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MEASURABILITY OF STOCHASTIC PROCESS AND

APPROXIMATE CONTINUITY OF ITS CORRELATION FUNCTION

Jelena Bulatovi�c

Mathematical Institute, Belgrade, Yugoslavia

Abstract. The oscillation functions of second order process and of its correlation function
are de�ned, and connections between properties of these functions and of the process are consid-
ered. Specially, relationships between mean square approximate continuity of the process (and
separate approximate continuity of its correlation function) and measurability of that process are
investigated.

1. Let X = X(t), t 2 [0; 1], be a real valued stochastic process of second
order, de�ned on some �xed probability space (
;F ; P ), and let � = �(t; u) =
(X(t); X(u)); t; u 2 [0; : 1], be its correlation function. The functions ! = !(t) and
!0 = !0(t); t 2 [0; 1], will be de�ned by

!(t) = sup
(tn);(tn0)2Gt

lim
n!1

kX(tn)�X(t0n)k; (1)

!0(t) = sup
(tn);(tn0);(un);(un0)2Gt

lim
n!1

j�(tn; un)� �(tn
0; un

0)j1=2; (2)

where Gt denotes the set of all sequences converging to t; these functions ! and !0

are oscillation functions of X and �, respectively. It is clear that the mean square
continuity of X at t is equivalent to equalities !(t) = !0(t) = 0.

Suppose that the function g(t) = �(t; t), t 2 [0; 1], is uniformly bounded by
some contant K > 0, i.e., that

g(t) � K for all t 2 [0; 1]: (3)

Then it is easy to see that the functions ! and !0 satisfy the following inequalities:

1

2
!(t) � !0(t) � 2K1=2!1=2(t); t 2 [0; 1]: (4)
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If we introduce notations

Ds = ft:!(t) � sg; Ds
0 = ft:!0(t) � sg; s � 0; (5)

then (4) implies the following inclusions:

Ds � D0s=2 � Ds2=16K for any s > 0; (6)

and, also, the equality

ft:!(t) > 0g = ft:!0(t) > 0g:
The last equiality means that the set of points t at which the function � is contin-
uous on the diagonal t = u is equal to the set of points at which the process X is
mean square continuous.

If we denote by G�t (G
+
t ) the set of all sequences increasingly (decreasingly)

converging to t, and if we change Gt in (1) and (2) by G�t (G
+
t ), we shall obtain the

left (right) oscillation functions of X and �, which will be denoted by !� = !�(t)
and !0

�
= !0

�
(t) (!+ = !+(t) and !0+ = !0+(t)), respectively. The corresponding

sets of the forms (5) we shall denote by D�s , D
�

s
0
, D+

s , D
+
s
0
.

In the following we shall suppose, without loss of generality, that, if for some
t there exists only one of limits X(t � 0) = 1.i.m.

s!t�0
X(s), X(t + 0) = 1.i.m.

s!t+0
X(s),

then it is equal to X(t), and if there exist both these limits, then the equality
X(t�0) = X(t) is satis�ed; it is clear that this assumption is not a restriction, but
rather a technical simpli�cation.

The linear space of X will be denoted by H(X). We say that the process X is
measurable if it is measurable with respect to F �B[0;1] where B[0;1] is Borel �-�eld
over [0; 1]. If two stochastic processes, X = X(t) and Y = Y (t), t 2 [0; 1], such
that PfX(t) = Y (t)g = 1 for any t, we consider as equal, then it is know [3] that
the process X is measurable if and only if its correlation function � is measurable
and the linear space H(X) is separable. The aim of that paper is to �nd some
conditions, in terms of correlation function, under which the process is measurable,
or under which it can be approximated by measurable processes. But, �rst of all
we have to introduce the notion of approximate continuity of the process.

The process X is said to be aproximately mean square continuous at t 2 [0; 1]
if there is a set Et 2 B[0;1], such that X is mean square continuous at t in Et, and
Et has the unit metric density at t. Similarly, we shall say that the correlation
function � is approximately continuous at (t; u) 2 [0; 1]� [0; 1] if there is a set Eu

t 2
B[0;1]�B[0;1], such that � is continuous at (t; u) in Eu

t , and E
u
t has the unit metric

density at (t; u), [7, 8]. It is easy to see that, if the processX is approximately mean
square continuous at t, then its correlation function � is approximately continuous
at (t; t).

2. It is known [2] that the functions ! and !0 (and, also, the other oscillation
functions, which are de�ned at the end of the preceeding section) are upper semi-
continuous. In [2] it is proved that the mean square continuity from the left of the
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process X at any point outside of one at most countable set implies that the set
D+
s = ft:!+(t) � sg is nowhere dense for any s > 0 (which means that, under

the same conditions, the set Ds is also nowhere dense for any s > 0). In the next
theorem we shall give di�erent conditions under which any set Ds, s > 0 (and, by
(6), the set Ds

0, s > 0, also), will be nowhere dense.

Theorem 1. The set Ds (and Ds
0, also) is nowhere dense for any s > 0 if

any of the following conditions is satis�ed:

(I) The process X is approximately mean square continuous;

(II) For any t from one set E, which is everywhere dense in [0; 1], there exists
at least one of limits X(t� 0) and X(t+ 0).

Proof. Suppose that (I) does not imply the statement of the theorem, i.e.
that, for some s > 0, there exists an interval [a; b] � [0; 1] in which the set Ds is
dense. From the fact that the set Ds is closed, [2], it follows [a; b] � Ds. Let Æ,
0 < Æ < 1=2, be arbitrary but �xed number, and let t1 be arbitrary point from
(a; b); denote by E1 some set with the follows two properties: (a) X is continuous
at t1 in that set E1; (b) E1 has the unit metric density at t1. There exists a closed
interval I1 � [a; b] containing t1, such that

m(I1 \E1)

m(I1)
> 1� Æ;

kX(t)�X(t1)k < s=6 for any t 2 I1 \ E1:

There is t2 2 I1 such that

kX(t2)�X(t1)k > 5s=6

(really, if it is not the case, then the inequality !(t) � 5s=6 holds for all t 2 I1,
contrary to the hypothesis !(t) > s in [a; b]). Denote by E2 the set having the
above properties (a) and (b) with respect to that point t2. There exists a closed
interval I2 � I1 containing t2, such that

m(I2 \E2)

m(I2)
> 1� Æ;

kX(t)�X(t2)k < s=6 for any t 2 I2 \ E2:

If we continue the described procedure, we shall obtain one sequence (tn) of points
and corresponding sequence (In) of closed intervals, any of which is contained in
the proceeding one. Note that the inequality

kX(tn)�X(tn+1)k > 5s=6 (7)

holds for all n = 1; 2; . . . . Let ~t be the point which is contained in any interval of
the sequence (In). Denote by ~E some set which, with respect to ~t, has the above



32 Jelena Bulatovi�c

properties (a) and (b). There exists a natural number n0 such that

m( ~E \ In)
m(In)

> 1� Æ for any n � n0; (8)

kX(t)�X(~t)k < s=6 for any t 2 In0 \ ~E: (9)

It is easy to see that it must be

( ~E \ In0) \ En0 6= ;; (10)

namely, from ( ~E \ In0)\En0 = ; it follows ~E \ In0 � Ec
n0 \ In0 (Ac denotes the set

theoretical complement of A), which impliesm( ~E\In0 ) � m(Ec
n0\In0 ) < Æ�m(In0),

contrary to (8). Suppose that the inequality

~E \ (En0+1 \ In0+1) 6= ;

also holds; from that inequality and from (9) and (10) it follows that there exist

points t0 2 ~E \ In0 \En0 and t
00 2 ~E \ In0+1 \ In0+1 for which inequalities kX(t0)�

X(~t)k < s=6, kX(t00)�X(~t)k < s=6 are satis�ed, which implies

kX(t0)�X(t00)k < s=3: (11)

But, from (7) it is easy to obtain

5s=6 < kX(tn0)�X(tn0+1)k < s=3 + kX(t0) +X(t00)k;

that is
kX(t0)�X(t00)k > s=2;

contrary to (11). Thus we showed the equality

~E \ (En0+1 \ In0+1) = ;;

which also implies
~E \ In0+1 � Ec

n0+1 \ In0+1: (12)

From the inequality
m(En \ In) > (1� Æ)m(In);

which because of the described construction, holds for any n = 1; 2; . . . , and from
(12), it is easy to obtain

m( ~E \ In0+1) � Æ �m(In0+1);

which is in contradiction to (8). The proof of the �rst part is completed.

Now we shall prove that (II) implies the statement of the theorem. For
arbitrary t 2 (0; 1) and h > 0, any of the intervals (t� h; t), (t; t+ h), (t� h; t+ h)
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will be denoted by it;h. Let a and b be arbitrary points from (0; 1), such that a < b.
For arbitrary s > 0 there is t 2 (a; b) such that the inequality

sup
u;v2it;h

kX(u)�X(v)k < s (13)

holds for some h > 0 and a corresponding interval it;h (really, from the assumption
that, for some s > 0, such t and h do not exist, it follows that there is no t in
(a; b) for which at least one of limits X(t�0), X(t+0) exist, which contradicts the
assumption (ii). The inequality (13) implies

!(u) < s for any u 2 it;h;

where it;h is the same interval as in (13). From the fact that the points a and b
are arbitrarily chosen it follows that the set Ds is nowhere dense in [0; 1] for any
s > 0, as we wanted to prove.

Corrollary 1.1. If for the process X any of the conditions (I) and (II) is
satis�ed, then the set of discontinuities of X is of the �rst category.

Corollary 1.2. Approximately mean square continuous process is contin-
uous at one everywhere dense in [0; 1] set of the power of the continuum.

Theorem 2. If a process X satis�es any of the conditions (I) and (II), then
the set of discontinuities of X is equal to the set of discontinuities of its oscillation
function !.

Proof. The set of discontinuities of X is equal to the set Q = ft:!(t) > 0g,
[2]. From the fact that the function ! is continuous at any point t at which the
equality !(t) = 0 holds, it follows that the set P of discontinuities of ! is contained
in Q. Suppose that there is a t0 2 Q, such that t0 62 P . From that assumption, for
the function ! is continuous at t0, it follows that there is h > 0 such that

!(t) > 0 for t 2 (t0 � h); t0 + h);

but, this inequality implies (t0�h; t0+h) � Q, which contradicts the fact that the
set Q is of the �rst category, [6]. That proves the theorem.

3. One of problems, connected with relationship between approximate
continuity of X , is the problem of determining conditions which the functions
�t(�) = �(t; �), t 2 [0; 1], have to satisfy in order the process X to be approxi-
mately mean square continuous. The following two theorems deal in that problem.

Denote by S the set of all functions �t(�) = �(t; �), t 2 [0; 1], and by Eu;t the
set in which the function �u is continuous at the point t, and which has the unit
metric density at t.

Theorem 3. If all functions from S are approximately continuous and the
set \u2[0;1]Eu;t has the unit metric density at t for any t, then the function � (and
the proces X, also) is approximately continuous.
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Proof. Let t be arbitrary point from [0; 1]. Put Et = \u2[0;1]Eu;t. For
arbitrary u 2 [0; 1] we have

kX(t)�X(u)k2 � j�t(t)� �t(u)j+ j�u(t)� �u(u)j:

From u 2 Et it follows u 2 Et;t, which implies

j�t(t)� �u(u)j ! 0 when u! t and u 2 Et:

Also, from u 2 Et it follows u 2 Es;t for any s, and specially for s = u, which
implies

j�u(t)� �u(u)j ! 0 when u! t and u 2 Et:

Thus we proved that the process X is mean square continuous at t along the set
Et, which, by reason of [7] and (4), means that the function � is a approximately
continuous.

Lemma 1. Let t be arbitrary point from R, and E1, E2 some sets whose
metric densities at t are equal to unity. Then the metric density of the E = E1\E2

at t is also equal to unity.

Proof. For any " > 0 there are h1 > 0, h2 > 0, such that

m(Ei \ [t� h; t+ h]) � 2h(1� "=2) for any 0 < h � hi; i = 1; 2:

Hence
m(E \ [t� h; t+ h]) � 2h(1� ") for any h � minfh1; h2g;

which completes the proof.

Theorem 4. If all functions from S and the function g(t) = �(t; t), t 2 [0; 1],
are approximately continuous, then the function � (and the process X, also) is
approximately continuous.

Proof. For arbitrary u 2 [0; 1] it will be

kX(t)�X(u)k2 � 2j�t(t)� �t(u)j+ jg(t)� g(u)j:

The �rst of the terms on the right side of that inequality will converge to zero when
u! t and u 2 Et;t. Denote by ~Et the set in which the function g is continuous at

t, and which has the unit metric density at t. Put Êt = Êt;t \ ~Et. It is clear that

the process X is mean square continuous at t in Êt, and in Lemma 1 it is proved

that the set Êt has the unit metric density at t. The theorem is proved.

Theorem 5. If all functions from S are approximately continuous, then the
process X is approximately mean square continuous almost everywhere.

Proof. From the approximate continuity of all functions from S it follows [4]
that the function � is measurable, and, also [5], that the function g is measurable.
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That means [8] that the functions � and g are almost everywhere approximately
continuous (�rst of them with respect to the Lebesgue measure on B[0;1]�B[0;1], and
the last one with respect to the Lebesgue measure on B[0;1]). Hence there is a set S
from [0; 1] of measure zero, such that the function � is approximately continuous
at any point (t; t), t 2 Sc (for, if t is some point at which g is approximately
continuous, then the approximate continuity of � at (t; t) follows from Theorem 4),
i.e., the process X is approximately mean square continuous almost everywhere, as
we wanted to show.

4. Let us denote by !��t = !��t(u), !
+
�t

= !+�t(u)(!
�

g = !�g (u); !
+
g = !+g (u))

the left and right oscillation function of the function �t(g), and introduce, also, the
following notations:

��g = fu:!�g (u) > 0g;
�+
g = fu:!+g (u) > 0g;

��� = fu:!��u(u) > 0g;
�+
� = fu:!+�u(u) > 0g:

Theorem 6. Suppose that all functions from S are approximately continuous
and that the set S from Theorem 5 is closed. If the equalities

��� \�+
� = ;; (14)

��g \�+
g = ;; (15)

��g \�+
� = ;; (16)

�+
g \��� = ; (17)

are satis�ed, then the set of discontinuites of the process X has zero Lebesgue mea-
sure.

Proof. Denote D� = ft:!�(t) > 0g, D+ = ft:!+(t) > 0g and show that

(D� \D+) \ Sc = ;: (18)

Let t be arbitrary point from (0; 1), such that t 2 Sc. Suppose that t 2 D� and
prove that then t 62 D+.

From the assumption that, also, t 2 D+, it follows that there is some " > 0
such that in any neighbourhood (t; t + h) of t there is at leat one u such that the
inequality

kX(t)�X(u)k > "

is satis�ed. From that it can be obtained, as in Theorem 4,

" < kX(t)�X(u)k � p
2j�t(t)� �t(u)j1=2 + jg(t)� g(u)j1=2;

which implies that at least one of the inequalities

!+�t(t) > "=2; (19)

!+g (t) > "=2 (20)
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must be satis�ed. If (19) is satis�ed, that, by reason of (14) and (16), means that
t 62 ��� and t 62 ��g , which is equivalent to !�(t) = 0, contrary to our assumption

t 2 D�. If (20) is satis�ed, then, by reason of (15) and (17), it will be t 62 ��g and

t 62 ��� , which, as before, contradicts our assumption t 2 D�. Thus, we proved
that arbitrary point t 2 Sc does not belong to both D� and D+, which means that
(18) is true.

As the set S is closed, the set Sc can be written as the union of at most
countably many disjoint open intervals I2, I2; . . . :

Sc =

1[

i=1

Ii: (21)

Put iD� = D� \ Ii and iD+ = D+ \ Ii, i = 1; 2; . . . . The equality

iD� \ iD+ = ;; i = 1; 2; . . . ; (22)

which follows from (18), means that at any point t 2 Ii there exists at least one
of limits X(t � 0), X(t + 0). We are going to show that, for any s > 0, the set
Di
s = Ii\Ds, i = 1; 2; . . . , contains at most countably many elements; it will imply,

by reason of (21), that the set Sc \Ds has at most countably many elements, i.e.,
that the process X has at most countably many discontinuities, which proves the
theorem.

Suppose that the set Di
s, for some i and some s > 0, has countinuously many

elements. Denote by D̂i
s the perfect subset of Di

s; in D̂i
s there exists at least one

point t, such that some sequences (t0n), (t
00

n), t
0

n < t, t00n > t, n = 1; 2; . . . , of points

from D̂i
s converge to t, [7]. These sequences, clearly, are such that the inequalities

!(t0n) � s and !(t00n) � s are satis�ed for all n = 1; 2; . . . , which is equivalent to

t 2 iD� \ iD+. From that and from (22) it follows that the set D̂i
s is empty, i.e.,

that the set Di
s has at most countably many elements. The proof is completed.

Corollary 6.1. If the process X is such that D� \D+ = ;, then it has at
most countably many discontinuities.

Corollary 6.2. The process X, for which the equality D� \ D+ = ; is
satis�ed, has separable linear space H(X) (see [1]).

Lemma 2. Let � be arbitrary subspace of H(X), and let a new process X1

be de�ned as the projection of X on �:

X1(t) = P�X(t) t 2 [0; 1]: (23)

If all functions from S are approximately continuous, then the correlation function
�1 of X1 is measurable.

Proof. From the approximate continuity of functions from S follows, by
reason of Theorem 5, that X is almost everywhere approximately continous. If X
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is approximately continuous at t, and if Et is a set in which X is continuous at t,
and whose metric density at t is equal to unity, then it will be

kX1(t)�X1(u)k = kP�(X(t)�X(u))k � kX(t)�X(u)k ! 0; u! t; u 2 Ei;

which is equivalent to the approximate continuity of X1 at t. Thus the process X1,
de�ned by (23), is almost everywhere approximately continuous, which implies the
approximate continuity of �1 at almost all points of the set [0; 1]� [0; 1], which, by
reason of [8], means that �1 is measurable function. The proof is completed.

Theorem 7. If all conditions from Theorem 6 are satis�ed, then for every
" > 0, there exists a measurable stochastic process X" = X"(t), t 2 [0; 1], such that

mft:X(t) 6= X"(t)g < ": (24)

Proof. In Theorem 6 it is proved that the set T of discontinuities of X
has zero Lebesgue measure. For every " > 0 there exist an open set T" such that
T � T" and m(T") < ". We can suppose, without loss of generality, that the set T c

"

is perfect. The new space H" we shall de�ne by

H" = �LfX(t); t 2 T c
" g;

where �Lf�g denotes the closure of the linear manifold spanned by elements in the
parentheses. From the continuity of X on T c

" it follows the separability of H". It
is easy that the process X" de�ned by

X"(t) = PH"
X(t); t 2 [0; 1];

will satisfy (24), and that, obviously, will be H(X") = H". That, means of [3] and
Lemma 2, implies the measurability of the process X .

Corollary 7.1. If the correlation function � of X is measurable, and the
equality D� \D+ = ; is satis�ed, then the process X is measurable.
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