STRUCTURE CONNECTION IN AN ALMOST CONTACT METRIC MANIFOLD

B.B. Sinha and S.L. Yadava

Summary. In 1970, semi-symmetric connection were studied by Yano [1] in a Riemannian manifold and in 1972 Mishra [2] studied affine connection in an almost contact Riemannian manifold. In the present paper we have defined a structure connection in a Riemannian manifold and studied its properties in an almost contact metric manifold. It is seen that structure connection play fundamental role in an almost contact metric manifold.

1. Introduction

Let M_n be a $n (= 2m + 1)$ dimensional C^∞-manifold and let there exist a vector valued function f, a vector field t and a l-form A in M_n such that

$$\nabla X + X = A(X)t, \quad \nabla \overset{\text{def}}{=} f(X)$$

for arbitrary vector field X, then M_n is called an almost contact manifold and the structure (f, t, A) is an almost contact structure. In an almost manifold the following hold [2]

$$\text{rank} (f) = n - 1, \quad \overset{\text{def}}{t} = 0, \quad A(\nabla) = 0$$

$$A(t) = 1.$$

Let the almost contact manifold M_n be endowed with the nonsingular metric tensor g satisfying

$$g(\nabla, \nabla) = g(X, Y) - A(X)A(Y)$$

Then M_n is called an a almost contact metric manifold or Grayan manifold.

From (1.3) we obtain

$$g(Y, t) = A(Y)$$
Putting $F(X, Y) = g(\overline{X}, Y)$, we have

(1.5) \[F(\overline{X}, \overline{Y}) = F(X, Y); \quad F(X, Y^{'}) = -F(Y, X). \]

If D be the Riemannian connection in an almost contact metric manifold, then

(1.6) \[(D_X A)(Y) = g(D_X t, Y). \]

In an almost contact metric manifold Nijenhuis tensor N is given by

(1.7a) \[N(X, Y) = N_D(X, Y) = (D_X f)(Y) - (D_Y f)(X) - \]

\[- (D_X f)(Y) + (D_Y f)(X) \]

(1.7b) \[N(X, Y, Z) = N_D(X, Y, Z) = (D_X F)(Y, Z) - (D_Y F)(X, Z) + (D_X F)(Y, \overline{Z}) - (D_Y F)(X, \overline{Z}) \]

where

\['N(X, Y, Z) = g((D_X F)(Y), Z). \]

An almost contact manifold M_n is said be normal if the almost complex structure J on $M_n \times R$ given by

(1.8) \[J \left(X, h \frac{d}{dt} \right) = \left(f(X) - h t, A(X) \frac{d}{dt} \right) \]

where h is C^∞ - real valued function on M_n, is integrable. From this we have an almost contact manifold is normal if

(1.9) \[N(X, Y) + dA(X, Y)t = 0. \]

An almost contact metric manifold M_n in which

(1.10) \[F(X, Y) = (D_X A)(Y) - (D_Y A)(X) = (dA)(X, Y) \]

is called an almost Sasakian manifold (1.10) is equivalent to

(1.11) \[(D_X F)(Y, Z) + (D_Y F)(Z, X) + (D_Z F)(X, Y) = 0. \]

An almost Sasakian manifold is said to be k-contact Riemannian manifold if A is a Killing vector i.e. if

(1.12) \[(D_X A)(Y) + (D_Y A)(X) = 0. \]

Thus in a K-contact Riemannian manifold we have

(1.13) \[F(X, Y) = 2(D_X A)(Y) = -2(D_Y A)(X). \]
An almost contact manifold with symmetric affine connection D is said to be affinely Sasakian if it is normal and

\[(1.14) \quad fX = D_X t.\]

An almost contact manifold with a symmetric affine connection D is called an affinely almost cosymplectic manifold if

\[(1.15) \quad D_X f = 0, \quad D_X A = 0.\]

2. Structure Connection in a Riemannian Manifold

Let M_n be a C^∞ - Riemannian manifold of dimension n. Let f^*, t^* and A^* be respectively (1.1) tensor field, a vector field and a 1-form in M_n and let D be a Riemannian connection in M_n. We define a connection B in M_n by

\[(2.1a) \quad B_X (Y) = D_X Y + A^*(Y)X - g(X, Y)G_*A^* + F^*(X, Y)t^*\]

and

\[(2.1b) \quad B_X g = 2A^*(X)g,\]
\[(2.1c) \quad g(f^*X, Y) + g(X, f^*Y) = 0\]

where g is a Riemannian metric and $F^*(X, Y) = g(f^*(X), Y)$ and

\[g(G_*A^*, X) = A^*(X).\]

Definition (2.1). A connection B in a Riemannian manifold M_n given by (2.1a), (2.1b) and (2.1c) is called a structure connection in M_n.

The torsion tensor S of structure connection B is given by

\[(2.2) \quad S(X, Y) = A^*(Y)X - A^*(X)Y + 2F^*(X, Y)t^*.\]

Let us put

\[(2.3) \quad B_X Y = D_X Y + P(X, Y)\]

(2.3) gives

\[(2.4) \quad S(X, Y) = P(X, Y) - P(Y, X).\]

The property (2.1a) of the definition can be written in the form

\[(2.5) \quad g(P(X, Y), Z) + g(P(X, Z), Y) = -2A^*(X)g(Y, Z).\]
Let

\[Q: T(M_n)^* \times T(M_n) \times T(M_n) \to \mathcal{Z}(M_n) \]

be the mapping defined by

(2.6) \[Q(\omega, X, Y) = g(S(X, G, \omega), Y) + g(S(Y, G, \omega), X) \]

where \(T(M_n) \) is a set of all vector fields on \(M_n \) and \(T(M_n)^* \) is a set of all \(l \)-forms on \(M_n \), and \(\mathcal{Z}(M) \) is a set of all \(C^\infty \) functions on \(M_n \).

Taking account of (2.2) we have

(2.7) \[
\begin{align*}
Q(\omega, X, Y) &= 2 A^*(G, \omega)g(X, Y) - A^*(X)\omega(Y) \\
&- A^*(Y)\omega(X) + 2\omega(f^*(X))g(t^*, Y) + 2\omega(f^*Y)g(t^*, X).
\end{align*}
\]

According (2.4) and (2.5)

(2.8) \[
\begin{align*}
Q(\omega, X, Y) &= 2 A^*(G, \omega)g(X, Y) - 2 A^*(X)\omega(Y) \\
&- 2 A^*(Y)\omega(X) - \omega(P(X, Y) + P(Y, X)).
\end{align*}
\]

From (2.7) and (2.8) we deduce for every \(l \)-form

\[
\begin{align*}
\omega(P(X, Y) + P(Y, X)) + A^*(X)\omega(Y) + A^*(Y)\omega(X) \\
&+ 2\omega(f^*X)g(t^*, Y) + 2\omega(f^*Y)g(t^*, X) = 0
\end{align*}
\]

and therefore

(2.9) \[
\begin{align*}
P(X, Y) + P(Y, X) + A^*(X)Y + A^*(Y)X + 2f^*(X)g(t^*, Y) \\
+ 2f^*(Y)g(t^*, X) = 0
\end{align*}
\]

from (2.2) and (2.4) we obtain

(2.10) \[
P(X, Y) - P(Y, X) = A^*(Y)X - A^*(X)Y + 2F^*(X,Y)t^*
\]

from (2.9) and (2.10) we have

(2.11) \[
P(X, Y) = - A^*(X)Y - f^*(X)g(t^*, Y) - f^*(Y)g(t^*, X) \\
+ F(X, Y)t^*.
\]

Thus from (2.3) and (2.11) structure connection \(B \) in a Riemannian manifold \((M_n, g) \) is given by

(2.12) \[
B_X(Y) = D_X(Y) - A^*(X)Y - f^*(X)g(t^*, Y) - f^*(Y)g(t^*, X) \\
+ F(X, Y)t^*.
\]
3. Structure connection in an almost contact metric manifold

Let \(M_n \) be a almost contact metric manifold and \((f, t, A)\) be an almost contact structure on \(M_n \) then a contact connection \(B \) in an almost contact metric manifold is given by

\[
(3.1) \quad B_X Y = D_X Y - A(X)Y - \nabla A(Y) - \nabla A(X) + g(\nabla, Y)t
\]

the structure connection may also be written as

\[
(3.2) \quad (B_X A)Y = (D_X A)Y + A(X)A(Y) - F(X, Y).
\]

Thus we have the following theorem:

Theorem 3.1. Every almost contact metric manifold admits a structure connection \(B \) defined by (3.2). The structure connection \(B \) is uniquely determined by the contact form \(A \) and tensor field \(f \).

From (2.2) we have in an almost contact manifold the following results.

\[
(3.3) \quad \begin{align*}
\text{a) } & S(\nabla, \nabla) = 2F(X, Y)t \\
\text{b) } & S(X, t) = -\nabla \\
\text{c) } & S(\nabla, t) = \nabla \\
\text{d) } & S(\nabla, t) + S(X, t) = 0 \\
\text{e) } & S(\nabla, Y) = A(X)A(Y)t - A(Y)X - 2F(X, Y)t \\
\text{f) } & S(\nabla, Y) + S(\nabla, Y) = A(\nabla)X - A(X)Y \\
\text{g) } & A(S(X, Y)) = 2F(X, Y) \\
\text{h) } & S(\nabla, Y) + S(X, Y) = S(\nabla, \nabla)
\end{align*}
\]

Let us define

\[\iota S(X, Y, Z) = g(S(X, Y), Z) \]

\[\iota P(X, Y, Z) = g(P(X, Y), Z). \]

In an almost contact metric manifold with structure connection \(B \) we have

\[
(3.4a) \quad B_X \nabla = D_X \nabla + g(X, Y)t \\
(3.4b) \quad B_X \nabla = D_X \nabla \\
(3.4c) \quad (B_X A)\nabla = (D_X A)\nabla - g(\nabla, \nabla) \\
(3.4d) \quad (B_X F)(Y, Z) = 2A(X)g(\nabla, Z) + g((B_X f)(Y), Z) \\
(3.4e) \quad (B_X F)(Y) = (D_X f)(Y) - g(X, Y)t - A(Y)X
\]

Theorem (3.2). In an almost contact metric manifold with structure connection \(B \), we have

\[
(3.5a) \quad \iota P(X, Y, Z) = A(Z)F(X, Y) - A(X)F(Y, Z) - A(Y)F(X, Z) - A(X)g(Y, Z) \\
(3.5b) \quad \iota P(\nabla, \nabla, Z) = 0 = \iota S(\nabla, \nabla, Z).
\]
\textbf{Proof.} The proof follows from (1.4) and (2.11).

\textbf{Theorem 3.3.} If B a structure connection in an almost contact metric manifold M_n with a Riemannian connection D then

\begin{align}
(B_X F)(Y, Z) &= (D_X F)(Y, Z) - 2A(X)F(Y, Z) \\
&\quad + A(Y)g(X, Z) - A(Z)g(X, Y)
\end{align}

\begin{align}
(B_X \bar{F})(Y, Z) &= (D_X \bar{F})(Y, Z) - \bar{P}(X, Y, \bar{Z}) + \bar{P}(X, Z, \bar{Y}).
\end{align}

Proof. We know,

\begin{align}
X(F(Y, Z)) &= (B_X F)(Y, Z) + F(B_X Y, Z) + F(Y, B_X Z)
\end{align}

and

\begin{align}
X(F(Y, Z)) &= (D_X F)(Y, Z) + F(D_X Y, Z) + F(Y, D_X Z).
\end{align}

From the above equations, we get

\begin{align}
(B_X F)(Y, Z) &= (D_X F)(Y, Z) - \bar{P}(X, Y, \bar{Z}) + \bar{P}(X, Z, \bar{Y}).
\end{align}

Using (3.7), (1.4) and (2.11) we have the theorem.

\textbf{Corollary 1.} If M_n is an almost Sasakian then

\begin{align}
(B_X F)(Y, Z) + (B_\bar{Y} F)(Z, X) + (B_\bar{Z} F)(X, Y) &= -2A(X)F(Y, Z) \\
&\quad - 2A(Y)F(Z, X) - 2A(Z)F(X, Y).
\end{align}

\textbf{Corollary 2.} In an almost contact metric manifold with structure connection B we have

\begin{align}
(B_X \bar{F})(Y, Z) &= (D_X \bar{F})(Y, Z) \\
&\quad - A(Z)g(X, Y) + A(X)A(Y)A(Z)
\end{align}

\begin{align}
(B_X F)(Y, Z) + (B_X \bar{F})(Y, \bar{Z}) &= -4A(X)F(Y, Z)
\end{align}

\textbf{Theorem 3.4.} In an almost contact metric manifold with a structure connection B we have

\begin{align}
N_B(X, Y) &= N(X, Y) + S(\bar{X}, \bar{Y})
\end{align}

\begin{align}
\bar{N}(X, Y, Z) &= \bar{N}_B(X, Y, Z) + 2A(Y)g(X, Z) - 2A(X)g(Y, Z)
\end{align}

where

\begin{align}
N_B(X, Y) &= (B_X f)(Y) - (B_X \bar{f})(X) - (B_X \bar{f})(Y) + (B_Y \bar{f})(X).
\end{align}
Proof. We have in an almost contact metric manifold Nijenhuis tensor N is given by

$$N(X,Y) = D_XY - D_XF - D_YX + D_YF - D_XY + D_YX - D_YX$$

$$= B_XY - F(X,Y)t - B_YX + F(Y,X)t - D_XY$$

$$= XA(Y) + B_YX + YA(X) - B_YX - A(X)Y$$

$$- YA(X) + B_YX + A(Y)X + XA(Y) + B_XY$$

$$+ A(X)Y + XA(Y) + YA(X) - B_YX - A(Y)X$$

$$- YA(X) - XA(Y).$$

From this have the theorem (3.4).

Theorem 3.5. In a k-contact Riemannian manifold with structure connection B we have

$$\begin{align*}
(3.11a) & \quad (B_XA)(Y) + (B_YA)(X) = 2A(X)A(Y) \\
(3.11b) & \quad A(N_B(X,Y)) = F(X,Y).
\end{align*}$$

Proof. Using (1.12) and (3.2) we get first part of the theorem.

For the proof of 2nd, using the equations (1.13) and (3.2) we have in a k-contact Riemannian manifold.

$$\begin{align*}
(3.12) & \quad (B_XA)(Y) - (B_YA)(X) = -F(X,Y)
\end{align*}$$

also

$$\begin{align*}
(3.13) & \quad (B_XA)(Y) = -A((B_Xf)(Y)).
\end{align*}$$

Again from (1.17) a, we have

$$\begin{align*}
(3.14) & \quad A(N_B(X,Y)) = A((B_Xf)(Y)) - A((B_Yf)(X))
\end{align*}$$

from (3.12), (3.13) and (3.14) we have the 2nd part of the theorem.

Corollary. In a k-contact Riemannian manifold with structure connection B, we have

$$\begin{align*}
(3.15a) & \quad A(N_B(X,Y)) = A(N_B(X,Y)) \\
(3.15b) & \quad A(N_B(X,Y)) + A(N_B(X,Y)) = 0.
\end{align*}$$
Theorem 3.6. In a normal contact metric manifold with structure connection B

\[(3.6) \quad N_B(X,Y) = F(X,Y)t = \frac{1}{2}S(\overline{X},\overline{Y}).\]

Proof. Using (1.9) (3.3a) and (3.10a), we have the theorem.

Theorem 3.7. In a k-contact Riemannian manifold with structure connection B, we have

\[(3.17a) \quad B_X t = -A(X)t \]
\[(3.17b) \quad (B_X A)(Y) = A(X)A(Y).\]

Proof. In a k-contact manifold we can easily obtain

\[(3.18) \quad D_X t = \overline{X}\]

(3.18) together with (3.1) gives the first part of the theorem. Using (3.2) and (1.13) we have 2nd part of the theorem.

Corollary. An almost contact metric manifold M_n with structure connection B is a affinely Sasakian manifold if

\[(3.19a) \quad A(N_B(X,Y)) = F(X,Y)\]

and

\[(3.19b) \quad B_X t = -A(X)t.\]

4. Curvature of structure connection in an almost contact metric manifold

Let \tilde{R} be the curvature tensor of structure connection B and K be the curvature tensor of Riemannian connection D in an almost metric manifold, then

\[(4.1) \quad \tilde{R}(X,Y,Z) = B_X B_Y Z - B_Y B_X Z - B_{[X,Y]} Z.\]

We have following theorem:

Theorem (4.1) In an almost contact metric manifold the curvature tensor \tilde{R} is given by

\[(4.2) \quad \tilde{R}(X,Y,Z) = K(X,Y,Z) + X\theta_Y - Y\theta_X,\]
where $\chi\theta_Y$ is given by

$$
\chi\theta_Y = (D_Y A)(X)(Z + \bar{Z}) + (D_X F)(Y, Z)t \\
+ F(Y, Z)D_X t + A(Y)A(Z)X + (D_Y A)(Z)\bar{X} \\
+ F(X, Z)\bar{Y} + A(X)g(Y, Z)t + A(Z)(D_Y f)(X) \\
+ A(X)(D_Y f)(Z).
$$

Theorem (4.2). In an affinely almost cosymplectic manifold we have

$$
(4.4a) \quad \tilde{R}(X, Y, Z) = K(X, Y, Z) + A(Y)A(Z)X - A(X)A(Z)Y \\
- F(Y, Z)\bar{X} + F(X, Z)\bar{Y} + A(X)g(Y, Z)t \\
- A(Y)g(X, Z)t
$$

$$
(4.4b) \quad (C_1^1 \tilde{R})(Y, Z) = \text{Ric}(Y, Z) + (n - 1)A(Y)A(Z)
$$

$$
(4.4c) \quad C_1^1 E = r + \text{rank}(f)
$$

where $r = C_1^1 R$ is scalar tensor and

$$
(4.5) \quad \text{Ric}(Y, Z) = g(R(Y), Z)
$$

$$
(4.5) \quad (C_1^1 \tilde{R})(Y, Z) = g(E(Y), Z).
$$

REFERENCES

Department of Mathematics
Banaras Hindu University
Varanasi [India]