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A NEW SPECTRAL METHOD FOR DETERMINING
THE NUMBER OF SPANNING TREES

D. M. Cvetkovi¢ and I. Gutman

Abstract. Asis known, the number of spanning tress of a regular graph can be determined
by the graph spectrum. In this paper we describe a new variant of the spectral method for
determining the number of spanning trees, which enables to solve the problem for a class of
non-regular graphs.

Introductory comments

It was noted by H. Hutschenreuter [5] that the number of spanning of a regular
graph can be expressed in terms of its spectrum. Let G be a regular graph of degree
r on n verticies, let Pg () be its characteristic polynomial and Ay =7, Xa,... , Ay
its eigenvalues. Then the following formulas hold for ¢(G), the number of spanning
trees of G,

n

(1) t(G) = % [ =) = %PG'(T).

=2

The first author of this paper used formula (1) to determine the number of spanning
trees for several classes of regular graphs [2] (see also [8]). Moreover, it is shown
in [2] that this method, together with other spectral methods [12], is sufficient for
deriving practically all known results concerning the number of spanning trees (see
[3], pp. 217-220). Some additional results along these lines can be found in the
references' [1], [6], [9], [10] and [11].

Formula (1) can be extended to non-regular graphs if one considers the char-
acteristic polynomial and spectrum of the so called admittance matrix, instead of
the characteristic polynomial and spectrum of the adjacency matrix (see [3] p. 39,
[6] and [11]). Since the latter objects play a dominant role in the spectral graph
theory, it would be of interest to extend (1) to non-regular graphs so that ¢(G) is

Tt should be pointed out that especially [1] and [6] simply ignore the paper [2], although
this is a relevant reference for [1] and [6].
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still expressed in terms of the characteristic polynomial or the spectrum of the ad-
jacency matrix. This has been done in the present paper for class of graphs which
are close to regular graphs: these are graphs in which all vertices but one have a
fixed degree r. We shall call such graphs nearly regular of degree r while the vertex
being not of this degree will be called an exceptional vertex.

Spanning trees in nearly regular graphs

ProprosITION 1. Let G be a nearly regular graph of degree r and let H be
its subgraph obtained by removing the exceptional vertex. Then

(2) t(G) = Pu(r).

PROOF. By the matrix-tree theorem (see, for example, [3], p. 38, t(G) is
equal to any cofactor in the admittance matrix D — A. (A is the adjacency matrix
and D is the matrix of vertex degrees). Formula (2) is obtained if we take the
cofactor of the diagonal element corresponding to the exceptional vertex of G.

ExaMPLE. The characteristic polynomial of a circuit C, is known to be
equal to 27}, (3) — 2, where T,,()\) is the Chebyshev polynomial of the first kind.
Introducing a new vertex connected by an edge to all vertices of ), we get a wheel
W, which is a nearly regular graph. By Proposition 1 we have t(W,,) = 2T,,(3/2)—2
(cf. [8]).

An application

The inner dual G** of a plane graph G is the subgraph of the usual dual G*,
obtained by deleting the vertex corresponding to the infinite region of the original
plane graph [4].

Let G be a plane graph in which any finite region is bounded by a circuit of
a fixed length r. (The so called animals — see for example, [4] — belong to this class
of graphs). Then G* is a nearly regular graph. On the other hand, it is known that
the graphs G and G* have the same number of spanning trees [1], p. 38. Combining
these observations with Proposition 1 we immediately reach the following corollary.

ProrosiTIiON 2. If G is a plane graph in which any finite region is bounded
by a circuit of length r, then

(3) t(G) = Pge-(r).

ExAMPLE. For the graph G on Fig. 1 the inner dual G** is the path P, on
n vertices, Since Pp,(A) = Up(A/2), where U, () is the Cheybyshev polynomial of
the second kind, we have t(G) = U, (3) = E;l:/g](—l)’”(n;k) 6m 2k,
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Fig. 1

If we replace in Fig. 1 hexagons with k-gons, then we get ¢(G) = U, (k/2).

ExampPLE. For the graph G, , on Fig. 2 we have G}y, = Gm—1,n-1-
m
ot

Gm,n
Fig. 2

The spectrum of G,,,—1,,—1 consists of eigenvalues (c.f [2], p. 74)
2c08 & +2cos’L (i=1,2,...,m—1,j=1,2,...,n—1).
m n

Therefore,

m—1n—1 . .
_ g(m—1)(n—1) L2 M L2 T
t(Gm,n) =4 Zl;[l Jl;[l (sm o + sin 5 ) -

This result was obtained by other spectral methods in [6].

Non-isomorphic plane graphs from Proposition 2 can have isomorphic inner
duals. Consequently, such graphs have the same number of spanning trees.

For example, the five graphs (animals) Gi,...,G5 on Fig. 3 haye equal
number of spanning trees, namely 4% — 5-4% 4 5 - 42 = 2896, since r = 4 and
Pg,™ (\) = A6 — 5% 4+ 5)2

i
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Fig. 3

Consider the set T of graphs from Proposition 2 with fixed r and with a fixed

number of regions, for which the inner dual is a tree.

Let T be a tree which is an inner dual of a graph G € T. Then A\ (T) < r.

Since among trees with fixed number n of vertices the inequalty Pp,(\) < Pr(\)
holds for all A > A\ (T'), T # P, [7], it follows that those graphs G from 7 for which

G**

= P,, have a maximal number of spanning trees.

A similar argument shows that minimal ¢(G) have those graphs G € T for

which G** is a star (provided that such graphs exist).

1]
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