A MERCERIAN THEOREM FOR SLOWLY VARYING SEQUENCES

N. Tanović-Miller

Abstract

The purpose of this note is to investigate a Mercerian problem for triangular matrix transformations of slowly varying sequences. A statement of this type for the nonnegative arithmetical means M_{p}, was recently proved by S. Aljančić [1], using the evaluation of the inverse of the associated Mercerian transformation. In this note a corresponding result is proved for nonnegative triangular matrix transformations satisfying a certain condition, which can be applied to the arithmetical means $M_{p} p_{n} \geq 0$, the Cesàro transformation C_{α} of order $\alpha, 0<\alpha \leq 1$, other Nörlund transformations $N_{p}, p_{n}>0$ and $\left(p_{n+1} / p_{n}\right)$ nondecreasing, as well as to some other standard methods. The proof is based on the properties rather than on the evaluation, of the inverse of the associated Mercerian transformation.

1. Let A denote a matrih transformation and $A_{k n}$ the entries of its matrix. For a sequence s let $A s$ denote the transformed sequence whenever it exists, and $(A s)_{n}$ its terms. We say that A is triangular if $A_{n k}=0$ for $k<n$ an we say that A is normal if it is triangular and $A_{n n} \neq 0$ for all n. For a triangular matrix transformation A let $A_{n}=\sum_{k=0}^{n} A_{n k}$ and let us say that A is normalized if $A_{n}=1$ for all n. If A is normal then it is invertable and its A^{-1} is also normal: if in addition A is normalized then clearly A^{-1} is normalized also.

A sequence $s, s_{n}>0$ for all n, is slowly varying in the sence of Karamata [3] if $\lim _{n \rightarrow \infty} s_{[t n]} / s_{n}=1$ for all $t>0$. Let \mathcal{L} denote the set of all slowly varying sequences. We say that a real matrix transformation A is \mathcal{L}-permanent if $\lim _{n \rightarrow \infty}(A s)_{n} / s_{n}$ exists and is $\neq 0$ for every $s \in \mathcal{L}$. M. Vuilleumier in [3] gave a characterization of \mathcal{L}-permanent metrix transformations which reduces to the following statement for triangular matrix transformations:

Theorem A. A triangular matrix transformation A is \mathcal{L}-permanent if and only if
i) $\lim _{n \rightarrow \infty} A_{n}=\alpha, \alpha \neq 0$ and
ii) $\sum_{k=1}^{n}\left|A_{n k}\right|(k+1)^{-\delta}=0(1)(n+1)^{-\delta}(n \rightarrow \infty)$ for some $\delta>0$.

Under these condition $\lim _{n \rightarrow \infty}(A s)_{n} / s_{n}=\alpha$ for every $s \in \mathcal{L}$.
In what follows we will be concerned only with real triangular matrix transformations.

For a sequence p such that $P_{n}=\sum_{k=0}^{n} p_{k} \neq 0$ for all n let M_{p} and N_{p} be defined by:

$$
\begin{aligned}
& \left(M_{p}\right)_{n k}=p_{k} / P_{n} \text { for } k \leq n \text { and }\left(M_{p}\right)_{n k}=0 \text { for } k>n \\
& \left(N_{p}\right)_{n k}=p_{n-k} / P_{n} \text { for } k \leq n \text { and }\left(N_{p}\right)_{n k}=0 \text { for } k>n .
\end{aligned}
$$

M_{p} and N_{p} are called the aritmetical mean and the Nörlund transformation respectively. In the special case when $p_{n}=\varepsilon_{n}^{\alpha-1}$ where $\varepsilon_{n}^{\alpha}=\binom{n+\alpha}{n} \alpha>-1, N_{p}$ is the Cesàro transformation C_{α} of order α.

If A is normalized and the condition ii) of Theorem A holds, $B=I+\lambda A$ where I is the identity and λ real, $\lambda \neq-1$, then $B_{n}=1+\lambda$ and

$$
\sum_{k=0}^{n}\left|B_{n k}\right|(k+1)^{-\delta} \leq(1+|\lambda|) \sum_{k=0}^{n}\left|A_{n k}\right|(k+1)^{-\delta}=0(1)(n+1)^{-\delta}
$$

and therefore by Theorem $A, s \in \mathcal{L}$ implies $\lim _{n \rightarrow \infty}(B s)_{n} / s_{n}=1+\lambda$. Moreover for such $A, s \in \mathcal{L}$ implies $B s \in \mathcal{L}$ whenever $B s$ is positive. Note that also by above, if $\lambda>-1$ then $s \in \mathcal{L}$ implies $B s$ is eventually positive and that $\lambda>-1$ is a necessary condition in order that $S \in \mathcal{L}$ implies $B s \in \mathcal{L}$.

The purpose of this note is to investigate the converse statement, namely to find sufficient conditions in order that for A normalized and such that ii) of Theorem A holds, $B s \in \mathcal{L}$ for λ real, $\lambda>-1$, implies $\lim _{n \rightarrow \infty} s_{n} /(B s)_{n}=1 /(1+\lambda)$ and therefore $s \in \mathcal{L}$ whenever s is positive. This mercerian type question, for the arithmetical means, raised in a recent by S . Aljančić in [1]. The following result was proved in [1]:

Theorem B. If $p_{0}>0$ and $p_{n} \geq 0$, for $n=1,2, \ldots$,

$$
\sum_{k=0}^{n} p_{k}(k+1)^{-\delta}=0(1) P_{n}(n+1)^{-\delta}(n \rightarrow \infty) \text { for some } \delta>0
$$

and $B=I+\lambda M_{p}$ where $\lambda>-1$, then $B s \in \mathcal{L}$ implies $\lim s_{n} /(B s)_{n}=1 /(1+\lambda)$ and consequently $s \in \mathcal{L}$ if s is positive.

The proof of this theorem in [1] is based on the evaluation of the inverse transformation of $B=I+\lambda M_{p}$.

Here we will prove a statement of the type mentioned above for nonnegative normalized transformation A, which can be applied to the arithmetical means M_{p} with $p_{0}>0$ and $p_{n} \geq 0$, the Casàro transformation C_{α} of order $\alpha, 0<\alpha \leq 1$, other Nörlund transformations N_{p} with $p_{n}>0$ and $\left(p_{n+1} / p_{n}\right)$ nondecreasing, as well as to some other standard methods. Our proof will be based on the properties of the inverse of $B=I+\lambda A$, rather than on the evaluation of B^{-1}.
2. Theorem 1. Let A normalized, nonnegative i.e. $A_{n k} \geq 0$,

$$
\begin{align*}
& A_{n 0}>0 \text { and } A_{n+1, i} A_{n k} \leq A_{n i} A_{n+1, k} \text { for all } n, 0 \leq k \leq i \leq n \tag{2.1}\\
& \sum_{k=0}^{n} A_{n k}(k+1)^{-\delta}=0(1)(n+1)^{-\delta}(n \rightarrow \infty) \text { for some } \delta>0 \tag{2.2}
\end{align*}
$$

and $B=I+\lambda A$ where $\lambda>-1$, then $B s \in \mathcal{L}$ implies $\lim _{n \rightarrow \infty} s_{n} /(B s)_{n}=1 /(1+\lambda)$ and consequently $s \in \mathcal{L}$, if s is positive.

To prove the theorem we will need the following lemma:
Lemma 1. i) If A is normal, nonnegative and (2.1) holds then $A_{n k}^{-1} \leq 0$ for $k<n$.
ii) If A is normal, $A_{n k}^{-1} \leq 0$ for $k<n$ and $A_{n n}>0$ then $A_{n k} \geq 0$ for $k \leq n$.

Proof. The statement ii) is a part of Theorem II. 16 in [2]. Although the statement i) is only a little sharper result than Lemma II. 5 in [2] we give the proof here for completeness.

Clearly $A_{10}^{-1}=-A_{10} A_{00}^{-1} / A_{11}>0$.
So suppose that $A_{m k}^{-1} \leq 0$ for $m \leq n$ and $k \leq m$. Now by (2.1) $A_{n i}=0$ implies $A_{n+1, i}=0$. For $k<n+1$ let k_{n} be the smallest integer i such that $A_{n i} \neq 0, k \leq i \leq n$, which exists since $A_{n n} \neq 0$. Then for $k<n+1$ we have

$$
\begin{aligned}
0 & =\sum_{i=k}^{n+1} A_{n+1, i} A_{i k}^{-1}=A_{n+1, n+1} A_{n+, k}^{-1}+\sum_{i=k_{n}}^{n} A_{n+1, i} A_{i \alpha}^{-1} \geq \\
& \geq A_{n+1, n+1} A_{n+1, k}^{-1}+\frac{A_{n+1, \alpha_{n}}}{A_{n k_{n}}} \sum_{i=k_{n}}^{n} A_{i n} A_{i k}^{-1}
\end{aligned}
$$

since $A_{n+1, i} \leq A_{n i} A_{n+1, k_{n}} / A_{n k_{n}}$ by (2.1). Therefore

$$
0 \geq A_{n+1, n+1} A_{n+1, k}^{-1}+\frac{A_{n+1, k_{n}}}{A_{n k_{n}}} \sum_{i=k}^{n} A_{n i} A_{i k}^{-1} \geq A_{n+1, n+1} A_{n+1, k}^{-1}
$$

so that $A_{n+1, k}^{-1} \leq 0$ and the conclusion follows by induction.
Proof of Theorem 1. First $A=I+\lambda A$ is normal for every $\lambda>-1$ by the assumptions that A is normalized and nonnegative. Namely if $A_{n n}-0$ then clearly $B_{n n}=1$ and if $A_{n n} \neq 0$ then

$$
0<A_{n n} \leq \sum_{k=0}^{n} A_{n k}=1 \text { implies } \lambda>-1 \geq-1 / A_{n n}
$$

so that $B_{n n}=1+\lambda A_{n n}>0$. Thus B^{-1} exists for every $\lambda>-1$.

We will show now that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} B_{n}^{-1}=1 /(1+1) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n}\left|B_{n k}^{-1}\right|(k+1)^{-\delta}=0(1)(n+1)^{-\delta}(n \rightarrow \infty) \text { for some } \delta>0 \tag{2.4}
\end{equation*}
$$

both hold and therefore that the conclusion follows by Theorem A.
Now $B_{n}=1+\lambda A_{n}=1+\lambda$ so that

$$
\sum_{k=0}^{n} B_{n k}^{-1}(1+\lambda)=\sum_{k=0}^{n} B_{n k}^{-1} B_{k}=\left(B^{-1} B\right)_{n}=1 \text { for all } n
$$

and hence (3.3) holds. It remains to verify (2.4).
We suppose first that $\lambda \geq 0$. Clearly B is nonnegative.
If $\lambda>0$ then $A_{n 0}>0$ implies $B_{n 0}>0$. Moreover from (2.1) it follows that also

$$
B_{n+1, i} B_{n k} \geq B_{n i} B_{n+1, k} \text { for all } n \text { and } 0 \leq k \leq i \leq n
$$

Thus by Lemma 1 statement i) we conclude that $B_{n k}^{-1} \leq 0$ for $k<n$ if $\lambda>0$. Now if $\lambda=0$ then $B=I$. Therefore for all $\lambda \geq 0$

$$
-B_{n k}^{-1}=B_{n n}^{-1} \sum_{i=k}^{n-1} B_{n i} B_{i k}^{-1} \leq B_{n n}^{-1} B_{n k} B_{k k}^{-1} \leq B_{n k} \text { for } k<n
$$

so that

$$
\begin{aligned}
& \sum_{k=0}^{n}\left|B_{n k}^{-1}\right|(k+1)^{-\delta}=-\sum_{k=0}^{n-1} B_{n k}^{-1}(k+1)^{-\delta}+B_{n n}^{-1}(n+1)^{-\delta} \leq \\
& \leq \lambda \sum_{k=0}^{n-1} A_{n k}(k+1)^{-\delta}+(n+1)^{-\delta}=0(1)(n+1)^{-\delta}
\end{aligned}
$$

by the assumption (2.2)
Suppose now that $-1<\lambda<0$. Clearly $B_{n k} \leq 0$ for $k<n$ and $B_{n n}=$ $1+\lambda A_{n n}>0$ as it was shown before. Thus by Lemma 1 statement ii) it follows that $B_{n k}^{-1} \geq 0$ for $k \leq n$.

For $\delta \in R$, real numbers, let us define

$$
M_{n}(\delta)=\sum_{k=0}^{n} A_{n k}\left(\frac{n+1}{k+1}\right)^{\delta}
$$

Then clearly for each n, M_{n} is nondecreasing and convex on R as a liniar combination of such functions. Let $M(\delta)=\sup _{n} M_{n}(\delta)$ whenever it exists. Since (2.2) holds for some $\delta_{0}>0$, it also holds for all $\delta, \delta<\delta_{0}$. Thus M is defined on $\left(-\infty, \delta_{0}\right)$ and is nondecreasing and convex thereon. Hence M is continuous on every closed subinterval of $\left(-\infty, \delta_{0}\right)$ and therefore $\lim _{\delta \rightarrow 0^{+}} M(\delta)=1 .{ }^{1}$ Since $(1-\lambda) / 2(-\lambda)>1$ for $-1<\lambda<0$ the later implies that there exists $\delta>0$ such that $M_{n}(\delta)<(1-\lambda) / 2(-\lambda)$ for all n and therefore

$$
\begin{equation*}
\sum_{k=0}^{n} A_{n k}(k+1)^{-\delta}<\frac{1-\lambda}{2(-\lambda)}(n+1)^{-\delta} \text { for all } n \tag{2.5}
\end{equation*}
$$

We will show now that for this δ

$$
\begin{equation*}
\sum_{k=0}^{n}\left|B_{n k}^{-1}\right|(k+1)^{-\delta}=\sum_{k=0}^{n} B_{n k}^{-1}(k+1)^{-\delta}<\frac{2}{1+\lambda}(n+1)^{-\delta} \text { for all } n \tag{2.6}
\end{equation*}
$$

Clearly

$$
\sum_{i=0}^{n} B_{n i} \sum_{k=0}^{i} B_{i k}^{-1}(k+1)^{-\delta}=\sum_{k=0}^{n}\left(B B^{-1}\right)_{n k}(k+1)^{-\delta}=(n+1)^{-\delta}
$$

and therefore

$$
\begin{equation*}
B_{n n} \sum_{k=0}^{n} B_{n k}^{-1}(k+1)^{-\delta}=(n+1)^{-\delta}-\sum_{i=0}^{n-1} B_{n i} \sum_{k=0}^{i} B_{i k}^{-1}(k+1)^{-\delta} \tag{2.7}
\end{equation*}
$$

Since $B_{00}^{-1}=1 /\left(1+\lambda A_{00}\right)=1 /(1+\lambda),(2.6)$ clearly holds for $n=0$. We proceed by induction and assume that (2.6) holds for $0,1, \ldots, n-1$. Then by (2.5) and (2.7) we have

$$
\begin{aligned}
& B_{n n} \sum_{k=0}^{n} B_{n k}^{-1}(k+1)^{-\delta}<(n+1)^{-\delta}+(-\lambda) \sum_{i=0}^{n-1} A_{n i} \frac{2}{1+\lambda}(i+1)^{-\delta}< \\
& <(n+1)^{-\delta}+\frac{2(-\lambda)}{1+\lambda}-\frac{1-\lambda}{2(-\lambda)}(n+1)^{-\delta}-\frac{2(-\lambda)}{1+\lambda} A_{n n}(n+1)^{-\delta}= \\
& =\left(1+\frac{1-\lambda}{1+\lambda}-\frac{2(-\lambda)}{1+\lambda} A_{n n}\right)(n+1)^{-\delta}=-\frac{2}{1+\lambda} B_{n n}(n+1)^{-\delta}
\end{aligned}
$$

Therefore (2.6) holds for all n and consequently (2.4) is also true for $-1<\lambda<0$.
Corollary 1. Theorem B

[^0]Corollary 2. Let $p_{n}>0$ for all $n,\left(p_{n+1} / p_{n}\right)$ nondecreasing,

$$
\sum_{k=0}^{n} p_{n-k}(k+1)^{-\delta}=0(1) P_{n}(n+1)^{-\delta}(n \rightarrow \infty) \text { for some } \delta>0
$$

and $B=I+\lambda N_{p}$ where $\lambda>-1$, then $B s \in \mathcal{L}$ implies $\lim _{n \rightarrow \infty} s_{n} /(B s)_{n}=1 /(1+\lambda)$ and consequently $s \in \mathcal{L}$, if s is positive.

Corollary 3. Let $0<\alpha \leq 1$ and $B=I+\lambda C_{\alpha}$ where $\lambda>-1$. Then $B s \in \mathcal{L}$ implies $\lim _{n \rightarrow \infty} s_{n} /(B s)_{n}=1 /(1+\lambda)$ and consequently $s \in \mathcal{L}$ if s is positive.

Remark. In Theorem 1 and the corollaries $B s \in \mathcal{L}$ implies that s is eventually positive.

REFERENCES

[1] Aljančić S., An asymptotic Mercerian theorem for the weigthed means of slowly varying sequences, Bull. Acad. Serbe Sci. math. nat. 10 (1979) 47-52.
[2] Peyerimhoff A., Lectures on Summability, Springer - Verlag Berlin Heidelberg, 1969.
[3] Vuilleumier M., Sur le compertment asymtotique des transformations lineaire des suites. Math. Zeitschr. 98 (1967) 126-139.

Naza Tanović-Miller
Department of Mathematics
University of Sarajevo

[^0]: ${ }^{1} \mathrm{~A}$ similar argument is used in the proof of Theorem B in [1].

