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1. The paper [1] of S. B. Presi¢ shows a possibility of assignment of an
equational formal theory detoned by ©(~), to any formal theory ©. An essential
relation between © and ©(~) is given by assertions: (i) a binary predicate denoted
by ~ is formalization of the metatheoretic equiconsequence (or interdeducibility)
relation of © (cf. [1] Theorem 1.) and (ii) © isomorphically embedded in ©(~)
by mapping f: For(©) — For(0O(~)) defined by f(A) = A ~ T (cf. [1] Lemma
3.) On the other hand, sufficient conditions (cf. [1] Condition 1. and Condition
2.) under which the converse of (ii) is valid, are given also there. Then the formal
theory ©(~), which we shall call an equational reformulation of @, is of particular
importance for our further exposure. In other words, it is also established that
every proof within the formal theory © can be translated into (completable) proof
of ©(~) and the converse too, provided that conditions 1. and 2. are fulfilled.

2. Let us assign the coresponding equational formal theory Iy(~) to the
intuitionistic propositional calculus I formulated as in [2] p. 433. Io(~) will be
equational reformulation of the formal theory Iy too, because conditions 1. and 2.
are satisfied (Cond. 2. is satisfied by deduction theorem, [2] p. 433). In this case,
we should have in mind that

(0) A< B iff |mA ~ B (by [1] Theorem 4. (2°))

for any propositional formulas A, B, where we write A < B for (A = B)A(B = A).
3. The following are axioms of Ip(~).
a) A~ A; A& B~B&A; A& (B&C) ~ (A& B)&C; A& T ~ A
A& (A= B)~ A& (A= B)&B;
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b) A= (B=2>A)~T; (A= (B=20C)=((A=B)=A=0C))~T,;
A=>(B=AANB)~T; ANB=A~T;AANB= B~ T,;
A=>AVB~T;B=>AVB~T;(A=C)=>(B=>C)=
= (AVB=C)~T;(A=B)=(A=-B)=-4)~T
A= (A=>B)~T

Rules of inference of Iy(~) are:

A~B A~BB~(C A~BC~D

(CONGR) B~A" A~C ' A&C ~B&D’

Notice that these are axiom schemes and rule schemes each with infinitely
many instances.

Using the relation (0) and known facts of the intuitionistic propositional cal-
culus, it is not difficult to examine that the following formulas are theorems of

I(~):
AVB~BVAANB~BANAAV(BVC)~(AVB)VC,
ANBAC)~(AANB)NC,(ANB)VB~B,AN(AV B) ~ A,
AN(A=B)~AANB,(A=B)AB~B,(A=B)A(A=>C)~A=BAC,
(A=>A)AB~B,A= (-(A= A4)) ~-A.

This means that all axioms of the pseudo-Boolean algebras (cf. for example

[3]) are satisfied in the formal theory Io(~).

A~B ANBCN
Of course, rules —4==5 and 4 5557 are valid in Iy (~), where o can be each

of the following symbols V, A and =.

In accordance with [3] (cf. p. 58, 124),we can introduce a partial ordering
relation in the pseudo-Boolean algebra (A,N,U, D, —): a < b iff (def) aUb = b.
Alsoc<aDbiffanec <b(00). Let 1 = (def) a D a and 0 = (def) — 1.

LemMA 1. Let (A, U, N, D, —) be the psudo-Boolean algebra. Then for
every a,b,c € A:
(I)anl=a,aU0=a; (2)0<a<1;3)anb<b a<aUb; (4) ifb<ec,
thenanb<anNe (5)an(adb)=an(aDb)Nb; (6) aDd(bDa)=1;
N(@Dd®2¢)DdD{(adb)Dd(ade)=1;(8) (anb) Da=1;
9) (anb)Db=1: (10)aD(bD(anb))=1;(11) aD (aUb) =1
12) D (aUb)=1;(13) (aDec) D ((bDec) D ((aUb) D)) =1;
4) (aD>b)D((aD-b)D—a)=1;(15) —aD (a Db) =1.
Proor. We will prove, for example, (2), (3), (6) and (13).

(
(
(
(1

(2) (an1)ul=1 (by axiom of PBA (pseudo-Boolean algebra))
ifft an1 <1 (by definition of <)
a <1 (by (1))
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Also =1 =0 < —a (by [3] Ch. I, 12.3.). So, for everya € A0 <a < 1.
(3) (anbd)Ub=>b (by axiom of PBA)
iff (3.1) anb < b (by definition of <)
a=an (aUb) (by axiom of PBA)
<aUb (by (3.1))
(6) bNa <a (by (3))
iff a <b>a (by (00))
iff an1<bDa (by (1))
iff 1 <aD(bDa) (by (00))
But a D (b Da) <1 (by (2). So,1=aD (bDa) (by antisymmetry of <).

(13) (ade)N(bDe)=(aUb) De (by [3] Ch. I, 12.2. (17))
then (bDe)N(aDe) < (aUb)De

iff (@aD>e)<(bdDc)D((aUb) De) (by (00))

it (@ade)N1<(bDe)D((aUb)Dde) (by (1))

it 1<(ade)D((bDde)D((@aUbd)Dde)) (by (00))

So, 1=(aDc)D((bDc)D((@Ub) Dec)) (by (2) and antisymmetry of <).

So, all axioms of Iy(~) are satisfied in the psuedo-Boolean algebra (For (Iy), V,
A, =, ). Of course, rules of inference (CONGR) are valid too.

The consequence of the above assertions is the following statement.

THEOREM 1. |mA ~ B iff A = B in the pseudo-Boolean algebra
(For (Iy),V, A\, =, ).

4. Now, similarly as in the preceding case, we will assing the corresponding
formal theory K (~) to the classical first-order predicate calculus K (formulated as
in [2] p. 108, with the axioms for equality

Nz=x

2) z =y = (A= Az/y)),
and all generalizations of (1) and (2)). The formal theory K (~) will be an equa-

tional reformulation of K, because conditions 1. and 2. are satisfied (Cond. 2. is
satisfied by deduction theorem [2] p. 109).

Using [1] Theorem 4. (2°) again we have (000)|zA < B iff IgrmA ~ B for
any first-order formulas A, B.
5. The axioms of K (~) are as follows:

a) the same as 3. a);

b) A ~ T (where A is any axiom of the classical propositional calculus);
Vz(A = B) = (VoA = VaB) ~ T; VoA = A(xz/t) ~ T (where t is any term free
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for z in A); A = VzA ~ T (where the variable z is not free in A); v =z ~ T;
r=y= (A= A(z/y)) ~ T; VT ~T.
Rules of inference of K (~) are (CONGR) also.

Using the relation (000) and known facts of the classical first-order predicate
calculus, we can establish that following formulas are theorems of K (~):
AVB~BVA; ANB~BAA; AV(BVC)~(AVB)VC;
ANBAC)~(ANB)ANC; (ANB)VB~DB; AAN(AV B) ~ A4;
(AVB)AC ~(ANC)V(BAC); (ANB)VC ~(AVC)A(BVC);
AV-A~T; AN-A~F (where we write F for = T); JzF ~ F;
AV 3IzxA~3JzA; Jx(AAB)~3xAAB (the variable z is not free in B);

JzIyA ~ FyIzA; A(z/y) A (mA)(z/y) ~ F (y is any variable free for z in

Ayz=x~T;z=y~ 3z (r =2Az=y). It means, all axioms of the cylindric

algebras (cf. [4]) are satisfied in the formal theory K (~). Naturally, rules —4~25,

A~B A~BC~D <7 - .
AaaB “tocpep are valid in K (~) too (o is V or A).

and

LEMMA 2. If we let a D b and opa denote —a U b and —cy, — a, respectively,
and if (A,0,N,—,0,1,ck,dkm)k,m<a i the cylindric algebra of dimension «, then
for every a,b,c € A and k,m < «:

(HDanl=a; (2)an(adb)=an(@adb)ndb; B)ad(bDda)=1;
@D ®bDe)Dd((adb)Dd(ade)=1; (5) (andb) dDa=1;
6)(amb)3b:1- (MaDd>®D(and) =1

(4

(

(8)aD (aUb) = 9)bD(aUb) =1

(10) (@D ¢) D ((b Dc)D((aUb) D)) =1;

(11) (raDb) D ((maD =b) Da) =1,

(12) o(a D b) D (opa D oxb) = 1;

(13) a D oka =1 (where form of a is b or oyb)

(14) opa D sk a=1; (15) dgr, =1;  (16) dgp D (a D sFa) = 1;
(

17) oxl = 1 (sk, is m-for-k substitution).
ProoOF. (1) — (11) is provable in BA (Boolean algebra).

(12) 1=(ct —aUcp —b)U—(ct —b) (in BA)
=cp(—aU —=b) U —(¢, — b) (by [4] Theorem 1.2.6.)
cr((@n—=b)U—a)U —(ct, —b) (in BA)
(cr(anN =b)Uecr, —a)U—(c;, —b) (by [4] Th. 1.2.6.)
= o(a D b) D (opa D orb) (in BA)
(13) 0=—crbNegb (in BA)
= cp(—crbNegb) (by axiom of CA (cylindric algebray))
= ¢ — cgbN b (by axiom of C'A)
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Let a be denote for ¢xb. Then 0 = ¢, —aNa, ie. 1 = —(cx —aNa) = a D oxa.
Similarly, when form of a is ob.

(14) Let k =m. oga D sk a=cx —aUska

=c¢r —aUa (by def. of substitution [4] 1.5.1.)
=(—aUc¢, —a)Ua (by axiom of CA)
=1 (in BA)

Let k #m. ¢, —aUsk a=cp —aUcy(dgm Na) (by def. of substitution [4] 1.5.1)

= cx(—a U (dgm Na)) (by [4] Th. 1.2.6.)
=cp(—aUdpy) (in BA)

=c¢ —aU cpdpy, (by [4] Th. 1.2.6.)
=ct —aUl (by [4] Th. 1.3.2.)

1 (in BA)

(15) is an axiom of C'A.

(16) and (17) can be proved similarly.

Consequently, all axioms of K (~) are satisfied in the free cylindric algebra of
(first-order) formulas (with equality) (For(K),V,A, =, F,T,3xk, Tk = Tm)k.m<w-
Rules of inference (CONGR) are valid too.

The immediate consequence of the above assertions is the following statement.

THEOREM 2. ImA ~ B iff A = B in the free cylindric algebra of formulas
(FOT‘(K), V, /\7 ) F7 T7 E.Tk, T = mm>k,m<w-
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