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LIMIT THEOREMS FOR TWO-UNIT STANDBY REDUNDANT SYSTEMS

WITH RAPID REPAIR AND RAPID PREVENTIVE MAINTENANCE

Slobodanka Janji�c

Mathematical Institute, Belgrade

Formulation of the problem. During the last few years several papers ap-
peared, dealing the behaviour of the redundant systems with repair and preventive
maintenance (preventive repair).

In reality, the repair time and preventive repair time in a system is by far
shorter then the period without failure of a unit, and so, it is natural to investigate
how the redundant systems behave when repair and preventive repair are rapid.
In this paper we discuss the two-unit standby system and we impose the following
conditions on the work of the system:

1. the standby unit is unloaded;

2. after repair and preventive repair completion a unit recovers its function
perfectly;

3. after repair or preventive repair a unit is in the standby state;

4. we assume that the switchover times, from the failure to the repair, from
the repair completion to the standby state, and from the standby state to the
operative state, of each unit are all instantaneous, and such are the switchover
times occuring in the inspection too;

5. the standby unit begins to work immediately when the working unit goes
from the operative state to repair or preventive repair;

6. the repair time distribution and the preventive repair time distribution are
independant of the failure time distribution or the inspection time distribution;

7. the failure time distribution, the repair time distribution, the inspection
time distribution and the preventive repair time distribution are, respectively, F (x),
G(x), U(x) and V (x).

We shall deal with three types of the inspection strategies: rigid, sliding and
economical inspection strategy. When the inspection strategy is rigid, a unit under-
goes inspection within certain (in general random) interval of time, independantly
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of the state of the other unit. When the inspection strategy is sliding, operating
unit submits preventive repair only when the space unit is in the standby state. If
the spare unit is not in the standby, the unit which needs preventive repair goes on
working until the spare unit is repared, or until the failure of the two-unit system.
When the inspection strategy is economical, and the moment for the inspection of
the working unit comes when the spare unit is not in order, then the working unit
continues with work until its failure.

The e�ect of the inspection strategies on two-unit systems with the three
mentioned types of stategies was investigated in [1] and [2]. Besides, Laplace trans-
forms of a time without failure distributions for the corresponding strategies were
given there. In our paper we shall use those formulas, but we shall write them
in a slightly di�erent way { actually, instead of Laplace transforms we shall use
Laplace-Stieltjes transforms.

Let ��(x) be a time without failure distribution function of our system and
S�(s) the corresponding Laplace-Stieltjes transform, where instead of the symbol
� we shall have one of the letters r, sl, e, which correspond to the case of rigid,
sliding and economical inspection strategy. Then [1], [2]

Sr(s) =d1(s) + d2(s)� (1� d1(s)� d2(s))(d1(s)(1� c2(s) + c1(s))+(1)

d2(s)(1� b2(s) + c1(s)))((1 � b1(s))(1� c2(s))� b2(s)c1(s))
�1

Ssl(s) =((d1(s) + d2(s))((1� b1(s))(1� c2(s)� e2(s))� b2(s)(c1(s)+

e1(s)) + d1(s)(1 + c1(s)� c2(s) + e1(s)� e2(s))(�1 + g1(s)

+ c1(s) + e1(s)) + d2(s)(1� b1(s) + b2(s))(�1 + g2(s)+

c2(s) + e2(s)))((1 � b1(s))(1� c2(s)� e2(s))� b2(s))(c1(s)

+ e1(s)))
�1

Se(s) =((d1(s) + d2(s))((1� �1(s)� b1(s))(1� c2(s)) � (�2(s)+

b2(s))c1(s))� (d1(s)(1� c2(s)) + d2(s)(�2(s) + b2(s))(1�

d1(s)� �1(s)� c1(s)� h1(s))� (d1(s)c1(s) + d2(s)(1�

�1(s)� b1(s))(1� d1(s)� c2(s)� �2(s)� h2(s)))(1�

�1(s)� b1(s))(1� c2(s))� (�2(s) + b2(s))c1(s))
�1

where

S�(s) =

1Z
0

e�sxd��(x); d1(s) =

1Z
0

e�sxU(x)dF (x)1; d2(s) =

1Z
0

e�sxF (x)dU(x)

b1(s) =

1Z
0

e�sxG(x)U(x)dF (x); b2(s) =

1Z
0

e�sxV (x)U(x)dF (x);

c1(s) =

1Z
0

e�sxG(x)F (x)dU(x); c2(s) =

1Z
0

e�sxV (x)F (x)dU(x);

1
U(x) = 1� U(x)
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e1(s) =

1Z
0

e�sxF (x)U(x)dG(x); e2(s) =

1Z
0

e�sxF (x)U(x)dV (x);

g1(s) =

1Z
0

e�sxG(x)U(x)dF (x); g2(s) =

1Z
0

e�sxV (x)U(x)dF (x);

�1(s) =

1Z
0

e�sx
1Z
0

U(y)dG(y)dF (x); �2(s) =

1Z
0

e�sx
1Z
0

U(y)dV (y)dF (y);

h1(s) =

1Z
0

e�sxG(x)U(x)dF (x); h2(s) =

1Z
0

e�sxV (x)U(x)dF (x):

The limiting time without failure distribution function of the two-unit system
with rapid repair without inspection was given in [3]. We are going to investigate
the limiting distribution of time without failure of two-unit systems with already
mentioned three types of inspection strategies, under the assumption that repair
and preventive repair are rapid. So, let us suppose that the distrubution functions
of the life of a unit F (x) and of the time until the beginning of inspection U(x)
are �xed, and the repair time distribution function Gn(x) and the preventive repair
time distribution function Vn(x) change with the sequence fng so that the following
conditions are satis�ed:

(2)

1Z
0

Gn(x)dF (x) ! 0
n! 1

;

1Z
0

Vn(x)dF (x)! 0
n!�

;

1Z
0

Gn(x)dU(x)! 0
n! 1

;

1Z
0

Vn(x)dU(x)! 0
n!�

:

The conditions (2) we call the conditions of rapid repair and rapid preventive
repair. According to those conditions, we shall give indexes to the Laplace-Stieltjes
transforms where Vn(x) or Gn(x) appear.

Results. Let us denote by � the random variable which corresponds to the
time withour failure of the two-unit system. Then the following theorems hold:

Theorem 1. In the two-unit system with rigid inspection strategy under the

conditions (2) of rapid repair and rapid preventive repair

lim
n!1

Pf�n� < tg = 1� exp(�t=M)

where M =
1R
0

xU(x)dF (x)+
R
1

0
xF (x)dU(x), and �n is a sequence tending to zero,

�n = (1� b1n(0))(1� c2n(0))� b2n(0)c1n(0):
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Let us notice that the mathematical expectation of the limiting distribution
is M =

R
1

0
xdF (x) +

R
1

0
xdU(x) �

R
1

0
xd(F (x)U(x)). The last summand is the

mathematical expectation of a maximum of the following two random variables:
the time until the failure of a unit and the time until the moment for inspection,
and so M � max

�R
1

0
xdF (x);

R
1

0
xdU(x)

	
.

Theorem 2. In the two-unit system with sliding inspection strategy under

the conditions (2) of rapid and rapid preventive repair

lim
n!1

Pf�n� < tg = 1� exp(�t=M)

where M =
R
1

0
xU(x)dF (x) +

R
1

0
xF (x)dU(x), and �n is a sequence tending to

zero,

�n = (1� b1n(0))(1� c2n(0)� e2n(0))� b2n(0)(c1n(0) + e1n(0)):

Theorem 3. In the two-unit system with economical inspection strategy

under the conditions (2) of rapid repair and rapid preventive repair

lim
n!1

f�n� < tg = 1� exp(t=M)

where M =
R
1

0
xU(x)dF (x) +

R
1

0
xF (x)dU(x), and �n is a sequence tending to

zero.

�n = (1� �1n(0)� b1n(0))(1� c2n(0))� (�2n(0) + b2n(0))c1n(0):

Remark. The following relations exist between the coeÆcients which
correspond to di�erent inspection strategies: �rn � �en, 8n and �sln � �rn, 8n
(where �rn, �sln , �en are, respectively, coeÆcients corresponding to rigid, slid-
ing and economical inspection strategy). On the other hand, between �sln and
�en no such relation exists { which is obvious from the fact that �en � �sln =R
1

0
Gn(x)dF (x)

R
1

0
F (x)U(x)dVn(x) �

R
1

0
Vn(x)dF (x)

R
1

0
F (x)U(x)dGn(x). Ro-

ughly speaking, those relations show that the time without failure for the system
with rigid inspection strategy is shorter then the time time without failure for
systems with sliding or economical strategy.

It follows from the Theorems 1., 2. and 3. that in the case of rapid repair and
rapid preventive repair we obtain the same limiting distribution for the two-unit
systems with rigid, sliding and economical inspection strategy, which means that
the limiting case the type of inspection strategy has no inuence on the length of
time without failure in our system.
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The proofs of the Theorems 1., 2. and 3. are analogous (and cumbersome)
and therefore we shall give here only the proof of the Theorem 1.

Proof of the Theorem 1. With some simple transformations, we can
write the function Srn(s) in the following way

Srn(s) =8<
:
0
@

1Z
0

e�sxU(x)dF (x) +

1Z
0

e�sxF (x)dU(x)

1
A
0
@

1Z
0

e�sxGn(x)U(x)dF (x)+

1Z
0

e�sxVn(x)F (x)dU(x)�

1Z
0

e�sxVn(x)F (x)dU(x)

1Z
0

e�sxGn(x)U(x)dF (x)+

1Z
0

e�sxVn(x)U(x)dF (x)

1Z
0

e�sxGn(x)F (x)dU(x) +

1Z
0

e�sxF (x)dU(x)

1Z
0

e�sx(Vn(x)�

Gn(x))U(x)dF (x)) +

1Z
0

e�sxU(x)dF (x)

1Z
0

e�sx(Gn(x)� Vn(x))F (x)dU(x)+

1Z
0

e�sxF (x)dU(x)

1Z
0

e�sx(Gn(x) � Vn(x))U(x)dF (x)

9=
;
8<
:1�

1Z
0

e�sxGn(x)U(x)dF (x)

�

1Z
0

e�sxVn(x)F (x)dU(x) +

1Z
0

e�sxGn(x)U(x)dF (x)

1Z
0

e�sxVnF (x)dU(x)�

1Z
0

e�sxVn(x)U(x)dF (x)

1Z
0

e�sxGn(x)F (x)dU(x)

9=
;
�1

Let us denote by p1n(s) and pn(s) the denominator and the numerator of
Srn(s) respectively. Then pn(0) = p1n(0), because of Srn(0) = 1. That is also

obvious from (1), owing to the fact that
R
1

0
U(x)dF (x) +

R
1

0
F (x)dU(x) = 1 (or

d1(0) + d2(0) = 1). Let us put �n = pn(0) = p1n(0).

Lemma 1.

lim
n!1

pn(�ns)

�n
= 1

uniformly on s on every limited interval.

Proof. Let us write the numerator of Srn(�ns) in the following way:

pn(�ns) =
1Z
0

e��nsxGn(x)U(x)dF (x)

0
@
0
@

1Z
0

e��nsxU(x)dF (x) +

1Z
0

e��nsxF (x)dU(x)

1
A
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0
@1�

1Z
0

e��nsxVn(x)F (x)dU(x)�

1Z
0

e��nsxF (x)dU(x)

1
A+

1Z
0

e��nsxF (x)dU(x)

1
A+

1Z
0

e��nsxGn(x)F (x)dU(x)

1Z
0

e��nsxdF (x)+

1Z
0

e��nsxVn(x)F (x)dU(x)

1Z
0

e��nsxF (x)dU(x) +

1Z
0

e��nsxVn(x)U(x)dF (x)

0
@
0
@

1Z
0

e��nsxU(x)dF (x) +

1Z
0

e��nsxF (x)dU(x)

1
A
0
@

1Z
0

e��nsxGn(x)F (x)dU(x)+

1Z
0

e��nsxF (x)dU(x)

1
A�

1Z
0

e��nsxF (x)dU(x)

1
A =

= k1(�ns)

1Z
0

e��nsxGn(x)U(x)dF (x) + k2(�ns)

1Z
0

e��nsxGn(x)F (x)dU(x)+

k3(�ns)

1Z
0

e��nsxVn(x)F (x)dU(x) + k4(�ns)

1Z
0

e��nsxVn(x)U(x)dF (x):

Let

pn
0(�ns) =k1(�ns)

1Z
0

Gn(x)U(x)dF (x) + k2(�ns)

1Z
0

Gn(x)F (x)dU(x) + k3(�ns)

1Z
0

Vn(x)F (x)dU(x) + k4(�ns)

1Z
0

Vn(x)U(x)dF (x)

�n =k1(0)

1Z
0

Gn(x)U(x)dF (x) + k2(0)

1Z
0

Gn(x)F (x)dU(x) + k3(0)

1Z
0

Vn(x)

F (x)dU(x) + k4(0)

1Z
0

Vn(x)U(x)dF (x):

We shall show that limn!1
�n�pn

0(�ns)+pn
0(�n

0s)�pn(�ns)
�n

= 0 uniformly on s on
every limited interval. First, we show that

a) limn!1
�n�pn

0(�ns)
�n

= 0 uniformly on s every limited interval.
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�n � pn
0(�ns) =

1Z
0

Gn(x)U(x)dF (x)

0
@
0
@

1Z
0

U(x)dF (x) +

1Z
0

F (x)dU(x)

1
A (1�

1Z
0

Vn(x)F (x)dU(x)�

1Z
0

F (x)dU(x)

1
A+

1Z
0

F (x)dU(x)

1
A+

1Z
0

Gn(x)

F (x)dU(x)

1Z
0

U(x)dF (x) +

1Z
0

Vn(x)F (x)dU(x)

1Z
0

F (x)dU(x)+

1Z
0

Vn(x)U(x)dF (x)

0
@
0
@

1Z
0

U(x)dF (x) +

1Z
0

F (x)dU(x)

1
A
0
@

1Z
0

Gn(x)

F (x)dU(x) +

1Z
0

F (x)dU(x)

1
A�

1Z
0

F (x)dU(x)

1
A�

1Z
0

Gn(x)U(x)dF (x)

0
@
0
@

1Z
0

e��nsxU(x)dF (x) +

1Z
0

e��nsxF (x)dU(x)

1
A
0
@1�

1Z
0

e��nsxVn(x)

F (x)dU(x)�

1Z
0

e��nsxF (x)dU(x) +

1Z
0

e��nsxF (x)dU(x)

1
A�

1Z
0

Gn(x)

F (x)dU(x)

1Z
0

e��nsxU(x)dF (x)�

1Z
0

Vn(x)F (x)dU(x)

1Z
0

e��nsx

F (x)dU(x)�

1Z
0

Vn(x)U(x)dF (x)

0
@
0
@

1Z
0

e��nsxU(x)dF (x)+

1Z
0

e��nsxF (x)dU(x)

1
A
0
@

1Z
0

e��nsxGn(x)F (x)dU(x)+

1Z
0

e��nsxF (x)dU(x)

1
A�

1Z
0

e��nsxF (x)dU(x)

1
A =

=

1Z
0

Gn(x)U(x)dF (x)

0
@

1Z
0

(1� e��nsx)U(x)dF (x) + 2

1Z
0

(1� e��nsx)
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F (x)dU(x) �

1Z
0

(1� e��nsx)U(x)dF (x)

1Z
0

Vn(x)F (x)dU(x)�

1Z
0

e��nsxU(x)dF (x)

1Z
0

(1� e��nsx)Vn(x)F (x)dU(x)�

1Z
0

(1�

e��nsxF (x)dU(x)

1Z
0

Vn(x)F (x)dU(x)�

1Z
0

e��nsxF (x)dU(x)

1Z
0

(1�

e��nsx)Vn(x)F (x)dU(x)�

1Z
0

(1� e��nsx)U(x)dF (x)

1Z
0

F (x)dU(x)�

1Z
0

e��nsxU(x)dF (x)

1Z
0

(1� e��nsx)F (x)dU(x) �

1Z
0

(1� e��nsx)

F (x)dU(x)

1Z
0

F (x)dU(x)�

1Z
0

e��nsxF (x)dU(x)

1Z
0

(1� e��nsx)

F (x)dU(x)
� 1Z
0

Gn(x)F (x)dU(x)

1Z
0

(1� e��nsx)U(x)dF (x) +

1Z
0

Vn(x)

F (x)dU(x)

1Z
0

(1� e��nsx)F (x)dU(x) +

1Z
0

Vn(x)U(x)dF (x)

0
@

1Z
0

(1�

e��nsx)U(x)dF (x)

1Z
0

Gn(x)F (x)dU(x) +

1Z
0

e��nsxU(x)dF (x)

1Z
0

(1�

e��nsx)Gn(x)F (x)dU(x) +

1Z
0

(1� e��nsx)F (x)dU(x)

1Z
0

Gn(x)

F (x)dU(x) +

1Z
0

e��nsxF (x)dU(x)

1Z
0

(1� e��nsx)Gn(x)F (x)dU(x)+

1Z
0

(1� e��nsx)U(x)dF (x)

1Z
0

F (x)dU(x) +

1Z
0

e��nsxU(x)dF (x)

1Z
0

(1�

e��nsxF (x)dU(x) +

1Z
0

(1� e��nsx)F (x)dU(x)

1Z
0

F (x)dU +

1Z
0

e��nsx
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F (x)dU(x)
1R
0

(1� e��nsx)F (x)dU(x)�
1R
0

(1� e��nsx)F (x)dU(x)

�
2

� �ns

0
@

1Z
0

Gn(x)U(x)dF (x)

0
@

1Z
0

xU(x)dF (x) + 2

1Z
0

xF (x)dU(x)+

1Z
0

xU(x)dF (x)

1Z
0

Vn(x)F (x)dU(x) +

1Z
0

xVn(x)F (x)dU(x)

1Z
0

e��nsx

U(x)dF (x) +

1Z
0

xF (x)dU(x)

1Z
0

Vn(x)F (x)dU(x) +

1Z
0

xVn(x)

F (x)dU(x)

1Z
0

e��nsxF (x)dU(x) +

1Z
0

xU(x)dF (x)

1Z
0

F (x)dU(x)+

1Z
0

xF (x)dU(x)

1Z
0

e��nsxU(x)dF (x) +

1Z
0

xF (x)dU(x)

1Z
0

F (x)dU(x)+

1Z
0

xF (x)dU(x)

1Z
0

e��nsxF (x)dU(x)

1
A+

1Z
0

Gn(x)F (x)dU(x)

1Z
0

xU(x)dF (x) +

1Z
0

Vn(x)F (x)dU(x)

1Z
0

xF (x)dU(x)+

1Z
0

Vn(x)U(x)dF (x)

0
@

1Z
0

xU(x)dF (x)

1Z
0

Gn(x)F (x)dU(x)+

1Z
0

xGn(x)F (x)dU(x)

1Z
0

e��nsxU(x)dF (x) +

1Z
0

xF (x)d

U(x)

1Z
0

Gn(x)F (x)dU(x) +

1Z
0

xGn(x)F (x)dU(x)

1Z
0

e��nsxF (x)dU(x)+

1Z
0

xU(x)dF (x)

1Z
0

F (x)dU(x) +

1Z
0

xF (x)dU(x)

1Z
0

e��nsxU(x)dF (x)+

1Z
0

xF (x)dU(x)

1Z
0

F (x)dU(x) +

1Z
0

xF (x)dU(x)

1Z
0

e��nsxF (x)dU(x)+

2We used the inequalities { (1� e
�x) � 1� e

�x, and 1� e
�x � x.
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1Z
0

xF (x)dU(x)

1
A �

� �nsK

0
@

1Z
0

Gn(x)U(x)dF (x) +

1Z
0

Gn(x)F (x)dU(x)+

1Z
0

Vn(x)F (x)dU(x) +

1Z
0

Vn(x)U(x)dF (x)

1
A :

Owing to the conditions (2), the expression in the last brackets tends to zero as

n!1. We have K � 11max
�R

1

0
U(x)dx;

R
1

0
F (x)dx

�
which is obvious because

in the brackets nearby
R
1

0
Gn(x)U(x)dF (x) we have eleven summands neither of

which exceeds max
�R

1

0 U(x)dx;
R
1

0 F (x)dx
�
, so that a) is proved. Let us show

now that

b) limn!1
pn
0(�ns)�pn(�ns)

�n
uniformly on s on every limited interval.

pn
0(�ns)� pn(�ns) =

k1(�ns)

1Z
0

(1� e��nsx)Gn(x)U(x)dF (x) + k2(�ns)

1Z
0

(1� e�nsx)

Gn(x)F (x)dU(x) + k3(�ns)

1Z
0

(1� e�nsx)Vn(x)F (x)dU(x)+

k4(�ns)

1Z
0

(1� e��nsx)Vn(x)U(x)dF (x) �

� k1(�ns)�ns

1Z
0

xGn(x)U(x)dF (x) + k2(�ns)�ns

1Z
0

xGn(x)F (x)dU(x) + k3(�ns)�ns

1Z
0

xVn(x)F (x)dU+

k4(�ns)�ns

1Z
0

xVn(x)U(x)dF (x) �

� k1(�ns)�ns
�
A1
n

1Z
0

Gn(x)U(x)dF (x) +

1Z
A1
n

xU(x)dF (x) )+
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k2(�ns)�ns

0
B@A2

n

1Z
0

Gn(x)F (x)dU(x) +

1Z
A2
n

xF (x)dU(x)

1
CA+

k3(�ns)�ns

0
B@A3

n

1Z
0

Vn(x)F (x)dU(x) +

1Z
A3
n

xF (x)dU(x)

1
CA+

k4(�ns)�ns

0
B@A4

n

1Z
0

Vn(x)U(x)dF (x) +

1Z
A4
n

xU(x)dF (x)

1
CA :

For Aj
n = ( corresponding integral by which we multiply Aj

n)
�

1

2 , j = 1; 2; 3; 4,
the items in the brackets tend to zero, and therefore limn!1 pn(�ns)=�n = 1
uniformly on s on every limited interval. The Lemma 1. is proved.

Let us write the denomitaror p1n(s) of the Srn(s) in the following way:

p1n(s) =

1�

1Z
0

e�sxU(x)dF (x) �

1Z
0

e�sxF (x)dU(x) +

1Z
0

e�sxGn(x)U(x)dF (x)

�
1�

1Z
0

e�sxF (x)dU(x) +

1Z
0

e�sxVn(x)F (x)dU(x)

1
A+

1Z
0

e�sxVn(x)F (x)dU(x)

0
@1�

1Z
0

e�sxU(x)dF (x)

1
A+

1Z
0

e�sxGn(x)F (x)dU(x)

1Z
0

e�sxU(x)dF (x) =

= 1�

1Z
0

e�sxU(x)dF (x)�

1Z
0

e�sxdU(x) + qn(s):

Let us notice that the following equalitions are valid qn(0) = p1n(0) = �n (because
of d1(0) + d2(0) = 1).

Lemma 2.

lim
n!1

qn(�ns)

�n
= 1

uniformly on s on every limited interval.
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Proof. Let

qn
0(s) =
1Z
0

Gn(x)U(x)dF (x)

0
@1�

1Z
0

e�sxF (x)dU(x) +

1Z
0

e�sxVn(x)F (x)dU(x)

1
A+

1Z
0

Vn(x)F (x)dU(x)

0
@1�

1Z
0

e�sxU(x)dF (x)

1
A+

1Z
0

Vn(x)U(x)dF (x)

0
@

1Z
0

e�sxF (x)dU(x) �

1Z
0

e�sxGn(x)F (x)dU(x)

1
A+

1Z
0

Gn(x)F (x)dU(x)

1Z
0

e�sxU(x)dF (x):

We shall prove that

lim
n!1

�n � qn
0(�ns) + qn

0(�ns)� qn(�ns)

�n
= 0

uniformly on s on every limited interval. Really

�n � qn
0(�ns) + qn

0(�ns)� qn(�ns) =

1Z
0

Gn(x)U(x)dF (x)

0
@�

1Z
0

(1� e��nsx)

F (x)dU(x) +

1Z
0

(1� e��nsx)Vn(x)F (x)dU(x)

1
A+

1Z
0

Vn(x)F (x)dU(x)

0
@�

1Z
0

(1�

e��nsx)U(x)dF (x)

�
+

1Z
0

Vn(x)U(x)dF (x)

0
@

1Z
0

(1� e��nsx) F (x)dU(x)�

1Z
0

(1�

e��nsx)Gn(x)F (x)dU(x) ) +

1Z
0

Gn(x)F (x)dU(x)

1Z
0

(1� e��nsx)U(x)dF (x) +

1Z
0

(1�

e��nsx)Gn(x)U(x)dF (x)

0
@1�

1Z
0

e��nsxF (x)dU(x) +

1Z
0

e��nsxVn(x)F (x)dU(x)

1
A+

1Z
0

(1� e��nsx)Vn(x)F (x)dU(x)

0
@1�

1Z
0

e��nsxU(x)dF (x)

1
A+

1Z
0

(1� e��nsx)Vn(x)
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U(x)dF (x)

0
@

1Z
0

e��nsxF (x)dU(x) �

1Z
0

e��nsxGn(x)F (x)dU(x)+

1Z
0

Gn(x)F (x)dU(x)

1Z
0

e��nsxU(x)dF (x) � �no(1):

The last inequality is obtained in the same way as the analogous inequality
in Lemma 1., and therefore we are not going to repair it.

Let us come back to the proof of the Theorem 1.

By � we denote the random variable which corresponding to the time without
failure of the two-unit system; let �(x) be the distribution function of � .

Then Pf�n� < tg = �(t=�n) and
R
1

0 e�std�(t=�n) = Srn(�ns). On the other
hand

Srn(�ns) =
pn(�ns)

1�
1R
0

e��nsxU(x)dF (x) �
1R
0

e��nsxF (x)dU(x) + qn(�ns)

=

=

pn(�ns)
�n

1�
1R

0

e��nsxU(x)dF (x)�
1R

0

e��nsxF (x)dU(x)

�n
+ qn(�ns)

�n

�!
n!1

1

1 + sM

whereM =
R
1

0
xU(x)dF (x)+

R
1

0
F (x)dU(x), i.e. the limiting distribution function

is exponential:
lim
n!1

Pf�n� < tg = 1� exp(�t=M):
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