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ON FIXED POINT THEOREMS OF MAIA TYPE

Bogdan Rzepecki

1. In this note we present some variants of the following result of Maia [10]:
Let X be a non-empty set endowed in with two metrics p, o, and let f be a mapping
of X into itself. Suppose that p(x,y) < o(x,y) in X, X is a complete space and f
is continuous with respect to p, and o(fx, fy) < k-o(x,y) for all x, y in X, where
0<k<1. Then, f has a unique fized point in X.

This theorem (cf. also [18], [11], [4], [12], [17]) generalizes the Banach fixed-
point principle and is connected with Bielecki’s method [1] of changing the norm
in the theory of differential equations. Our results follow as a consequence of two
metrics, of two transformations [3] and of the generalized metric space concept ([8],

[9)-

2. Let (E,|| - ||) be a Banach space, let S be a normal cone in E (see e.g. [6])
and let < denote the partial order in E generated by the cone S. Suppose that X
is a non-empty set and a function dg: X x X — S satisfying for arbitrary elements
z, Yy, z in X the following conditions:

(A1) dg(z,y) =0 if and only if z = y (0 denotes the zero of the space E);
(A 2) dp(z,y) = dp(y, 2);

(A 3) de(z,y) 2 dp(z,2) + de(z,y)

Then, this function dg is called the generalized metric in X.

Further, let us put d* (z,y) = ||dg(z,y)|| for  and y in X. If every d*-Cauchy
sequence in X is d*-convergent (i.e., lim, ;o0 d*(z,,2,) = 0 for a sequence (z,,)
in X, implies the existence of an element z in X such that lim,, o d* (z,, 7o) =),
then (X, dg) is called [6] a generalized complete metric space.

Moreover, in this paper we shall use the notations of L*-space, the L*-product
of L*-spaces and a continuous mapping of L*-space into L*-space (see e.g. [7]).

3. Let E, S and < be as above. In this section suppose we are given:

L — a bounded positive linear operator of F into itself with the spectral radius
r(L) less than one (see e.g. [6]);
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X, A - two non-empty sets;

pE,0r — two generalized metrics in X such that pg(z,y) X C -og(z,y) for
all z, y in X, where C' is a positive constant;

T — a transformation from A to X such that (T[4], pr) s a generalized com-
plete metric space!.

Modifying the reasoning from [6, Th. II. 6. 2], we obtain the following result:

PRroOPOSITION 1. Let (X,pg) be a generalized complete metric space, let
f:X — X be a continuous mapping with respect to p*, and let op(fz, fy) <
L(og(z,y)) for all z, y in X. Then f has a unique fized point £ in X. Moreover,
if o € X and z,, = fx,,_1 for n > 1, then:

(i) limp o0 [lpB(2n, I =0,

(ii) |lpe(Tm,&)|| < N - C - ||L™ul| for all m > 0, where N is same constant
and u is a solution of equation uw = og(zo, fzo) + Lu in the space E (see [6, Th. I

2.2)).

Now, we shall prove

PRrROPOSITION 2. Let (X,pg) be a generalized complete metric space, let
fm:X = X (m = 0,1,...) be continuous mappings with respect to p*, and let
og(fm, fmy) 3 L(og(z,y)) for oll z, y in X. Denote by &, (m = 0,1,...) a
unique fized point of fm, and suppose that lim,_, ||cE(frz, fox)|| = 0 for every x
in X. Then lim,_, ||p(&n,&)|| = 0.

Proor. Consider the linear equation u = og(&o, fnéo) + Lu (n = 1,2,...)
with the unique solution u, in E (see [6, Th. I. 2. 2]). By Proposition 1 we obtain
lpE(&n, &)l < N - C - ||uy|| for n > 1, where N is constant.

Let € > 0 by such that (L) + ¢ < 1. Further, let us denote by || - ||c the norm
equivalent to || - || such that ||L||lc < e+ r(L) (see [6, p. 15]) (|L||c is the norm of
L generated by || - ||c). We have

lunlle < llos(faéo, fodo)lle + [[Lunlle < lloe(fréo, folo)ll- + (r(L) + &)llunl|-

for n > 1. Since lim, o0 [|0E(fréo, folo)|le = 0, so lim,, oo ||un|l: < (e +r(L)) -
limy,— 00 ||tin||e, and consequently lim ||pg(&n, &)|| = 0.

THEOREM 1. Let H: A — X be a mapping such that H[A] C T[A] and
op(Hz,Hy) <X L(og(Txz,Ty)) for all x, y in A. Suppose that lim,_ ||pg(HTy,
Hz)|| = 0 for every sequence (zy) in A with lim,_, ||pg(T2y, Tx)|| =0 Then:

(i) for every u in T[A] the set H[T ju] contains only one element?;

(i) there exists a unique element & in T[A] such that H[T_1£] = &, and
every sequence of successive approzimations upt1 = H[T_jup] (n = 1,2,...) is
pT-convergent to &;

LT[A] denotes the image of the set A by the transformation T
2T_1u denotes the inverse image of u under T
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(iil) Hx = Tz for all x in T_1&;

(iv) if Hx; = Tz; (i = 1,2), then Tz, = Txo.

Proor. Let us put fz = H[T_1z| for z in T[A]. Obviously, fz € T[A]
for all z in T[A]. If v; € fz (i = 1,2), then v; = Hx; with Tx; = z. Hence
0 R og(v1,v2) X L(og(Tz1,Txs)) = 6 and vy = vs. Therefore, H[T_;z] contains
only one element.

It can be easily seen that the mapping f of T[A] into itself is continuous with
respect to pT. Indeed, let z, € T[A] for n > 1 and let lim,_ ||pE(2n, 20)|| = 0.
Then there exist z,, € T_12,, (m = 0,1,...) such that fz,, = Hz,. We have
lpe(Hzy, Hxo)l| = |lpE(f2n, f20)|| for n > 1, and consequently limy, o [|pE(f2n,
fzo)ll = limp o0 |lpE(Han, Hao)|| = 0.

Further, it is easy to verify that og(fu, fv) < L(og(u,v)) for all u, v in T[A].
Consequently, applying Proposition 1 the proof of (ii) is completed.

Obviously, (iii) holds and we omit the proof. Now, we prove (iv): Suppose
that Hz; = Tz; (i = 1,2) and Tx; # Txo. Then, op(Txy,T2zs) < L(og(Tx1,Txs))
and-og(Tzy,Txe) ¢ S. Therefore, by theorem II. 5. 4 from [6. p. 81], we obtain
r(L) > 1. This contradiction completes our proof.

Using Theorem 1 and Proposition 2 we obtain the following

THEOREM 2. Let Hp:A - X (m = 0,1,...) be mappings with Hp,[A] C
T[A] and op(Hpx,Hyy) < Liog(Tz,Ty)) for all z, y in A. Further, sup-
pose that lim,_, o ||pE(HmTn, Hnz)|| = 0 for every sequence (z,) in A with
limy— o0 ||pe(Txyn, Tz)|| = 0.

Let & (m = 0,1,...) be an element in T[A] such that Hy[T-1&{m] = &m. As-
sume that lim,_, ||ocg(Hyz, Hox)|| = 0 for every x in A. Then lim, o ||pE(TYn,
Tyo)|| = 0, where yp, € T_1&,, for m > 0.

4. M. Krasnoselskii [5] has given the following version of well-known result
of Schauder: If W is a non-empty bounded closed convex subset of a Banach space,
f is a contraction and g is completely continuous on W with fx + gy € W for all
x, y in W, then the equation fx + gxr = x has a solution in W.

Now, we give a modification and some generalization of this Krasnoselskii’s
result.

Let (E,||-||) be a Banach space, let S be a cone in E with the partial order <
such that if § < 2 <y then ||z|| < ||y||, and let L be as in Sec. 3. Further, let X be

a vector space endowed with two generalized norms ||| - [||;: X = S (i = 1,2) (see
[6, p. 94]) such that |||z|||1 X C-]||z]||2 for all z in X. Denote: pg, og—generalized
metrics in X generated by ||| - |||1 and ||| - |||2, respectively.

THEOREM 3. Let K be a non-empty convex subset of X, let (K,pt) be a
complete space and let QQ, F be transformations with the values in K defined on K
and K x K respectively. Assume, moreover, that the following condition holds:

(i) Q:(K,p*) — (K, p") is continuos, Q[K] is a conditionally compact set
with respect to o and |||F (u,y) — F(v,y)|||2 = |[|Qu — Qu|||2 for all u, v, y in K;
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(i) [|1F(z,y) — F(z,2)|ll2 2 L(|lly — 2lll2) for all x, y, z in K;
(iii) for every x in K the function y — F(x,y) of K into itself is continuous
with respect to pt.

Then there exists a point x in K such that F(z,x) = x.

ProOOF. Consider the mapping y — F(z,y) (z is fix in K) of K into itself.
By Proposition 1, there exists exactly one u, in K such that F(z,u,) = u,. Now
define an operator V' as x — u,.

This operator V' maps continuously (K, p™) into itself. Indeed, let (z,) be a
sequence in K such that p*(z,,79) — 0 as n — oco. Let us put fi,x = F(zs,7)
(m=0,1,...) for z in K. The conditions (i) and (ii) imply that all the assumptions
of the Proposition 2 are satisfied. Therefore, f,, has a unique fixed point &, and
pT(&n, &) — 0 as n — oo, so we are done.

Now we are going to show that V[K] is conditionally compact with respect to
pT: Let (z,) be a sequence in K, and let y, = F(xy,u,,) forn > 1. Let € > 0 be
such that 7(L)+¢ < 1, let ||-||- be the norm equivalent to ||-|| with ||L||. < r(L)+e,
and let us put o (2,y) = |||||z — y|||2]|- for z, y in K. We have

ly: = yjlll2lle < TNy = y5lll2) + 1Qzs — Qajllla|l2lle <
< (r(L) + a)llllys = yslll2lle + 1@z — Q42|

hence
(L= (r(L) +2)) - llllyi — yslll2lle < NQzi — Qujll]2]]

for every i, j < 1. Suppose that (Qz,) is a oT-Cauchy sequence. Then, (Qz,) is
a o-Cauchy sequence and consequently (y,) is p*-convergent in K.

By application of the Schauder fixed point theorem, our proof is completed.

REMARK. The above theorem will remain true if (i) is repleaced by the
following condition: @ is continuous and Q[K] is a conditionally compact set with
respect to pt, and |||F(u,y) — F(v,y)|l|2 2 |||Qu — Qu||]1 for all u, v, y in K.

5. Let us remark applications and further results can be obtained if the
concept of a generalized metric space in the Luxemburg sense [9] (not every two
points have necessarily a finite distance) will be used. Cf. [13]-[17]. How, we give
some application of Theorem 2 (in the cose of) to functional equations.

In this section, let (R*,|| - ||) denote the k-dimensional Euclidean space,
let E = R* and let S = {(t1,t2...,tx) € R¥:¢; > 0 for 1 < i < k}. Then,
(1,22, ,xk) 2 (y1,y2,--. ,yx) if we have z; < y; for every 1 <i < k.

Suppose that J = [0,00), K;; > 0 (4,5 = 1,2,...,k) are constants, and
p: J — J is a locally bounded function. Let us denote by:

A — the set of continuous functions (z1,zs,...,zx) from J to R* such that
z1(t) = 0(exp(p(t))) (1 <i < k) for every t in J;

X — the set of bounded continuous functions from J to R* ;

A — the metric space with the metric J;
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F — the set of continuous functions (fi, f2,..., fr) from J x R*¥ x A into R¥
satisfying the following conditions:

k
|fi(t)t1)"' )tkyA) _fi(t751;527"' 7skaA) |S ZK” | tj — Sj

< i < k) for every t in J, t;, s; in R* and X in A; f;(¢,0,)) = O(exp(p(2)))
< i < k) for fixed X in A and every ¢ in .J (¢ denotes the zero of space R*).
)

The set A admits a norm ||| -||| defined as |||z||| = sup{exp(—p(t)) - |=(¢)|: ¢
0}. In X we define the generalized metric dg as follows: for each z = (z1,. .. :rk)
and y = (yr, .., ye) write dis(z, ) = (o1 — g1l 162 — vall, . » 175 — yl]), where
||-|| denotes the usual supremum norm in the space of bounded continuous functions
on J. Obviously, (X, dg) is a generalized complete metric space.

(1
(1

We shall deal with the set F as an L*-space endowed with convergence:
Ty, oo (F, 57 f = (£ £0 L £ i an only if

lim_ sup{exp(=p(t)) - 1£" (t,u,3) = £ (t,u, N)|: (t,u) € T x RF} =0

for every A in A and evry 1 < i < k. Moreover, F x A be the £*-product of the
L*-spaces F, A.

Further, suppose that h: J — J is a continuous function, there exists a con-
stant ¢ > 0 such that exp(p(h(t))) < ¢ - exp(p(t)) for all ¢t in J, and [q - K;j]
(1 <4,j <k) is a non-zero matrix with

1—qKi1 —qKi2 -+ —qKy;
—qK2  1—qKs - —qKy >0
—qK;1 —qK; 1—-qKy

foreveryi =1,2,... k.
Under these conditions we have the following theorem:

For an arbitary F' in F and X in A there erists a unique function x(g:y) in
A such that
z(pay(t) = F(t,zpny (h(t)), )

for every t > 0. Moreover, if there exists functions o, B from J to J such that
a(t) = 0(exp(p(t))) for t >0, B(t) = 0 as t — 04 and

for all (f1,f2y...,frx) €EF,t>0,ucRF and \, p in A, then the function

(F,X) = T(F'))
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maps continuously L*-space F x A into Banach space A.

PrOOF. Let m =0,1,... Let F(m) = (f{™ . f™) e F and A, € A be
such that lim,_, . F(™ = F© and lim, o 0(An,Xo) = 0. For each z in A, define:

(Tz)(t) = exp(—p(t)) - (1),
(Hu)(t) = exp(=p(t)) - F™ (8, 2(h(1)), Am)

on J.

For x = (z1,22,...2;) € A and ¢t > 0 we obtain

|(Hin2) (O] < (F"™ (¢, 2(A(t)), Amy) = F™ (2,60, Am) |1+
+ [ (2,60, Am)]) - exp(—p(t)) <

k k
(zzmmmwn |F (t,e,w) exp(—p(t) <

j=1j=1

IN

< (e -exp(p(h(t))) + c2 - exp(p(t))) - exp(—p(t)) < c1q + c2

with some constants c;, ¢, and therefore H,, maps A into X. Further, it can be
easily seen that T[A] = X and Hp,[A] C T[A].

We observe [2] that the operator L generated by the matrix [g - Kj;] is a
bounded positive linear operator with the spectral radius less than 1. For z =
(1, ,2k),y = (y1,.-- ,y%) in A and ¢t > 0 we have

exp(—p(1)) - |F™ (t, 2 (B(6), Am) = £ (8, y(R(1)), Am]| <

k
< (Z Kjj Sup exp(—p(t))|z;(t) — yj(t)l) -exp(—p(t)) - exp(p(h(t))) <
" k
<q- Z Kij - sup exp(—p(1)) - |z (t) = y; (1))

dp(Hpa, Hny) = (supexp(—p(1)) - |7 (b2 (h(6), Am) — £ (8, y(h(1)), ),

supexp(—p(1)) - [f7™ (2 (h(1)), Am) — F™ (8, y(h(E)), Am) ),

k
L(dg(Tz,Ty)) = (q Y Ky sup exp(—p(t)) - |z;(t) —y;(8)], - -

=1
k

TS sup exp(—p(t)) - [; () - yj(t)l)

=1
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and therefore dg(Hpz, Hpy) < L(dg(Tz, Ty)).
Let us fix x in A. Fort > 0,1 <i<kandn > 1 we get

11 (2 (h()), An) — £ (1, 2((E)), Mo)] < alt) - BO(Ans Ao))+
+1£M (8 2(h()), Ao) — £ (8 2(B(2)), Ao

hence

e exp(—p())| £ (t, 2(h(1)), An) — FL7(t,2(A(2)), Ao)] < €~ BE(An, X))+
+sup{exp(—p(ENF™ (8, u, do) — £ (t,u, Ao : (£, u) € J x R¥}

with some constant ¢, and it follows

lim sup exp(—p(t)|f\" (¢, 2(A(8)), An) — £ (£, 2(h(2)), Ao)| = 0.

n—oo t>0

Finally, ||dg(H,x, Hoz)|| = 0 as n — oc.

This proves that the theorem 1 and 2 is applicable to the mappings T,
H,,(m =0,1,...), and the proof is finished.

REFERENCES

[1] A. Bielecki, Une remarque sur la méthode de Banach-Cacciopoli-Tikhonow dans la théorie
des équations différentielles ordinaires, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom.
Phys. 4 (1956), 261-264.

[2] F. R. Gantmacher, The theory of matrices, [in Russian], Moscow 1966.

[3] K. Goebel, A coincidence theorem, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys.
16 (1968), 733-735.

[4] K. Iseki, A common fized point theorem, Rend. Sem. Mat. Univ. Padova 53 (1975), 13-14.

[5] M. A. Krasnoselskii, Two remarks on the method of successive approxzimations, Uspehi
Mat. Nauk 10 (1955), 123-127 [in Russian].

[6] M. A. Krasnoselskii, G. M. Vainikko, P. P. Zabreiko, Ja. B. Rutickii and V. Ja. Stecenko,
Approzimate solution of operator equations, Moscow 1969 [in Russian].

[7] C. Kuratowski, Topologie, vol. I, Warsaw 1952.

[8] D. Kurepa, Tableauz ramifiés d’ensembles. Espaces pseudodistanciés, C. R. 198 (1934),
1563-1565.
[9] W. A. J. Luxemburg, On the convergence of succesive approximations in the theory of
ordinary differential equations II, Indag. Math. 20 (1958), 540-546.
[10] M. G. Maia, Un’ Osservazione sulle contrazioni metriche, Ren. Sem. Mat. Univ. Padova
40 (1968), 139-143.
[11] B. Ray, On a fized point theorem in a space with two metric, The Math. Education 9 (173),
57 A-58A.
[12] B. E. Rhoades, A common fized point theorem, Rend. Sem. Mat. Univ. Padowa 56 (1977),
265-266.

[13] B. Rzepecki, A generalization of Banach’s contraction theorem, to appear in Bull. Acad.
Polon. Sci. Sér. Sci. Math. Astronom. Phys.



186

[14]
(15]

(16]
(17]

(18]

B. Rzepecki

B. Rzepecki, Oo some classes of differiantial equations, in preparation (Publ. Inst. Math.).

B. Rzepecki,Note of differential equation F(t,y(t), y(h(t)), ¥'(t)) = 0, to appear in Com-
ment. Math. Univ. Caroline.

B. Rzepecki, Ezistance and continuous dependence of solutions for some classes of non-
linear differential equations and Bielecki’s method of changing the norm, in preparation.
B. Rzepecki, Remarks on the Banach Fized Point Principle and its applications, in prepa-
ration.

S. P. Singh, On a fized point theorem in metric space, Rend. Math. Sem. Univ.Padova 43
(1970), 229-231.

Institute of Mathematics
A. Mickiewicz University
Matejki 48/49, Pozari, Poland

Osiedle Bohateréw II Wojny Swiatowej 43/13
61-385 Poznan, Poland



