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A MERCERIAN THEOREM FOR SLOWLY VARYING SEQUENCES

N. Tanovi�c-Miller

Abstract. The purpose of this note is to investigate a Mercerian problem for triangular
matrix transformations of slowly varying sequences. A statement of this type for the nonnegative
arithmetical means Mp, was recently proved by S. Aljan�ci�c [1], using the evaluation of the inverse
of the associated Mercerian transformation. In this note a corresponding result is proved for
nonnegative triangular matrix transformations satisfying a certain condition, which can be applied
to the arithmetical means Mp pn � 0, the Ces�aro transformation C� of order �, 0 < � � 1, other
N�orlund transformations Np, pn > 0 and (pn+1=pn) nondecreasing, as well as to some other
standard methods. The proof is based on the properties rather than on the evaluation, of the
inverse of the associated Mercerian transformation.

1. Let A denote a matrih transformation and Akn the entries of its matrix.
For a sequence s let As denote the transformed sequence whenever it exists, and
(As)n its terms. We say that A is triangular if Ank = 0 for k < n an we say
that A is normal if it is triangular and Ann 6= 0 for all n. For a triangular matrix
transformation A let An =

Pn

k=0 Ank and let us say that A is normalized if An = 1
for all n. If A is normal then it is invertable and its A�1 is also normal: if in
addition A is normalized then clearly A�1 is normalized also.

A sequence s, sn > 0 for all n, is slowly varying in the sence of Karama-
ta [3] if limn!1 s[tn]=sn = 1 for all t > 0. Let L denote the set of all slowly
varying sequences. We say that a real matrix transformation A is L-permanent
if limn!1(As)n=sn exists and is 6= 0 for every s 2 L. M. Vuilleumier in [3] gave
a characterization of L-permanent metrix transformations which reduces to the
following statement for triangular matrix transformations:

Theorem A. A triangular matrix transformation A is L-permanent if and

only if

i) lim
n!1

An = �, � 6= 0 and

ii)
nX

k=1

jAnk j(k + 1)�Æ = 0(1)(n+ 1)�Æ(n!1) for some Æ > 0.
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Under these condition limn!1(As)n=sn = � for every s 2 L.

In what follows we will be concerned only with real triangular matrix trans-
formations.

For a sequence p such that Pn =
Pn

k=0 pk 6=0 for all n let Mp and Np be
de�ned by:

(Mp)nk = pk=Pn for k � n and (Mp)nk = 0 for k > n

(Np)nk = pn�k=Pn for k � n and (Np)nk = 0 for k > n:

Mp and Np are called the aritmetical mean and the N�orlund transformation respec-

tively. In the special case when pn = "��1n where "�n =
�
n+�
n

�
� > �1, Np is the

Ces�aro transformation C� of order �.

If A is normalized and the condition ii) of Theorem A holds, B = I + �A
where I is the identity and � real, � 6= �1, then Bn = 1 + � and

nX
k=0

jBnkj(k + 1)�Æ � (1 + j�j)

nX
k=0

jAnkj(k + 1)�Æ = 0(1)(n+ 1)�Æ

and therefore by Theorem A, s 2 L implies limn!1(Bs)n=sn = 1 + �. Moreover
for such A, s 2 L implies Bs 2 L whenever Bs is positive. Note that also by
above, if � > �1 then s 2 L implies Bs is eventually positive and that � > �1 is a
necessary condition in order that S 2 L implies Bs 2 L.

The purpose of this note is to investigate the converse statement, namely to
�nd suÆcient conditions in order that for A normalized and such that ii) of Theorem
A holds, Bs 2 L for � real, � > �1, implies limn!1 sn=(Bs)n = 1=(1 + �) and
therefore s 2 L whenever s is positive. This mercerian type question, for the
arithmetical means, raised in a recent by S. Aljan�ci�c in [1]. The following result
was proved in [1]:

Theorem B. If p0 > 0 and pn � 0, for n = 1; 2; . . . ,

nX
k=0

pk(k + 1)�Æ = 0(1)Pn(n+ 1)�Æ(n!1) for some Æ > 0

and B = I + �Mp where � > �1, then Bs 2 L implies lim sn=(Bs)n = 1=(1 + �)
and consequently s 2 L if s is positive.

The proof of this theorem in [1] is based on the evaluation of the inverse
transformation of B = I + �Mp.

Here we will prove a statement of the type mentioned above for nonnegative
normalized transformation A, which can be applied to the arithmetical means Mp

with p0 > 0 and pn � 0, the Cas�aro transformation C� of order �, 0 < � � 1, other
N�orlund transformations Np with pn > 0 and (pn+1=pn) nondecreasing, as well as
to some other standard methods. Our proof will be based on the properties of the
inverse of B = I + �A, rather than on the evaluation of B�1.
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2. Theorem 1. Let A normalized, nonnegative i.e. Ank � 0,

An0 > 0 and An+1;iAnk � AniAn+1;k for all n; 0 � k � i � n(2:1)
nX

k=0

Ank(k + 1)�Æ = 0(1)(n+ 1)�Æ(n!1) for some Æ > 0(2:2)

and B = I+�A where � > �1, then Bs 2 L implies limn!1 sn=(Bs)n = 1=(1+�)
and consequently s 2 L, if s is positive.

To prove the theorem we will need the following lemma:

Lemma 1. i) If A is normal, nonnegative and (2.1) holds then A�1nk � 0 for
k < n.

ii) If A is normal, A�1nk � 0 for k < n and Ann > 0 then Ank � 0 for k � n.

Proof. The statement ii) is a part of Theorem II. 16 in [2]. Although the
statement i) is only a little sharper result than Lemma II. 5 in [2] we give the proof
here for completeness.

Clearly A�110 = �A10A
�1
00 =A11 > 0.

So suppose that A�1mk � 0 for m � n and k � m. Now by (2.1) Ani = 0
implies An+1;i = 0. For k < n + 1 let kn be the smallest integer i such that
Ani 6= 0, k � i � n, which exists since Ann 6= 0. Then for k < n+ 1 we have

0 =
n+1X
i=k

An+1;iA
�1
ik = An+1;n+1A

�1
n+;k +

nX
i=kn

An+1;iA
�1
i� �

� An+1;n+1A
�1
n+1;k +

An+1;�n

Ankn

nX
i=kn

AinA
�1
ik

since An+1;i � AniAn+1;kn=Ankn by (2.1). Therefore

0 � An+1;n+1A
�1
n+1;k +

An+1;kn

Ankn

nX
i=k

AniA
�1
ik � An+1;n+1A

�1
n+1;k

so that A�1n+1;k � 0 and the conclusion follows by induction.

Proof of Theorem 1. First A = I + �A is normal for every � > �1 by
the assumptions that A is normalized and nonnegative. Namely if Ann � 0 then
clearly Bnn = 1 and if Ann 6= 0 then

0 < Ann �
nX

k=0

Ank = 1 implies � > �1 � �1=Ann

so that Bnn = 1 + �Ann > 0. Thus B�1 exists for every � > �1.
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We will show now that

(2:3) lim
n!1

B�1n = 1=(1 + 1)

and

(2:4)

nX
k=0

jB�1nk j(k + 1)�Æ = 0(1)(n+ 1)�Æ(n!1) for some Æ > 0

both hold and therefore that the conclusion follows by Theorem A.

Now Bn = 1 + �An = 1 + � so that

nX
k=0

B�1nk (1 + �) =

nX
k=0

B�1nkBk = (B�1B)n = 1 for all n

and hence (3.3) holds. It remains to verify (2.4).

We suppose �rst that � � 0. Clearly B is nonnegative.

If � > 0 then An0 > 0 implies Bn0 > 0. Moreover from (2.1) it follows that
also

Bn+1;iBnk � BniBn+1;k for all n and 0 � k � i � n:

Thus by Lemma 1 statement i) we conclude that B�1nk � 0 for k < n if � > 0. Now
if � = 0 then B = I . Therefore for all � � 0

�B�1nk = B�1nn

n�1X
i=k

BniB
�1
ik � B�1nnBnkB

�1
kk � Bnk for k < n

so that

nX
k=0

jB�1nk j(k + 1)�Æ = �

n�1X
k=0

B�1nk (k + 1)�Æ +B�1nn (n+ 1)�Æ �

� �

n�1X
k=0

Ank(k + 1)�Æ + (n+ 1)�Æ = 0(1)(n+ 1)�Æ

by the assumption (2.2)

Suppose now that �1 < � < 0. Clearly Bnk � 0 for k < n and Bnn =
1 + �Ann > 0 as it was shown before. Thus by Lemma 1 statement ii) it follows
that B�1nk � 0 for k � n.

For Æ 2 R, real numbers, let us de�ne

Mn(Æ) =

nX
k=0

Ank

�
n+ 1

k + 1

�Æ

:
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Then clearly for each n, Mn is nondecreasing and convex on R as a liniar com-
bination of such functions. Let M(Æ) = supnMn(Æ) whenever it exists. Since
(2.2) holds for some Æ0 > 0, it also holds for all Æ, Æ < Æ0. Thus M is de�ned
on (�1; Æ0) and is nondecreasing and convex thereon. Hence M is continuous
on every closed subinterval of (�1; Æ0) and therefore limÆ!0+M(Æ) = 1.1 Since
(1 � �)=2(��) > 1 for �1 < � < 0 the later implies that there exists Æ > 0 such
that Mn(Æ) < (1� �)=2(��) for all n and therefore

(2:5)

nX
k=0

Ank(k + 1)�Æ <
1� �

2(��)
(n+ 1)�Æ for all n

We will show now that for this Æ

(2:6)
nX

k=0

jB�1nk j(k + 1)�Æ =
nX

k=0

B�1nk (k + 1)�Æ <
2

1 + �
(n+ 1)�Æ for all n

Clearly

nX
i=0

Bni

iX
k=0

B�1ik (k + 1)�Æ =

nX
k=0

(BB�1)nk(k + 1)�Æ = (n+ 1)�Æ

and therefore

(2:7) Bnn

nX
k=0

B�1nk (k + 1)�Æ = (n+ 1)�Æ �

n�1X
i=0

Bni

iX
k=0

B�1ik (k + 1)�Æ:

Since B�100 = 1=(1 + �A00) = 1=(1 + �), (2.6) clearly holds for n = 0. We proceed
by induction and assume that (2.6) holds for 0; 1; . . . ; n � 1. Then by (2.5) and
(2.7) we have

Bnn

nX
k=0

B�1nk (k + 1)�Æ < (n+ 1)�Æ + (��)
n�1X
i=0

Ani

2

1 + �
(i+ 1)�Æ <

< (n+ 1)�Æ +
2(��)

1 + �
�

1� �

2(��)
(n+ 1)�Æ �

2(��)

1 + �
Ann(n+ 1)�Æ =

=

�
1 +

1� �

1 + �
�

2(��)

1 + �
Ann

�
(n+ 1)�Æ = �

2

1 + �
Bnn(n+ 1)�Æ:

Therefore (2.6) holds for all n and consequently (2.4) is also true for �1 < � < 0.

Corollary 1. Theorem B

1A similar argument is used in the proof of Theorem B in [1].
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Corollary 2. Let pn > 0 for all n, (pn+1=pn) nondecreasing,

nX
k=0

pn�k(k + 1)�Æ = 0(1)Pn(n+ 1)�Æ(n!1) for some Æ > 0

and B = I+�Np where � > �1, then Bs 2 L implies limn!1 sn=(Bs)n = 1=(1+�)
and consequently s 2 L, if s is positive.

Corollary 3. Let 0 < � � 1 and B = I+�C� where � > �1. Then Bs 2 L
implies limn!1 sn=(Bs)n = 1=(1 + �) and consequently s 2 L if s is positive.

Remark. In Theorem 1 and the corollaries Bs 2 L implies that s is even-
tually positive.
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