \sum_{k=n}^{\infty} A_{k-n}^{\alpha-} \Phi(k, t) \\
& =t^{\alpha+1} \sum_{n=v}^{\infty} \sum_{k=0}^{\infty} A_{k}^{\alpha-1} \Phi(n+k, t) \\
& =t^{\alpha+1} \sum_{k=0}^{\infty} A_{k}^{\alpha-1} \sum_{n=v}^{\infty} \Phi(n+k, t),
\end{aligned}
$$

the change of order of summation can be easily justified. To prove the lemma we just show that

$$
\gamma_{v+k}(t)=\sum_{n=v}^{\infty} \Phi(n+k, t)=O\left((v+k)^{-1} t^{-2}\right)
$$

We have,

$$
\begin{aligned}
\sum_{n=v}^{\infty} \Phi(n+k, t) & =\sum_{n=v}^{\infty} \int_{t}^{\pi} \frac{\sin (n+k) x}{\tan x / 2} d x \\
& =\sum_{n=v}^{\infty} \frac{1}{2 \tan t / 2} \int_{t}^{\xi} \sin (n+k) x d x, \quad t<\xi<\pi, \\
& =(2 \tan t / 2)^{-1} \sum_{n=v}^{\infty}\left[-\frac{\cos (n+k) x}{n+k}\right]_{t}^{\xi}=O\left(\frac{t^{-2}}{(v+k)}\right),
\end{aligned}
$$

since $\sum_{n=v}^{\infty} \frac{\cos n t}{n}=O\left(\frac{1}{n t}\right)$.
Now for $-1<\alpha<0$, we write

$$
t^{\alpha+1} \sum_{k=0}^{\infty} A_{k}^{\alpha-1} \gamma_{v+k}(t)=\sum_{k=0}^{\rho}+\sum_{\rho+1}^{\infty}=V_{1}+V_{2}, \text { say. }
$$

We have

$$
\begin{aligned}
V_{2} & =O\left(t^{\alpha+1} \sum_{k=\rho+1}^{\infty} k^{\alpha-1}(v+k)^{-1} t^{-2}\right) \\
& =O\left((v+\rho+1)^{-1} t^{\alpha-1} \rho^{\alpha}\right)=O\left(v^{-1} t^{-1}\right), \text { and } \\
V_{1} & =t^{\alpha+1} \sum_{k=0}^{\rho-1} A_{k}^{\alpha} \Delta_{k}\left(\gamma_{k+v}(t)+t^{\alpha-1} A_{\rho}^{\alpha} \gamma_{\rho+v}(t)\right)=O\left(v^{-1} t^{-1}\right) .
\end{aligned}
$$

Hence, (2.3.11) follows for $-1<\alpha<0$. The result for $\alpha=0$ is quite obvious. This completes the proof.

Lemma 10. If $S_{n}^{1}=o(n)$, then we have

$$
t^{\alpha+1} \sum_{n=1}^{\infty} S_{n}^{\alpha} \Phi(n, t)=\sum_{n=1}^{\infty} s_{n} G_{n}(t)
$$

where

$$
G_{n}(t)=t^{\alpha+1} \sum_{v=n}^{\infty} A_{v-n}^{\alpha-1} \Phi(v, t) \quad(-1<\alpha \leq 0)
$$

Proof. We have

$$
\begin{aligned}
t^{\alpha+1} \sum_{n=1}^{\infty} S_{n}^{\alpha} \Phi(n, t) & =t^{\alpha+1} \sum_{n+1}^{\infty} \Phi(n, t) \sum_{k=1}^{n} A_{n-k}^{\alpha-1} s_{k} \\
& =t^{\alpha+1} \sum_{k=1}^{\infty} s_{k} \sum_{n=k}^{\infty} A_{n-1}^{\alpha-1} \Phi(n, t) \\
& =\sum_{k=1}^{\infty} s_{k} G_{k}(t)
\end{aligned}
$$

Here we shall prove the change of order of summation is justified. For this purpose it is sufficient to prove that, for fixed $t>0$,

$$
I_{n}=\sum_{k=1}^{N} s_{k} \sum_{n=N+1}^{\infty} A_{n-k}^{\alpha-1} \Phi(n, t)=o(1), \quad \text { as } \quad N \rightarrow \infty
$$

Using Abel's transformation, we have

$$
\begin{aligned}
I_{n} & =\sum_{k=1}^{N-1} S_{k}^{1} \sum_{n=N+1}^{\infty} A_{n-k}^{\alpha-2} \Phi(n, t)+S_{N}^{1} \sum_{N=n+1}^{\infty} A_{n-N}^{\alpha-1} \Phi(n, t) \\
& =\left(\sum_{k=1}^{N-1}\left|s_{k}^{1}\right| N^{-1}(N-K)^{\alpha-1}\right)+o\left(N N^{-1}\right)=o(1), \quad \text { as } N \rightarrow \infty
\end{aligned}
$$

This proves the lemma.
Lemma 11. Let $G_{n}(t)$ and $K_{n}(t)$ be the same as defined in lemmas 8 and 9 respectively. If $s_{n} K_{n+1}(t)=o(1), n \rightarrow \infty$, then the convergence of $\sum_{n=1}^{\infty} a_{n} K_{n}(t)$ implies the convergence of $\sum_{n=1}^{\infty} s_{n} G_{n}(t)$ and

$$
\sum_{n=1}^{\infty} a_{n}\left(K_{n}(t)=\sum_{n=1}^{\infty} s_{n} G_{n}(t)\right.
$$

The proof of this lemma follows from the identity

$$
\sum_{v=1}^{m} s_{v} G_{v}(t)=\sum_{v=1}^{m} a_{v} K_{v}(t)=s_{m} K_{m+1}(t)
$$

Lemma 12. If p_{n} is such that it satisfies all the conditions of the theorem (2.1.3), then the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n} K_{n+v}(t)=H_{v}(t) \tag{2.3.12}
\end{equation*}
$$

is absolutely convergent and for $m=0,1,2$,

$$
\begin{equation*}
\Delta^{m} H_{v}(t)=O\left(\frac{t^{-m-1}}{v P_{\tau}}\right) \tag{2.2.13}
\end{equation*}
$$

where $\Delta^{m} H_{v}(t)$ denote the mth difference of $H_{v}(t)$, with respect to v.
Absolute convergence of (2.3.12) follows from the hypotheses (2.1.2) since $\Sigma c_{n}<\infty$. To prove (2.3.13), we have

$$
\begin{aligned}
\Delta^{m} H_{v}(t) & =\Delta^{m}\left(\sum_{n=0}^{\infty} c_{n} K_{n+v}(t)\right)=\Delta^{m-1}\left(\sum_{n=0}^{\infty} c_{n} K_{n+v}(t)\right) \\
& =\Delta^{m-1} \sum_{n=0}^{\infty} c_{n} G_{n+v}(t)=\sum_{n=0}^{\infty} c_{n} \Delta^{m-1} G_{n+v}(t) \\
& =\left(\sum_{n=0}^{\tau}+\sum_{n=\tau+1}^{\infty}\right) c_{n} \Delta^{m-1} G_{n+v}(t)=H_{v}^{(1)}(t)+H_{v}^{(2)}(t)
\end{aligned}
$$

say.
Now, by hypotheses and lemmas 8 and 11, we have, for $m=1,2, \ldots$,

$$
\begin{aligned}
H^{(2)}(t) & =\sum_{n=\tau+1}^{\infty} c_{n} \Delta^{m-1} G_{n+v}(t)=\left(\sum_{n=\tau+1}^{\infty}\left|c_{n}\right| \frac{t^{m-1}}{(n+v)}\right) \\
& =O\left(\frac{t^{m-1}}{v+\tau+1}\right) \sum_{n=\tau+1}^{\infty}\left|c_{n}\right|=O\left(\frac{t^{m-1}}{v P_{\tau}}\right)
\end{aligned}
$$

And by applying Abel's transformation and lemmas 5 and 8 , we have, $m=1,2, \ldots$,

$$
\begin{aligned}
H_{v}^{(1)}(t) & =\sum_{n=0}^{\tau-1} d_{n} \Delta^{m} G_{n+v}(t)+d \Delta^{m-1} G_{\tau+v}(t) \\
& =O\left(\sum_{n=0}^{\tau-1} \frac{1}{P_{n}} \frac{t^{m}}{(n+v)}\right)+O\left(\frac{t^{m-1}}{v P_{\tau}}\right)=O\left(\frac{t^{m-1}}{v P_{\tau}}\right)
\end{aligned}
$$

By hypothesis, and for $m=0$,

$$
\begin{aligned}
{ }^{m} H_{v}(t) & =H_{v}=\sum_{n=0}^{\infty} c_{n} K_{n+v}(t) \\
& =\sum_{n=0}^{\tau} c_{n} K_{n+v}(t)+\sum_{n=\tau+1}^{\infty} c_{n} K_{n+v}(t) \\
& =\sum_{n=0}^{\tau} d_{n} H_{n+v}(t)+d_{\tau} K_{n+v+1}(t)+O\left(\frac{1}{v t} \sum_{n=\tau+1}^{\infty}\left|c_{n}\right|\right) \\
& =O\left(\frac{1}{v} \sum_{n=0} \frac{1}{P_{n}}\right)+O\left(\frac{1}{v t P_{\tau}}\right)+O\left(\frac{1}{v t P_{\tau}}\right)=O\left(\frac{1}{v t P_{\tau}}\right)
\end{aligned}
$$

by hypotheses and lemmas 5 and 9 .
2.4. Proof of theorem 1. We may assume, without loss of generality that $T_{n}=\left(P_{n}\right)$, as $n \rightarrow \infty$. By virtue of Lemmas 6 and 10, we have

$$
t^{\alpha+1} \sum_{n=1}^{\infty} S_{n}^{\alpha} \Phi(n, t)=\sum_{n=1}^{\infty} s_{n} G_{n}(t)
$$

Again, by (1.2.2) and lemma 6, we have, as $n \rightarrow \infty$

$$
\begin{aligned}
S_{n} K_{n+1}(t) & =K_{n+1}(t) \sum_{v=1}^{n}(t) c_{n-v} T_{v} \\
& =O\left(\frac{P_{n}}{(n+1) t}\right) \sum_{v=1}^{n-1}\left|c_{n-v}\right|+O\left(\frac{p_{n}}{n t}\right)=o(1)
\end{aligned}
$$

for fixed $t>0$ and by hypothesis (2.1.2) and (2.1.3) and Lemma 1.
Therefore, by virtue of lemma 11 , it is sufficient to prove that $\Sigma a_{n} K_{n}(t)$ converges in $0<t<t_{0}$ and tends to zero as $t \rightarrow+0$.

Employing (1.2.3), we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} a_{n} K_{n}(t) & =\sum_{n=1}^{\infty} K_{n}(t) \sum_{v=1}^{\infty} c_{n-v}\left(T_{v}-T_{v-1}\right) \\
& =\sum_{v=1}^{\infty}\left(T_{v}-T_{v-1}\right) \sum_{n=v}^{\infty} c_{n-v} K_{n}(t)
\end{aligned}
$$

the interchange of order of summations being legitimate, since the double series is absolutely convergent.

Since by hypothesis and the fact that $\sum_{n=0}^{\infty}\left|c_{n}\right|<\infty$ for every fixed $t>0$, we have

$$
\sum_{v=1}^{\infty}\left|T_{v}-T_{v-1}\right| \sum_{n=0}^{\infty}\left|c_{n} K_{n+v}(t)\right|=\left(\sum_{v=1}^{\infty} \frac{1}{v}\left|T-T_{v-1}\right|\right)
$$

Now, as $n \rightarrow \infty$,

$$
\begin{aligned}
\sum_{v=1}^{n} \frac{1}{v}\left|T_{v}-T_{v-1}\right| & =O\left(n^{-1} \sigma_{n}\right)+O\left(\sum_{v=1}^{n-1} \frac{\sigma v}{v(v+1)}\right) \\
& =0(1) \frac{P_{n}}{n}+0(1) \sum_{v=1}^{n-1} \frac{P_{v}}{v(v+1)}=0(1)
\end{aligned}
$$

by hypotheses and lemmas 1 and 2 .
Thus

$$
\begin{align*}
f(\alpha, t) & =\sum_{v=1}^{\infty}\left(T_{v}-T_{v-1}\right) \sum_{n=v}^{\infty} c_{n-v} K_{n}(t)=\sum_{v=1}^{\infty}\left(T_{v}-T_{v-1}\right) H_{v}(t) \\
& \left.=\left(\sum_{v=1}^{n} \sum_{v=n+1}^{\infty}\right) T_{v}-T_{v-1}\right) H_{v}(t) \tag{2.4.2}\\
& =\Sigma_{1}+\Sigma_{2}, \text { say },
\end{align*}
$$

Now

$$
\begin{align*}
\left|\Sigma_{2}\right| & =\left|\sum_{v=n+1}^{\infty}\left(T_{v}-T_{v-1}\right) H_{v}(t)\right|=\left(\sum_{v=n+1}^{\infty}\left|T_{v}-T_{v-1}\right| \frac{1}{v t P_{\tau}}\right) \\
& =O\left[\frac{1}{t P_{\tau}}\left(\sum_{v=n+1}^{\infty} \frac{\sigma v}{v(v+1)}-\frac{\sigma_{n}}{n+1}\right)\right] \tag{2.4.3}\\
& =O\left[\frac{\tau}{P_{\tau}} \frac{P_{n}}{n}\right]=O\left(\frac{P_{\mu}}{\mu}\right) \\
& =O(1) \frac{P_{\mu}}{\mu}
\end{align*}
$$

by hypotheses and lemmas 2 and 12 .
Next by lemma 2, we hawe

$$
\begin{aligned}
\Sigma_{1} & =\sum_{v=1}^{n}\left(T_{v}-T_{v-1}\right) H_{v}(t)=\sum_{v=1}^{n}\left(W_{v}-W_{v+1}\right) v H_{v}(t) \\
& =\sum_{v=1}^{n} W_{v}\left[v H_{v}(t)-(v-1) H_{v-1}(t)\right]-n W_{n+1} H_{n}(t) \\
& =-\sum_{v=1}^{n} H_{v} v\left[H_{v-1}(t)-H_{v}(t)\right]+\sum_{v=1}^{n} W_{v} H_{v-1}(t)-n W_{n+1} H_{n}(t) \\
& =-\Sigma_{1,1}+\Sigma_{1,2}-n W_{n+1} H_{n}(t), \text { where, by Lemma } 3 \text { (ii) and } 12,
\end{aligned}
$$

$$
\begin{aligned}
\Sigma_{1,1} & =\sum_{v=1}^{n} v W_{v} \Delta H_{v-1}(t)=\sum_{v=1}^{n}\left\{\sum_{\mu=1}^{n} \mu W_{\mu}\right\} \Delta^{2} H_{v-1}(t) \Delta H_{n}(t) \sum_{v=1}^{n} v W_{v} \\
& =o\left(\sum_{v=1}^{n} v P_{v} \frac{t}{v P_{\tau}}\right)+o\left(\frac{1}{n P_{\tau}} n P_{n}\right)=o\left(n t \frac{P_{n}}{P_{\tau}}\right)+\left(\frac{P_{n}}{P_{\tau}}\right) \\
& =o(1) \mu P_{\mu}+o(1) p_{\mu}=o(1)
\end{aligned}
$$

since $\sum_{v=1}^{n} v W_{v}=o\left(\sum_{v=1}^{n} v \frac{P_{v}}{v}\right)=0\left(n, P_{n}\right)$, and by applying Abel's transforrmation twice, writng $W_{m}^{\prime}=\sum_{\mu=1}^{m} W_{\mu}$ and by virtue of Lemma 1,3 (ii) and 11, we hawe

$$
\begin{aligned}
\Sigma_{1,2} & =\sum_{v=1}^{n}\left(\sum_{m=1}^{v} W_{m}^{\prime}\right) \Delta^{2} H_{v-1}(t)+\Delta H_{n}(t) \sum_{v=1}^{n} W_{v}^{\prime}+H_{n}(t) W_{n}^{\prime} \\
& =o\left(\sum_{v=1}^{n} v P_{v} \frac{t}{v P_{\tau}}\right)+o\left(\frac{1}{n P_{\tau}} \sum_{v=1}^{n} P_{v}\right)+o\left(\frac{P_{n}}{n t P_{\tau}}\right) \\
& =o(1) \mu P_{\mu}+o(1) P_{\mu}+o(1) \frac{P_{\mu}}{\mu}=o(1)
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\Sigma_{1}=o(1) \tag{2.4.4}
\end{equation*}
$$

Therefore, from (2.4.2), (2.4.3) and (2.4.4), we have

$$
f(\alpha, t)=o(1)+O(1) \frac{P_{\mu}}{\mu}, \text { as } t \rightarrow 0
$$

Consequently, $\lim _{t \rightarrow 0} \sup f(\alpha t) \leq O(1) \frac{P_{\mu}}{\mu}$, being arbitrary large and O (1) independent of μ we get finally

$$
f(\alpha, t) \rightarrow 0, \text { as } t \rightarrow 0
$$

This completes the proof of our theorem.

REFERENCE

[1] Z. U. Ahmad and Vinod K. Parashar, On a relation between Nörlund Summability and Lebesque summability, (under communication)
[2] Z. U. Ahmad and Vinod K. Parashar, On a relation between (N, P_{n}) and ($R 1, \alpha$) summability, Indian Jour. of Pure and Applied Maths. vol 6 No. 7 1975, 713-724.
[3] G. H. Hardy, Divergent Series, Clarendon Press, Oxford, 1949.
[4] G. H. Hardy and W. W. Rogosinski, Notes on Fourier series summability $\left(R_{2}\right)$, Proc. Cambridge Phil. Soc., 43 (1947), 10-25.
[5] H. Hirokawa, On the (K, 1, α) method of summability, Tôhoku Maths Jour. (2) 13 (1961), 18-23.
[6] S. Izumi, Notes on Fourier Analysis, Tôhoku Math. Jour. 1 (1950), 285-302.
[7] N. E. Nörlund, Sur une application des functions permutables, Lunds Univ. Arsskr (2) 16 (1919) Nos. 3.
[8] N. Obrechkoff, Uber das Riemansche Summierungsverfahren. Math. Zett. 48 (1942-43), 441-454.
[9] O. P. Varshney, On Iyenger's Tauberian theorem for Nörlund summability, Tokohu Math. Jour., 16 (1964), 105-110.
[10] G. F. Woronoi, Extension of the notion of the limit of the sum of terms of an infinite series, Ann. of Math. 33 (1932), 428-442.
[11] A. Zygmund, On certain methods of summability associated with conjugate trigonometric series, Studia Math. 10 (1948), 97-103.

Department of Mathematics,
Aligarh Muslim University, Aligarh
(INDIA).

[^0]: ${ }^{1}$ unless or otherwise stated Σ denotes Σ_{0}^{∞}.

