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ON FINITE MULTIQUASIGROUPS

Georgi �Cupona, Zoran Stojakovi�c, Janez U�san

In the present paper multiquasigroups and their relations to orthogonal sys-
tems of operations and codes are studied. In the �rst part of the paper the notion
of an [n;m]-quasigroup of order q is de�ned and it is shown that for n;m; q � 2 it
follows that m � q�1, in the second part, as a corollary of the preceding result, an
upper bound for the maximal number of n-ary operations in an orthogonal system
of operations on a set with q elements is obtained. In the third part the existence of
a class of multiquasigroups is shown, and in the fourth part a connection between
multiquasigroups and a special kind of code is pointed out.

In the paper some result from [4] are used, but it is possible to read it inde-
pendently.

1. Let Q be a �nite, nonempty set with q elements, n, m positive integers and
f a mapping of Qn into Qm. The structure Q(f) is said to be an [n;m]-quasigroup,
or simply multiquasigroup, i� the following condition is satis�ed:

(A) For every injection ' fromNn = f1; . . . ; ng intoNn+m and every sequence
a1; . . . ; an 2 Q, there exists a unique sequence b1; . . . ; bn+m 2 Q such that:

f(b1; . . . ; bn) = (bn+1; . . . ; bn+m) and b'(1) = a1; . . . ; b'(n) = an:

q is called the order of Q(f).

One of the tasks of the paper is to discuss triples of natural numbers (n;m; q)
for which [n;m]-quasigroups of order q exist. It is clear that: (i) Q(f) is an [n; 1]-
quasigroup i� Q(f) is an n-quasigroup; (ii) Q(f) is an [1;m]-quasigroup i� there
exist permutations f1; . . . ; fm of Q such that f(x) = (f1(x); . . . ; fm(x)); (iii) for
each pair of natural numbers n, m there exists an [n;m]-quasigroup of order 1.
Therefore, in the sequel we shall assume that n;m; q � 2.

First, we shall prove that the following proposition:

1Æ. If m;n; q � 2 and if there exists an [n;m]-quasigroup of order q, then

m � q � 1: (1)
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Proof. First, we note that if Q(f) is a [2;m]-quasigroup and if we put

P = f(x1; . . . ; xm+2) j f(x1; x2) = (x3; . . . ; xm+2)g;

bix = f(x1; . . . ; xm+2) 2 P j xi = xg;

Bv = fbvx j x 2 Qg; B1 = B1 [ � � � [ Bm+2;

we get a m + 2-net (where P is the set of points, B is the set of blocks i.e. lines,
and the incidence is the ordinary belonging) of order q ([4]). It is well known that
from here it follows (see [1], p. 9) that m+ 2 � q + 1, e.i. (1).

Now, we shall assume that Q(f) is an [n;m]-quasigroup of order q, where
n = p + 2, p � 1. If a1; . . . ; ap is an arbitrary sequence of elemets from Q, and if
we put

f 0(x; y) = f(a1; . . . ; ap; x; y);

we get a [2;m]-quasigroup Q(f 0). From here, considering the preceding result, it
follows that m � q � 1.

As a corollary of the preceding we get:

1.1. If m;n � 2, then there does not exist an [n;m]-quasigroup of order 2.

2. Let � = (f1; . . . ; fk) be a sequence of n-ary operations de�ned on the
same set Q, where k � n. � is said to be an orthogonal system of n-ary operations
on Q (OSnO) i� the following condition is satis�ed:

(B) For every injection ':Nn ! Nk the maping

(x1; . . . ; xn) 7! (y'(1); . . . ; y'(n))

is a permutation of Qn, where yv = fv(x1; . . . ; xn).

A sequence � = (f1; . . . ; fk) on n-ary operations on a set Q is said to be
a strongly orthogonal system, i� the sequence �1 = (g1; . . . ; gn; f1; . . . ; fk) is an
orthogonal system, where g1; . . . ; gn are de�ned by:

(8i 2 Nn)gi(x1; . . . ; xn) = xi:

It can be easily proved that in a strongly orthogonal system all n-ary opera-
tions are n-quasigroups.

A system of binary quasigroups is orthogonal i� it is strongly orthogonal,
but for n > 2 a system of n-quasigroups which is orthogonal need not be strongly
orthogonal1).

We shall show that:

2Æ. If n, q � 2 and if (f1; . . . ; fk) is an OSnO on a set Q with q elements,
then

k � n+ q � 1: (2)

1An example fot this are four ternary quasgroups given in [2] on pages 181 and 182.
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Proof. For k = n and k = n + 1 there is nothing to prove. So, we shall
assume that k = n+m, where m � 2. If a mapping f :Qn ! Qm is de�ned by

f(x1; . . . ; xn) = (xn+1; . . . ; xk),

(9t1; . . . ; tn 2 Q)x1 = f1(t1; . . . ; tn); . . . ; xk = fk(t1; . . . ; tn);

we get an [n;m]-quasigroup Q(f), and from 1Æ it follows that m = k�n �� q� 1,
i.e. (2).

As a corollary of 2Æ we get the following:

2.1. If n, q � 2, then the number of n-ary operations in an OSnO de�ned on
a set with q elements is bounded, and if !n(q) is the maximal number of elements
in such a system, then

!n(q) � n+ q � 1: (2.1)

From 2Æ it follows also that the maximal number of n-ary operations in a
stongly orthogonal system on a set with q elements is not greater than q � 1.

We note that in [3] (the same result is quoted in [2]) the following theorem is
proved:

2.2. If n � 2, q � 3 and if �n(q) denotes the maximal number of n-
quasigroups which make an orthogonal system of n-quasigroups on a set with Q
elements, then

�n(q) � (n� 1)(q � 1): (2.2)

Since every orthogonal system of n-quasigroups is also an OSnO, we have
�n(q) � !n(q), so (2.1) improves (2.2).

It is easy to see that the upper bound for �n(q) is:

(i) better in (2.2) for n = q = 3 and for n = 2, q arbitrary;

(ii) the same in (2.1) and (2.2) for n = 3, q = 4 and for n = 4, q = 2;

(iii) better in (2.1) in all other cases.

Using the corresponding result on the nonexistence of an OSnO, we get that:

2.3. If n, m � 2 then there does not exist an [n;m]-quasigroup of order 6.

Proof. If Q(f) is an [n;m]-quasigroup and if f1; . . . ; fm are de�ned by

f(x1; . . . ; xn) = (y1; . . . ; ym), yv = fv(x1; . . . ; xn)

a system of n-quasigroups is obtained. For m � n this system is orthogonal. So,
if we de�ne a [2;m]-quasigroup Q(f 0) as in the proof of 1Æ, then we obtain an
orthogonal system of binary quasigroups f1

0; . . . ; fm
0 and such a system, as it is

well known, for m � 2, q = 6 does not exist.

3. All the results of the two preceding have \negative character", i.e. they
consider the cases in which there do not exist multiquasigroups. Here, we shall
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show the existence of a class of multiquasigroups which we shall call linear multi-
quasigroups.

3Æ. Let F be a �eld and A = [aij ] an n � (m + n) matrix over F such that
every minor of A of order n is nonsingular. If a mapping f :Fn ! Fm is de�ned by

f(x1; . . . ; xn) = (xn+1; . . . ; xn+m), (9t 2 Fn)x = tA; (3)

where x = (x1; . . . ; xn+m), then we get an [n;m]-quasigroup F (f).

Proof. Let c = (c1; . . . ; cn) 2 Fn be a sequence of elements from F ,
and ' an injection from Nn into Nn+m. The matrix B = [bij ] of order n, where
bij = ai'(j), is nonsingular, which means that the equation c = tB has a unique

solution t = cB�1, and from here we get that there exist a unique sequence b =
(b1; . . . ; bn+m) 2 Fn+m such that b'(v) = cv and b = tA, i.e. f(b1; . . . ; bn) =
(bn+1; . . . ; bn+m).

Putting in 3Æ t = (x1; . . . ; xn) the following proposition is obtained:

3.1. Let A = [aij ] be an n�m matrix over a �eld F , such that every minor2

of A is nonsingular. If a mapping f :Fn ! Fm is de�ned by

f(x1; . . . ; xn) = (y1; . . . ; ym), y = xA; (3.1)

where x = (x1; . . . ; xn), y = (y1; . . . ; ym), then an [n;m]-quasigroup F (f) is ob-
tained.

It is clear that, if an n � m matrix A de�nes an [m;n]-quasigroup, then
the transpose AT of the matrix A de�nes an [m;n]-quasigroup. Also, every p � q
submatrix of A de�nes a [p; q]-quasigroup.

From 3.1. it follows that if a matrix A with nonsigular minors can be de�ned
over a Galois �eld F = GF (p�), then the corresponding linear multiquasigroup is
obtained. We get some examples.

3.1) F = GF (3) = f0; 1;�1g, n = m = 2, A =

2
4 1 1

1 �1

3
5,

f(x; y) = (u; v), u = x+ y; v = x� y:

3.2) F = GF (5) = f0; 1; 2;�1;�2g

A1 =

2
4 1 1
1 2
1 �1

3
5 ; A2 =

�
1 1 1
1 2 �1

�
; A3 =

2
4 2 1 1
1 2 1
1 1 2

3
5

f1(x; y; z) = (u; v), z = x+ y + z; v = x+ 2y � z;

f2(x; y) = (u; v; w), u = x+ y; v = x+ 2y; w = x� y

f3(x; y; z) = (u; v; w), u = 2x+ y + z; v = x+ 2y + z; w = x+ y + 2z:

2Of order k, k = 1; . . . ;min(n;m).
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It is natural to ask when a matrix A with nonsingular minors can be con-
structed over a �eld F . A suÆcient condition gives the following proposition.

3.2. If F is a �nite �eld with q elements and if m and n are positive integers
such that X

i

�
n� 1

i

� �
m� 1

i

�
< q; (3.2)

then there exists an n�m matrix A = [aij ] such that every minor of A is nonsin-
gular.

Proof. It is clear that the proposition is true for n = 1 or m = 1, hence,
we shall assume that n, m � 2. If (3.2) is true then the inequality

X
i

�
k � 1

i

� �
s� 1

i

�
< q (3:20)

is also true for every k � n, s � m. We shall suppose that k < n, s < m and that
we have constructed the matrices

2
64
a11 a12 � � � a1m
a21 a22 � � � a2m
: : : : : : : : : : : : : : : : : : :
ak1 ak2 � � � akm

3
75 = B;

2
6664

a11 a12 � � � a1s
a21 a22 � � � a2s
: : : : : : : : : : : : : : : : : :
ak1 ak2 � � � aks
a1 a2 � � � as

3
7775 = C;

with nonsingular minors. The proof will be completed if we show that there exists
an element b 2 F such that all minors of the matrix

2
6664

a11 a12 � � � a1s a1s+1
a21 a22 � � � a2s a2s+1
: : : : : : : : : : : : : : : : : : : : : : : : : :
ak1 ak2 � � � aks aks+1
a1 a2 � � � as b

3
7775 = D;

are nonsingular. It is clear that D has

�
k

0

� �
s

0

�
+

�
k

1

� �
s

1

�
+

�
k

2

� �
s

2

�
+ � � �

minors in which b appears, and every such minor is singular only for one value of
b, i.e. there exist at most

P
i

�
k

i

� �
s

i

�
values of b for which a minor of D in which b

appears is singular. From (3.2) it follows that we can �nd b such that all minors of
D are nonsigular, which completes the proof.

The matrix A3 from the example 3.2) shows that, in general, the condition
(3.2) is not necessary for the existence of a matrix with the given property.

A corollary of 3.2. is the following:
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3.3. For every pair of natural numbersm, n � 2 and every prime p, there exist
an in�nite number of natural numbers � such that ther exist an [n;m]-quasigroup
of order q = p�.

It is clear that the propositions 3Æ and 3.1. can be formulated in a more
general form, where instead of a �eld we use a commutative and associative ring
with identity, and the term \nonsigular minor" we replace by \invertible square
submatrix". As a consequence of such more general proposition, we get:

3.4. If there exists an integer n�m matrix A = [aij ], such that every minor
A is relatively prime with q, then there exists an [n;m]-quasigroup of order q.

Proof. If we consider A as a matrix over the ring Zq = Z=qZ (of residue
classes modulo q) we get that every minor of A is invertible.

We give some examples.

3.3) Using the matrix

�
1 1
1 2

�
we can construct a [2; 2]-quasigroup of any odd

oder.

The matrix 2
4�2 1 �1
�1 2 �1
1 �1 2

3
5

de�nes a [3; 3]-quasigroup of order q, where q is any natural number relatively prime
with 6.

4. Multiquasigroups can be interpreted as a special kind of relations, i.e.
codes. First, every subset K of Qk is called a k-code over Q. Two elements
a1 � � � ak and b1 � � � bk form Qk are said to be on a distance d i� they di�er in
exactly d components. If d is the minimal distance between di�erent sequences
from K, then we say that K has the code distance d. It is easy to see that the
following proposition is valid:

4Æ If Q(f) is an [n;m]-quasigroup of order q and if a code K is de�ned by

a1 � � �am+n 2 K , f(a1; . . . ; an) = (an+1; � � � ; an+m); (4)

then a m + n-code with qn elements and of the code distance m + 1 is obtained.
And conversely, if K is a m + n-code with qn elements and of the code distance
m+ 1 over a set Q with q elements, then by (4) an [n;m]-quasigroup of order q is
de�ned.

From the above proposition it follows that there exists an equivalence between
multiquasigroups and a special kind of codes.

It is natural to ask what structure Q(f) is de�ned by (4) if it is given only
that K is a m + n-code of the code distance d = m + 1. In this case, a partial
[n;m]-quasigroup Q(f) is obtained (the de�nition of which we shall not give here).
In [4] it is shown that every partial [n;m]-quasigroup can be completed to an [n;m]-
quasigroup, but then the carrier of the multiquasigroup is essentially enlarged, and
this is not of interest in the case when the carrier is �nite.
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