FOUR VARIATIONS ON A THEME OF S. B. PREŠIĆCONCERNING SEMIGROUP FUNCTIONAL EQUATIONS

Jovan D. Kečkić

1. Introduction. Let S_{1} and S_{2} be nonempty sets and suppose that:
(i) $g_{1}, \ldots, g_{n} \operatorname{map} S_{1}$ into S_{1};
(ii) G is the minimal semigroup generated by g_{1}, \ldots, g_{n};
(iii) J maps $S_{1} \times S_{2}^{n}\{\top, \perp\}$;
(iv) $f \in S_{2}^{S_{1}}$.

In a number of papers ([1]-[7) S. B. Prešić considered various instances of the equation in f :

$$
\begin{equation*}
J\left(x, f\left(g_{1} x\right), f\left(g_{2} x\right), \ldots, f\left(g_{n} x\right)\right)=\top \quad\left(g_{i} x=g_{i}(x)\right) \tag{1.1}
\end{equation*}
$$

where g_{1} is the identity mapping, and under certain conditions determined its general solution. We briefly sketch Prešić results.

In [1] he constructed the general solution of the equation

$$
f(x)=f(g x)
$$

under the condition that g is a bijection, i.e. that G is a group. In papers [3], [4], [6] the general solution of the equation

$$
\begin{equation*}
a_{1}(x) f(x)+a_{2}(x) f\left(g_{2} x\right)+\cdots+a_{n}(x) f\left(g_{n} x\right)=F(x) \tag{1.2}
\end{equation*}
$$

is determined under the condition that G is a group of order n. (Of course, in the case of equation (1.2) it is necessary to assume that S_{2} is a field, and that $a_{k}: S_{1} \rightarrow S_{2}, F: S_{1} \rightarrow S_{2}$ are given).

In [5] Prešić determined the general solution of the equation

$$
J\left(f\left(x_{1}, x_{2}, \ldots, x_{n}\right), f\left(x_{2}, x_{3}, \ldots, x_{1}\right), \ldots, f\left(x_{n}, x_{1}, \ldots, x_{n-1}\right)\right)=\top
$$

where $S_{1}=A^{n}, x_{i} \in A$. Finally, in [7] Prešić constructed the general solution of the equation (1.1) under the condition that G is a group.

Hence, if G is a group, the problem of solving (1.1) is completely solved. However, Prešić also tried to solve (1.1) without additional conditions on the semigroup G. One such attempt is presented in [2]. Naturally, if the condtion " G is a group" is suppressed, one has to introduce some other conditions - in fact, a request on J, i.e. on the form of the equation (1.1). One such condition is given in [2], theorem 1. Also, paper [4], theorem 2, where the equation (1.2) with $F(x)=0$ is considered, a condition for the coefficients a_{1} and on the semigroup G is imposed which makes it possible to construct the general solution of that equation.

In this note we shall consider some special cases of the equation (1.1); in other words, we shall develop some variations on this theme of S. B. Prešić.
2. First variation. Consider the equation

$$
\begin{equation*}
J\left(f\left(g_{1} x\right), f\left(g_{2} x\right), \ldots, f\left(g_{n} x\right)\right)=\top \tag{2.1}
\end{equation*}
$$

and suppose that $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ is a semigroup. Denote $g_{i} g_{j}$ by $g_{i j}$, and let M be the matrix of the table of G, i.e. $M=\left\|g_{i j}\right\|_{n \times n}$. Denote the i-th column of M by $c_{i}(M)$.

If the following conditions are satisfied:
(i) there exists $i(1 \leq i \leq n)$ such that $c_{i}(M)=\left\|g_{1} g_{2} \cdots g_{n}\right\|^{T}$; in other words, the semigroup G has a right unit element;
(ii) for every $i(1 \leq i \leq n)$ we have

$$
\left\{c_{1}(M), c_{2}(M), \ldots, c_{n}(M)\right\}=\left\{c_{1}\left(M g_{i}\right), c_{2}\left(M g_{i}\right), \ldots, c_{n}\left(M g_{i}\right)\right\}
$$

then every possible equation (2.1) has the general solution of the form

$$
f(x)=F\left(\Pi(x), \Pi\left(g_{1} x\right), \Pi\left(g_{2} x\right), \ldots, \Pi\left(g_{n} x\right)\right)
$$

where $\Pi: S_{1} \rightarrow S_{2}$ is abitrary and $F: S_{n}^{n+1} \rightarrow S_{2}$ is constructed by the method described by Prešić [7].

REMARK 2.1. If G is a group, conditions (i) and (ii) are satisfied.
Remark 2.2. For any semigroup G the inclusion

$$
\left\{c_{1}\left(M g_{i}\right), c_{2}\left(M g_{i}\right), \ldots, c_{n}\left(M g_{i}\right)\right\} \subset\left\{c_{1}(M), c_{2}(M), \ldots, c_{n}(M)\right\}
$$

is valid for all i. Condition (ii) requests that \subset is replaced by $=$.
REmark 2.3. If G is a monoid (i.e. a semigroup with identity) satisfying (ii), then G is a group.

REmARK 2.4. There exists a semigroup satisfying (i) and (ii) which is not a group. An example is provided by $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ defined by $g_{k} g_{i}=g_{k}$ for
all $i, k=1,2, \ldots, n$. It is a question whether this is the only semigroup satisfying (i) and (ii) which is not a group.

Example 2.1. Let G be the semigroup defined in Remark 2.4. and consider the equation

$$
\begin{equation*}
a_{1} f\left(g_{1} x\right)+a_{2} f\left(g_{2} x\right)+\cdots+a_{n} f\left(g_{n} x\right)=0 \tag{2.2}
\end{equation*}
$$

(Here we suppose that S_{2} is a field and that $a_{k} \in S_{2}$). The general solution of the equation (2.2) is given by

$$
f(x)=F\left(\Pi(x), \quad\left(\Pi\left(g_{1} x\right), \Pi\left(g_{2} x\right), \ldots, \Pi\left(g_{n} x\right)\right)\right.
$$

where Π : $S_{1} \rightarrow S_{2}$ is arbitrary, and F is defined by

$$
\begin{aligned}
F\left(u_{1}, u_{2}, \ldots, u_{n+1}\right) & =u_{1} \text { if } a_{1} u_{2}+a_{2} u_{3}+\cdots+a_{n} u_{n+1}=0 \\
& =0 \text { if } a_{1} u_{2}+a_{2} u_{3}+\cdots+a_{n} u_{n+1} \neq 0
\end{aligned}
$$

In particular, if $a_{1}+a_{2}+\cdots+a_{n} \neq 0$, then the general solution of (2.2) can be written as

$$
\left(f(x)=\Pi(x)-\frac{1}{a_{1}+\cdots+a_{n}}\left(a_{1} \Pi\left(g_{1} x\right)+a_{2} \Pi\left(g_{2} x\right)+\cdots+a_{n} \Pi\left(g_{n} x\right)\right)\right.
$$

3. Second variation. If instead of the equation (2.1), we consider the more general equation (1.1), it can be shown that the condition " G is a group" cannot be replaced by the weaker condition " G is a semigroup satisfying (i) and (ii)" if we want to preserve the form of the general solution as given by Prešić [7].
4. Third variation. Since the condition " G is a group" cannot be satisfactorily weakened (the weaker condition given in Section 2 is not very useful) it is natural to look for some suitable condition which can be placed on the function J which will ensure solvability of the considered equuation. Before we give some examples, we introduce some notations.

If $J: S_{2}^{n} \rightarrow\{\top, \perp\}, g_{i}: S_{1} \rightarrow S_{2}$ and if the considered equation is

$$
J\left(f\left(g_{1} x\right), f\left(g_{2} x\right), \ldots, f\left(g_{n} x\right)\right)=\top \quad\left(g_{1} \text { is right unit }\right)
$$

then replacing x by $g_{1} x, g_{2} x, \ldots, g_{n} x$, we obtain the system

$$
\begin{equation*}
J\left(f\left(g_{1 k} x\right), f\left(g_{2 k} x\right), \ldots, f\left(g_{n k} x\right)\right)=\top \quad(k=1,2, \ldots n) \tag{4.1}
\end{equation*}
$$

where $g_{i j} x=g_{i}\left(g_{j}(x)\right)$. Instead of the system (4.1) it is more convenient to operate with the "algebraic" system

$$
\begin{equation*}
J\left(u_{1 k}, u_{2 k}, \ldots, u_{n k}\right)=\top \quad(k=1,2, \ldots, n) \tag{4.2}
\end{equation*}
$$

where $u_{i j}$ is corresponded to $g_{i j}(x)$.
We give two illustrations of the possibilities which arise by specifying J and/or G.

Illustration 1. Suppose that S_{2} is a field, $a_{i} \in S_{2}$, and consider the equation

$$
\begin{equation*}
a_{1} f\left(g_{1} x\right)+a_{2} f\left(g_{2} x\right)+\cdots+a_{n} f\left(g_{n} x\right)=0 \tag{4.3}
\end{equation*}
$$

Suppose, further, that the corresponding system (4.2), which in this case reads

$$
a_{1} u_{1 k}+a_{2} u_{2 k}+\cdots+a_{n} u_{n k}=0 \quad(k=1,2, \ldots, n)
$$

reduces to one equation only. In other words, we suppose that there exist $\alpha_{k}(k=$ $2,3, \ldots, n)$ such that

$$
a_{1} u_{1 k}+a_{2} u_{2 k}+\cdots+a_{n} u_{n k}=\alpha_{k}\left(a_{1} u_{11}+a_{2} u_{21}+\cdots+a_{n} u_{n 1}\right) \quad(k=2,3, \ldots, n)
$$

where some (or all) α_{k} may be 0 .
If $a_{1}+a_{2} \alpha_{2}+\cdots+a_{n} \alpha_{n} \neq 0$, the general solution of (4.3) is given by

$$
f(x)=\Pi(x)-\frac{1}{a_{1}+a_{2} \alpha_{2}+\cdots+a_{n} \alpha_{n}}\left(a_{1} \Pi\left(g_{1} x\right)+a_{2} \Pi\left(g_{2} x\right)+\cdots+a_{n} \Pi\left(g_{n} x\right)\right)
$$

where Π : $S_{1} \rightarrow S_{2}$ is arbitrary.
Remark 4.1. The semigroup G, defined in Remark 2.4. is such that its corresponding "algebraic" system always reduces to one equation only.

Example 4.1. Consider the real equation

$$
\begin{equation*}
a f(x, y)+b f(y, x)+c f(x, x)+d f(y, y)=0 \tag{4.4}
\end{equation*}
$$

with $a+b+c+d=0^{1}$, i.e. the equation

$$
\begin{equation*}
a f(x, y)+b f(y, x)+c f(x, x)-(a+b+c) f(y, y)=0 . \tag{4.5}
\end{equation*}
$$

The equation (4.5) leads to the system

$$
\begin{aligned}
a u+b v+c w-(a+b+c) z & =0 \\
b u+a v-(a+b+c) w+c z & =0 \\
0 & =0 \\
0 & =0
\end{aligned}
$$

[^0]and it will reduce one equation only, if
\[

$$
\begin{equation*}
\frac{a}{b}=\frac{b}{a}=-\frac{c}{a+b+c}=-\frac{a+b+c}{c} \tag{4.6}
\end{equation*}
$$

\]

The system (4.6) yields two possibilities:
(i) $a=b, c=-a$;
(ii) $a+b=0, c$ abitrary.

In case (i) the equation (4.5) becomes

$$
f(x, y)+f(y, x)-f(x, x)-f(y, y)=0
$$

and has general solution

$$
f(x, y)=\Pi(x, y)-\frac{1}{2}(\Pi(x, y)+\Pi(y, x)-\Pi(x, x)-\Pi(y, y))
$$

while in case (ii) we obtain the equation

$$
a f(x, y)-a f(y, x)+c f(x, x)-c f(y, y)=0
$$

with the general solution

$$
f(x, y)=\Pi(x, y)-\frac{1}{2 a}(a \Pi(x, y)-a \Pi(y, x)+c \Pi(x, x)-c \Pi(y, y))
$$

where in both cases Π is an arbitrary function
Illustration 2. Suppose that $G=\left\{g_{1}, g_{2}, \ldots, g_{m}, g_{m+1}, \ldots, g_{n}\right\}$ is a monoid satisfying

$$
g_{i} g_{j}=g_{j} \text { for all } i(1 \leq i \leq n) \text { and } j=m+1, \ldots, n
$$

and consider the equation

$$
\begin{equation*}
J_{1}\left(f(x), f\left(g_{2} x\right), \ldots, f\left(g_{n} x\right)\right)=J_{2}\left(f(x), f\left(g_{2} x\right), \ldots, f\left(g_{n} x\right)\right) \tag{4.7}
\end{equation*}
$$

where $J_{1}(a, a, \ldots, a)=J_{2}(a, a, \ldots, a)$ for all a.
If the system

$$
J_{1}\left(u_{1 k}, u_{2 k}, \ldots, u_{n k}\right)=J_{2}\left(u_{1 k}, u_{2 k}, \ldots, u_{n k}\right) \quad(k=1,2, \ldots, n)
$$

implies

$$
u_{1}=F\left(u_{m+1}, \ldots, u_{n}\right) \quad\left(u_{i} \text { corresponds to } f\left(g_{i} x\right)\right)
$$

where

$$
F\left(F\left(a_{1}, \ldots, a_{1}\right), \quad F\left(a_{2}, \ldots, a_{2}\right), \ldots, F\left(a_{n-m}, \ldots, a_{n-m}\right)\right)=F\left(a_{1}, \ldots, a_{n-m}\right)
$$

then the general solution of (4.7) is given by

$$
f(x)=F\left(\Pi\left(g_{m+1} x\right), \ldots, \Pi\left(g_{n} x\right)\right)
$$

where Π is an arbitrary function.
Example 4.2. Consider the real functional equation

$$
\begin{gather*}
f(x, y, z)^{2}+f(y, y, z)^{2}+f(z, z, z)^{2}= \\
=f(x, y, z) f(y, y, z)+f(y, y, z) f(z, z, z)+f(z, z, z) f(x, y, z) \tag{4.8}
\end{gather*}
$$

If $g_{1}(x, y, z)=(x, y, z), g_{2}(x, y, z)=(y, y, z), g_{3}(x, y, z)=(z, z, z)$, then clearly $g_{i} g_{3}=g_{3} \quad(i=1,2,3)$. The corresponding "algebraic" system

$$
\begin{aligned}
u^{2}+v^{2}+w^{2}-u v-v w-w u & =0 \\
v^{2}+w^{2}-2 v w & =0 \\
0 & =0
\end{aligned}
$$

yields $u=v=w$, and hence the general solution of (4.8) is

$$
f(x, y, z)=\Pi(z, z, z)
$$

where Π is an arbitrary function, or equaivalently,

$$
f(x, y, z)=\Phi(z)
$$

where Φ is an arbitrary function.
Example 4.3. Let $g: S_{1} \rightarrow S_{2}$ where S_{2} is a field and let $\left\{i, g, \ldots, g^{n-1}\right\}$ be a cyclic group of order n. Furthermore, let $h: S_{1} \rightarrow S_{2}$ be such that $g h=h$, $h^{2}=h$. Then, clearly $g^{k} h=k$ for all k, and the mappings g, h generate the semigroup $G=\left\{i, g, \ldots, g^{n-1}, h, h g, \ldots, h g^{n-1}\right\}$. Consider the equation

$$
\begin{align*}
a_{1} f(x) & +a_{2} f(g x)+\cdots+a_{n} f\left(g^{n-1} x\right) \tag{4.9}\\
& +b_{1} f(h x)+b_{2} f(h g x)+\cdots+b_{n} f\left(h g^{n-1} x\right)=0
\end{align*}
$$

where $\sum_{v=1}^{n} a_{v}+\sum_{v=1}^{n} b_{v}=0$.
If

$$
D=\left|\begin{array}{cccc}
a_{1} & a_{2} & \cdots & a_{n} \\
a_{n} & a_{1} & & a_{n-1} \\
\vdots & & & \\
a_{2} & a_{3} & & a_{1}
\end{array}\right| \neq 0
$$

then the general solution of the equation (4.9) is

$$
f(x)=\frac{1}{D}\left(D_{1} \Pi(h x)+D_{2} \Pi(h g x)+\cdots+D_{n} \Pi\left(h g^{n-1} x\right)\right)
$$

where $D_{1}, D_{2}, \ldots D_{n}$ are the determinants obtained from D by replacing the first column of D by $\left(-b_{1},-b_{n}, \ldots, b_{2}\right),\left(-b_{2},-b_{1}, \ldots,-b_{3}\right), \ldots,\left(-b_{n},-b_{n-1}, \ldots,-b_{1}\right)$ reespectively.

Remark 4.2. A useful case of the equation (4.9) is provided by

$$
\begin{gathered}
S_{1}=R^{n}, \quad S_{2}=R, g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{2}, x_{3}, \ldots, x_{1}\right) \\
h\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}, x_{1}, \ldots, x_{1}\right)
\end{gathered}
$$

5. A special functional equation. We shall now apply some of the previous results to the real equation

$$
\begin{equation*}
a f(x, y)+b f(y, x)+c f(x, x)+d f(y, y)=0 \tag{5.1}
\end{equation*}
$$

We distiguish between several cases (excluding the trivial case $a=b=c=d=0$). $(I) a^{2}=b^{2}>0$.
(I.i) $a+b+c+d \neq 0$. Then (5.1) implies $f(x, x)=0$, and it reduces to the cyclic equation

$$
a f(x, y)+b f(y, x)=0
$$

which has the following general solution

$$
\begin{array}{ll}
\text { (I.i.a) } f(x, y)=0 & \left(a \neq b^{2}\right) \\
\text { (I.i.b) } f(x, y)=\Pi(x, y)-\Pi(y, x) & (a=b) \\
\text { (I.i.c) } f(x, y)=\Pi(x, y)+\Pi(y, x) & (a+b=0) . \\
\text { (I.ii) } d+b+c+d=0 &
\end{array}
$$

(I.ii.a) If $a^{2} \neq b^{2}$, we arrive at a special case of Example 4.2. and the general solution of (5.1) is

$$
f(x, y)=\frac{b d-a c}{a^{2}-b^{2}} \Pi(x, x)+\frac{b c-a d}{a^{2}-b^{2}} \Pi(y, y)
$$

(I.ii.b) If $a+b=0$, this is a special case of Example 4.1, and the general solution of (5.1) is

$$
f(x, y)=\Pi(x, y)-\frac{1}{2 a}(a \Pi(x, y)+b \Pi(y, x)+c \Pi(x, x)+d \Pi(y, y)) .
$$

(I.ii.c) If $a=b$, we distinguish between:
(I.ii.c.1) $a+c=0$. This is again a special case of Example 4.1; the equation becomes

$$
f(x, y)+f(y, x)-f(x, x)-f(y, y)=0
$$

and its general solution is

$$
f(x, y)=\Pi(x, y)-\frac{1}{2}(\Pi(x, y)+\Pi(y, x)-\Pi(x, x)-\Pi(y, y)) .
$$

(I.ii.c.2) $a+c \neq 0$. Then (5.1) becomes

$$
\begin{equation*}
f(x, y)+f(y, x)+\alpha f(x, x)-(2+\alpha) f(y, y)=0\left(\alpha=\frac{c}{a}\right) \tag{5.2}
\end{equation*}
$$

which together with

$$
f(y, x)+f(x, y)+\alpha f(y, y)-(2+\alpha) f(x, x)=0
$$

implies $f(x, x)=f(y, y)$, and (5.2) reduces to

$$
\begin{equation*}
f(x, y)+f(y, x)-2 f(x, x)=0 . \tag{5.3}
\end{equation*}
$$

The general solution of (5.3) is given by [4]:

$$
f(x, y)=\Pi(x, y)-\Pi(y, x)+K
$$

where K is an arbitrary constant, or, equivalently

$$
f(x, y)=\Pi(x, y)-\Pi(y, x)+2 \Pi(k, k) .
$$

where $k \in R$ is fixed.
(II) $a^{2}=b^{2}=0$.

The equation (5.1) becomes

$$
\begin{equation*}
c f(x, x)+d f(y, y)=0, \tag{5.4}
\end{equation*}
$$

and we distinguish between two cases:
(II.i) $c+d \neq 0$. Then (5.4) becomes

$$
\begin{equation*}
f(x, x)=0, \tag{5.5}
\end{equation*}
$$

which is a special case of Example 4.1. Hence, the general solution of (5.5) is

$$
f(x, y)=\Pi(x, y)-\Pi(x, x) .
$$

(II.ii) $c+d=0$. The equation (5.4) becomes

$$
f(x, x)=f(y, y) \text {, i.e. } f(x, x)=f(k, k) \quad(k \text { fixed }) .
$$

Its general solution is esily established to be

$$
f(x, y)=\Pi(x, y)-\Pi(x, x)+\Pi(k, k),
$$

where $k \in R$ is fixed.
Hence, in all cases the general solution of (5.1) can be expressed as a linear combination of $\Pi(x, y), \Pi(y, x), \Pi(x, x), \Pi(y, y), \Pi(k, k)$, where Π is an abitrary function, and $k \in R$ is fixed.
6. Fourth variation. As we mentioned in the previous section, in [4] Prešić considered, as an example, the real equation

$$
\begin{equation*}
f(x, y)+f(y, x)-2 f(x, x)=0 \tag{6.1}
\end{equation*}
$$

and remarked that its general solution

$$
f(x, y)=\Pi(x, y)-\Pi(y, x)+K
$$

(Π arbitrary function, K arbitrary constant) cannot be expressed by means of the semigroup $G=\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\}$, where $g_{1}(x, y)=(x, y), g_{2}(x, y)=(y, x), g_{3}(x, y)=$ $(x, x), g_{4}(x, y)=(y, y)$.

Suppose that k is a fixed real number. It is easily shown that the general solution of (6.1) can be written in the form

$$
f(x, y)=\Pi(x, y)-\Pi(y, x)+2 \Pi(k, k)
$$

i.e. the equation (6.1) is solvable within the semigroup $G^{\prime}=\left\{g_{1}, g_{2}, g_{3}, g_{4}, g_{5}\right\}$ where $g_{5}(x, y)=(k, k)$.

This example shows that it may be possible to extend the initial semigroup G into a semigroup $G_{e} \supset G$ which is such that it allows the equation to be solved within it. Indeed, B. Alimpić [8] showed that any equation of the form

$$
J(f(x, y), f(y, x), f(x, x) f(y, y))=\top
$$

can be solved within semigroup $G^{\prime \prime}=\left\{g_{1}, \ldots, g_{9}\right\}$, where g_{1}, \ldots, g_{5} are defined as above, and $g_{6}(x, y)=(x, k), g_{7}(x, y)=(k, x), g_{8}(x, y)=(y, k), g_{9}(x, y)=(k, y)$.

In the previous section we showed that any linear equation (5.1) can be solved within the semigroup G^{\prime} (the wider semigroup $G^{\prime \prime}$ is not needed).

This suggests two questions:
(i) For a given equation (1.1) unsolvable within G, does there exist an extended semigroup $G_{e} \supset G$ such that the equation is solvable within G_{e}.
(ii) If the answer to (i) is affirmative, is it possible to find the minimal extended semigroup G_{m} such that the equation is solvable within G_{m}.

REFERENCES

[1] S. B. Pressić: Sur l'équation fonctionelle $f(x)=f(g(x))$. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 61-No. 64 (1961), 29-31.
[2] S. B. Prešić, Sur l'équation fonctionelle $f(x)=H\left(x, f(x), f\left(\theta_{1} x\right), \ldots, f\left(\theta_{n} x\right)\right)$. Ibid. No. 115-No. 121 (1963), 17-20.
[3] S. B. Prešoć, Méthode de résolution d'une classe d'équations fonctionnelles linéaires. C. R. Acad. Sci. Paris 257 (1963), 2224-2226.
[4] S. B. Prešić, Méthode de résolution d'une classe d'équations fonctionelles lineaires. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 115-No. 121 (1963), 21-28.
[5] S. B. Prešić, A method for solving a class of cyclic functional équations. Mat. Vesnik 5 (20) (1968), 375-377.
[6] S. B. Prešić, Méthod de résolution d'une classe d'équations fonctionnelles linéaires et non homogénes. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 247-No. 273 (1969), 67-72.
[7] S. B. Prevšić, Opšta grupna funkcionalna jednačina. Mat. Vesnik 7 (22) (1970), 317-320.
[8] B. P. Alimpić, On models of certain formulas of the predicate calculus of first order. Ibid. 5 (20) (1968), 347-351.

Tikveška 2
11000 Beograd

[^0]: ${ }^{1}$ If $a+b+c+d \neq 0$, the equation (4.4) is easily reduced to the (cyclic) group equation $a f(x, y)+b f(y, x)=0$.

