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ON SOME CLASSES OF LINEAR EQUATIONS, IV

Jovan D. Ke�cki�c

1. Introduction

Let V be a commutative algebra over R (or C), and let L1 and L2 belinear
operators on V satisfying the conditions

(1) Li(uv) = uLiv i� u 2 kerLi (i = 1; 2):

Consider the linear equation

(2) P (L1; L2)u = 0

where P is a two variable polynomial over R (or C) and u 2 V .

Suppose that there exists an element v 2 V which is a characteristic vector of
L1 and the same time, belongs to the kernel of L2; and similarly, that there exists
an element w 2 V which is a characteristic vector of L2 and belongs to the kernel
of L1. In other words, we suppose the existence of elements v, w 2 V such that

L1v = �v; L2v = 0;(3)

L1w = 0; L2w = �w(4)

where �; � 2 R (or C).

Put u = vw. Then, in virtue of (1), (3) and (4), we easily verify that

Lk
1u = �ku; Lk

2u = �ku; L
p
1L

q
2 = �p�qu (k; p; q 2 N):

Hence, if v, w, �, � are de�ned by (3) and (4), we see that u = vw is a
solution of the equation (2) provided that

(5) P (�; �) = 0:



90 J. Ke�cki�c

This simple observation reduces the problem of �nding a particular solution
of the equation (2) to the problem of solving the algebraic equation (5). However,
the equation (5) may have an in�nity of solutions, which means that it is, in certain
cases, possible to obtain an in�nity of solutions of (2). Some times those solutions
can be combined to yield the general solution of the considered equation. Namely,
suppose that v� and w� (�; � 2 R) are such that

(6) L1v� = �v�; L1w� = 0; L2v� = 0; L2w� = �w� (for all �; � 2 R):

If the equation (5) implies � = f(�), then

u = v�wf(�)

is a solution of (2) for all � 2 R, and hence we can combine those solutions into a
formal series

(7) u =
X
�

C�v�wf(�)

which, can, in certain cases, be summed up, the sum of (7) being the actual general
solution of the equation (2).

In this paper we shall give a number of examples of �rst order equations of
the form (2).

2. Examples of �rst order equations

If P is a �rst degree polynomial, then the equation (2) becomes

(8) (aL1 + bL2 + cI)u = 0 (a; b; c 2 R or C)

where I is the identity mapping.

The corresponding algebraic equation is

(9) a�+ b�+ c = 0;

and we, naturally, suppose that the coeÆcients a and b are not both zero.

Example 1: Partial di�erential equations. Let V be the algebra of all real
di�erentiable functions in two real variables. Let L1

Æ
Æx , L2 =

Æ
Æy . Then v� = e�x,

w� = e�y satisfy the equations (6) for all �; � 2 R. The equation (8)in this case
becomes

(10) aux + buy + cu = 0:

Supposing that b 6= 0, we obtain the following solution of (10):

u = e�xe�(a�+c)y=b
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where � 2 R is arbitrary. Combining the obtained solutions into a formal series of
the form (7), we �nd

u =
X
�

C�e
�xe�(a�+c)y=b;

i.e.

(11) u = e�
c

b
y
X
�

C�e
�

b
(bx�ay);

where C� are arbitrary constans. This suggests that the sum which appears in (11)
is an arbitrary (di�erentiable) function of bx� ay, giving general solution of (10):

u(x; y) = e�
c

b
yF (bx� ay);

where F is an arbitrary di�eretiable function.

Example 2: Partial di�erence equations. Let V be the algebra of all real
functions in two real variables x and y, and let L1 = �x, L2 = �y, where

�xu(x; y) = u(x+ 1; y)� u(x; y); �yu(x; y) = u(x; y + 1)� u(x; y)

Then v� = (1 + �)x, w� = (1 + �)y satisfy the equations (6) for all �; � 2 R. The
equation (8) in this case becomes

a�xu+ b�yu+ cu = 0;

i.e.

(12) au(x+ 1; y) + bu(x; y + 1) + (c� a� b)u(x; y) = 0:

Supposing that b 6= 0, we obtain the following solution of (12):

u = (1 + �)x
�
1�

1

b
(a�+ c)

�y

with � 2 R arbitrary. Hence

(13) u(x; y) =
X
�

C�(1 + �)x
�
1�

a

b
��

c

b

�y

is also a formal solution of (12) for arbitrary constans C�. We distinguish between
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three cases:

(i) a+ b 6= c; a = 0; b 6= 0: Then (13) becomes

u(x; y) =
X
�

C�(1 + �)x
�
1�

c

b

�y
=

�
b� c

b

�yX
�

C�(1 + �)x

=

�
b� c

b

�y

f(x); where f is arbitrary.

(ii) a+ b = c; ab 6= 0: Then (13) becomes

u(x; y) =
X
�

C�(1 + �)x
�
�
a

b
�

a

b
�
�y

=
�
�
a

b

�yX
�

C�(1 + �)x+y

=
�
�
a

b

�y
f(x+ y); where f is arbitrary.

(iii) a+ b 6= c; b 6= 0: Then (13) becomes

u(x; y)�
�
�
a

b

�yX
�

C�(1 + �)x
�
c� a� b

a
+ 1 + �

�y

=
�
�
a

b

�yX
�

C�(1 + �)x
yX

v=0

�
y

v

��
c� a� b

a

�y�v

(1 + �)v

=

�
a+ b� c

b

�y yX
v=0

�
y

v

��
a

c� a� b

�v

f(x+ v);

where f is arbitrary.

The obtained solutions are general.

Example 3: Di�erential-di�erence equations. Let V = fun(x) j n 2 N; x 2
Rg and de�ne L1 and L2 by:

L1un(x) = un+1(x)� un(x); L2un(x) = u0n(x):

This leads to the equation

(14) aun+1(x) + bun
0(x) + (c� a)un(x) = 0:

Since v� = (1 + �)n, w� = e�x satisfy (6) for all �; � 2 R, for b 6= 0 we obtain the
following solution of (14):

un(x) = (1 + �)ne�
1
b
(a�+c)x;

for all � 2 R. The corresponding formal series is given by

un(x) = e�
c

b
x
X
�

C�(1 + �)ne�
a

b
�x = e�

c

b
x
X
v

Cv

�
1�

b

a
v

�n

evx

= e�
c

b
x
X
v

Cv

�
1�

�
n

1

�
b

a
v +

�
n

2

�
b2

a2
v2 � � � �+ (�1)n

bn

an
vn
�
evx:
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Hence, putting X
v

Cve
vx = f(x);

where f is an arbitrary n times di�erentiable function, we arrive at the following
solution of (14):

un(x) = e�
c

b
x

�
f(x)�

�
n

1

�
b

a
f 0(x) +

�
n

2

�
b2

a2
f 00(x)� � � �+ (�1)n

bn

an
f (n)(x)

�
:

Example 4: Functional-di�erential equations. Let V be the algebra of all
real di�erentiable functions in two real variables x and y. De�ne the operators L1
and L2 by

L1u(x; y) = u(�x; y)� u(x; y); L2u(x; y) = uy(x; y)

where �:R ! R is such that �2 = I , i.e. �(�(x)) = x. The linear equation (8)
becomes

(15) au(�x; y) + buy(x; y) + (c� a)u(x; y) = 0:

As before, any function of the form u(x; y) = e�y is a characteristic vector for
L2 and also belongs to ker L1. In order to �nd the characteristic vectors of L1 we
have to solve the equation

u(�x; y) = (1 + �)u(x; y);

which is possible only if (1 + �)2 = 1, i. e. �(� + 2) = 0.

For � = 0 we �nd � = � c
b , while for � = �2 we get � = 2a�c

b . The
characteristic vectors which correspond to � = 0 and � = �2 respectively, are

u(x; y) = f(x) + f(�x) and u(x; y) = g(x)� g(�x);

where f and g are arbitraray. Hence, we obtain the following solution of the
equation (15):

u(x; y) = [f(x) + f(�x)]e�
c

b
y + [g(x)� g(�x)]e

2a�c

b
y

where f and g are arbitrary functions.

Example 5: Functional-di�erence equations. Let V be as in Example 2,
and � as in Example 4. De�ne the operators L1 and L2 by

L1u(x; y) = u(�x; y)� u(x; y); L2u(x; y) = u(x; y + 1)� u(x; y):

This leads to the equation

(16) au(�x; y) + bu(x; y + 1) + (c� a� b)u(x; y) = 0:
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Again we only have two characteristic values for L1, namely � = 0 and � =
�2. Hence, � = � c

b and � = 2a�c
b respectively, and we arrive at the following

solution of (16):

u(x; y) = [f(x) + f(�x)]
�
1�

c

b

�y
+ [g(x)� g(�x)]

�
1�

2a� c

b

�y

;

where f and g are arbitrary functions.

Example 6: Functional equations. Let V be as in Example 2, and let �,
':R ! R be such that �2 = I , '3 = I (Ix = x). De�ne the operators L1 and L2
by

L1u(x; y) = u(�x; y)� u(x; y); L2u(x; y) = u(x; 'y)� u(x; y):

The linear equation (8) becomes

(17) au(�x; y) + bu(x; '; y) + (c� a� b)u(x; y) = 0:

There are only two possible characteristic values � for L1: 0 and �2, and only
one (real) characteristic value � for L2: 0. Since � and � are tied by the equation
(9), this equation has to be satis�ed by the following two pairs: (0; 0) and (�2; 0),
which yields c = 0 and c = 2a, respectively.

Hence, we can obtain solutions of the following equations

(18) au(�x; y) + bu(x; 'y)� (a+ b)u(x; y) = 0;

(19) au(�x; y) + bu(x; 'y) + (a� b)u(x; y) = 0:

They are

u(x; y) = (f(x) + f(�x))(g(y) + g('y) + g('2y));(20)

u(x; y) = (f(x)� f(�x))(g(y) + g('y) + g('2y));(21)

respectively, where f and g are arbitrary functions.

Remark 1. If we put f(x)g(y) = F (x; y), then (20) and (21) can be written
as

u(x; y) = F (x; y) + F (x; 'y) + F (x; '2y)(22)

+ F (�x; y) + F (�x; 'y) + F (�x; '2y)

u(x; y) = F (x; y) + F (x; 'y) + F (x; '2y)(23)

� F (�x; y)� F (�x; 'y) + F (�x; '2y);

respectively.
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It is easily veri�ed that (22) and (23) satisfy the equations (18) and (19),
when F is an arbitrary function. Moreover, is can be shown that the obtained
solutions are general. Indeed, the equation (18) is equivalent to the equation

u(x; y) =
1

6

�
u(x; y) + u(x; 'y) + u(x; '2y) + u(�x; y) + u(�x; 'y) + (�x; '2y)

�
;

which is a reproductive equation, i.e. has the form

u = Au; with A2 = A:

Hence, see for example [1], its general solution is

u(x; y) = A�(x; y);

where � is arbitrary, which is precisely (22) with 6F = �.

Similar constutions hold for the solution (23) of the equation (19).

Remark 2. It can also be shown that the equations (18) and (19) are the
only equations of the form (17) which have nontrivial solutions.

3. A remark on �rst order equations

The exposed method gives only one or more particular solutions of the consid-
ered equation. Howeover, in Examples 1, 2 and 6, using those particular solutions
we arrived at the general solutions. Moreover, the solution of the equation (14)
from Example 3 is also called the general solution in book [2], though no proof is
given. Some other investigations, which are not the subject of this paper, lead us
to conjecture that the solutions given in Examples 4 and 5 are also general.

4. A note on some second order equations

The method given here can clearly be applied to higher order equations, but
the corresponding algebraic equation will be more complicated. In papere [3] and [4]
we applied this method to second order partial di�erential and di�erence equations.

We shall brie
y consider some examples of the second order equation

(24) (L1L2 + aL1 + bL2 + cI)u = 0 (a; b; c 2 R)

with the corresponding algebraic equation

��+ a�+ b�+ c = 0:

If V , L1, L2 are de�ned as in Examples 3, 4, 5 and 6, respectively, we obtain the
following equations

(25) un+1
0(x) + aun+1(x) + (b� 1)un

0(x) + (c� a)un(x) = 0;
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(26) uy(�x; y) + au(�x; y) + (b� 1)uy(x; y) + (c� a)u(x; y) = 0;

(27) u(�x; y+1)+ (a� 1)u(�x; y) + (b� 1)u(x; y+1)+ (c� a� b+1)u(x; y) = 0;

(28) u(�x; 'y) + (a� 1)u(�x; y) + (b� 1)u(x; 'y) + (c� a� b+ 1)u(x; y) = 0:

The equation (25) is formally satis�ed by

(29) un(x) =
X
�

C�(1 + �)ne
a�+c

�+b
x

and this series can, in some cases, be summed. For example, if c = ab then (29)
reduces to un(x) = f(n)e�ax, where f is arbitrary.

For the equation (26) we obtain the solutions:

u(x; y) = (f(x) + f(�x)e�
c

b
y + (g(x) � g(�x))e

2a�c

b�a
y if b(b� 2) 6= 0;

u(x; y) = F (x; y) + F (�x; y) + (g(x)� g(�x))e�ay if b = c = 0;

u(x; y) = (g(x) � g(�x))e
c�2a

2
y if b = 0; c 6= 0;

u(x; y) = (f(x) + f(�x))e�ay +G(x; y)�G(�x; y) if b = 2; c = 2a;

u(x; y) = (f(x) + f(�x))e�
c

2
y if b = 2; c 6= 2a;

where f , g, F , G are arbitrary functions.

Similar results hold for the equation (27).

Finally, regarding the equation (28) we conclude that we can obtain solutions
only for the following two equations

u(�x; 'y) + (a� 1)u(�x; y) + (b� 1)u(x; 'y) + (1� a� b)u(x; y) = 0;

u(�x; 'y) + (a� 1)u(�x; y) + (b� 1)u(x; 'y) + (1 + a� b)u(x; y) = 0:

The solutions are again (22) and (23), respectively, where F is an arbitrary
function.
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