ON FIXED POINT THEOREMS OF MAIA TYPE

Bogdan Rzepecki

1. In this note we present some variants of the following result of Maia [10]: Let X be a non-empty set endowed in with two metrics ρ , σ , and let f be a mapping of X into itself. Suppose that $\rho(x,y) \leq \sigma(x,y)$ in X, X is a complete space and f is continuous with respect to ρ , and $\sigma(fx, fy) \leq k \cdot \sigma(x, y)$ for all x, y in X, where $0 \leq k < 1$. Then, f has a unique fixed point in X.

This theorem (cf. also [18], [11], [4], [12], [17]) generalizes the Banach fixedpoint principle and is connected with Bielecki's method [1] of changing the norm in the theory of differential equations. Our results follow as a consequence of two metrics, of two transformations [3] and of the generalized metric space concept ([8], [9]).

2. Let $(E, \|\cdot\|)$ be a Banach space, let S be a normal cone in E (see e.g. [6]) and let \leq denote the partial order in E generated by the cone S. Suppose that X is a non-empty set and a function $d_E: X \times X \to S$ satisfying for arbitrary elements x, y, z in X the following conditions:

(A 1) $d_E(x, y) = \theta$ if and only if x = y (θ denotes the zero of the space E);

(A 2)
$$d_E(x, y) = d_E(y, x);$$

(A 3) $d_E(x,y) \preceq d_E(x,z) + d_E(z,y)$

Then, this function d_E is called the *generalized metric* in X.

Further, let us put $d^+(x, y) = ||d_E(x, y)||$ for x and y in X. If every d^+ -Cauchy sequence in X is d^+ -convergent (i.e., $\lim_{p,q\to\infty} d^+(x_p, x_q) = 0$ for a sequence (x_n) in X, implies the existence of an element x_0 in X such that $\lim_{n\to\infty} d^+(x_n, x_0) =$), then (X, d_E) is called [6] a generalized complete metric space.

Moreover, in this paper we shall use the notations of \mathcal{L}^* -space, the \mathcal{L}^* -product of \mathcal{L}^* -space and a continuous mapping of \mathcal{L}^* -space into \mathcal{L}^* -space (see e.g. [7]).

3. Let E, S and \leq be as above. In this section suppose we are given:

L – a bounded positive linear operator of E into itself with the spectral radius r(L) less than one (see e.g. [6]);

X, A - two non-empty sets;

 ρ_E, σ_E – two generalized metrics in X such that $\rho_E(x, y) \preceq C \cdot \sigma_E(x, y)$ for all x, y in X, where C is a positive constant;

T – a transformation from A to X such that $(T[A], \rho_E)$ s a generalized complete metric space¹.

Modifying the reasoning from [6, Th. II. 6. 2], we obtain the following result:

PROPOSITION 1. Let (X, ρ_E) be a generalized complete metric space, let $f: X \to X$ be a continuous mapping with respect to ρ^+ , and let $\sigma_E(fx, fy) \preceq L(\sigma_E(x, y))$ for all x, y in X. Then f has a unique fixed point ξ in X. Moreover, if $x_0 \in X$ and $x_n = fx_{n-1}$ for $n \geq 1$, then:

(i) $\lim_{n \to \infty} \|\rho_E(x_n, \xi)\| = 0$,

(ii) $\|\rho_E(x_m,\xi)\| \leq N \cdot C \cdot \|L^m u\|$ for all $m \geq 0$, where N is same constant and u is a solution of equation $u = \sigma_E(x_0, fx_0) + Lu$ in the space E (see [6, Th. I. 2. 2]).

Now, we shall prove

PROPOSITION 2. Let (X, ρ_E) be a generalized complete metric space, let $f_m: X \to X$ (m = 0, 1, ...) be continuous mappings with respect to ρ^+ , and let $\sigma_E(f_m x, f_m y) \preceq L(\sigma_E(x, y))$ for all x, y in X. Denote by $\xi_m(m = 0, 1, ...)$ a unique fixed point of f_m , and suppose that $\lim_{n\to\infty} \|\sigma_E(f_n x, f_0 x)\| = 0$ for every x in X. Then $\lim_{n\to\infty} \|\rho_E(\xi_n, \xi_0)\| = 0$.

PROOF. Consider the linear equation $u = \sigma_E(\xi_0, f_n\xi_0) + Lu$ (n = 1, 2, ...) with the unique solution u_n in E (see [6, Th. I. 2. 2]). By Proposition 1 we obtain $\|\rho_E(\xi_n, \xi_0)\| \leq N \cdot C \cdot \|u_n\|$ for $n \geq 1$, where N is constant.

Let $\varepsilon > 0$ by such that $r(L) + \varepsilon < 1$. Further, let us denote by $\|\cdot\|_{\varepsilon}$ the norm equivalent to $\|\cdot\|$ such that $\|L\|_{\varepsilon} \le \varepsilon + r(L)$ (see [6, p. 15]) ($\|L\|_{\varepsilon}$ is the norm of L generated by $\|\cdot\|_{\varepsilon}$). We have

 $\|u_n\|_{\varepsilon} \le \|\sigma_E(f_n\xi_0, f_0\xi_0)\|_{\varepsilon} + \|Lu_n\|_{\varepsilon} \le \|\sigma_E(f_n\xi_0, f_0\xi_0)\|_{\varepsilon} + (r(L) + \varepsilon)\|u_n\|_{\varepsilon}$

for $n \geq 1$. Since $\lim_{n\to\infty} \|\sigma_E(f_n\xi_0, f_0\xi_0)\|_{\varepsilon} = 0$, so $\lim_{n\to\infty} \|u_n\|_{\varepsilon} \leq (\varepsilon + r(L)) \cdot \lim_{n\to\infty} \|u_n\|_{\varepsilon}$, and consequently $\lim_{n\to\infty} \|\rho_E(\xi_n, \xi_0)\| = 0$.

THEOREM 1. Let $H: A \to X$ be a mapping such that $H[A] \subset T[A]$ and $\sigma_E(Hx, Hy) \preceq L(\sigma_E(Tx, Ty))$ for all x, y in A. Suppose that $\lim_{n\to\infty} \|\rho_E(Hx_n, Hx)\| = 0$ for every sequence (x_n) in A with $\lim_{n\to\infty} \|\rho_E(Tx_n, Tx)\| = 0$ Then:

(i) for every u in T[A] the set $H[T_{-1}u]$ contains only one element²;

(ii) there exists a unique element ξ in T[A] such that $H[T_{-1}\xi] = \xi$, and every sequence of successive approximations $u_{n+1} = H[T_{-1}u_n]$ (n = 1, 2, ...) is ρ^+ -convergent to ξ ;

 $^{{}^{1}}T[A]$ denotes the image of the set A by the transformation T

 $^{{}^{2}}T_{-1}u$ denotes the inverse image of u under T

- (iii) Hx = Tx for all x in $T_{-1}\xi$;
- (iv) if $Hx_i = Tx_i$ (i = 1, 2), then $Tx_1 = Tx_2$.

PROOF. Let us put $fz = H[T_{-1}z]$ for z in T[A]. Obviously, $fz \in T[A]$ for all z in T[A]. If $v_i \in fz$ (i = 1, 2), then $v_i = Hx_i$ with $Tx_i = z$. Hence $\theta \leq \sigma_E(v_1, v_2) \leq L(\sigma_E(Tx_1, Tx_2)) = \theta$ and $v_1 = v_2$. Therefore, $H[T_{-1}z]$ contains only one element.

It can be easily seen that the mapping f of T[A] into itself is continuous with respect to ρ^+ . Indeed, let $z_n \in T[A]$ for $n \ge 1$ and let $\lim_{n\to\infty} \|\rho_E(z_n, z_0)\| = 0$. Then there exist $x_m \in T_{-1}z_m$ (m = 0, 1, ...) such that $fz_m = Hx_m$. We have $\|\rho_E(Hx_n, Hx_0)\| = \|\rho_E(fz_n, fz_0)\|$ for $n \ge 1$, and consequently $\lim_{n\to\infty} \|\rho_E(fz_n, fz_0)\| = \lim_{n\to\infty} \|\rho_E(Hx_n, Hx_0)\| = 0$.

Further, it is easy to verify that $\sigma_E(fu, fv) \preceq L(\sigma_E(u, v))$ for all u, v in T[A]. Consequently, applying Proposition 1 the proof of (ii) is completed.

Obviously, (iii) holds and we omit the proof. Now, we prove (iv): Suppose that $Hx_i = Tx_i$ (i = 1, 2) and $Tx_i \neq Tx_2$. Then, $\sigma_E(Tx_1, Tx_2) \preceq L(\sigma_E(Tx_1, Tx_2))$ and $-\sigma_E(Tx_1, Tx_2) \notin S$. Therefore, by theorem II. 5. 4 from [6. p. 81], we obtain $r(L) \geq 1$. This contradiction completes our proof.

Using Theorem 1 and Proposition 2 we obtain the following

THEOREM 2. Let $H_m: A \to X$ (m = 0, 1, ...) be mappings with $H_m[A] \subset T[A]$ and $\sigma_E(H_m x, H_m y) \preceq L(\sigma_E(Tx, Ty))$ for all x, y in A. Further, suppose that $\lim_{n\to\infty} \|\rho_E(H_m x_n, H_m x)\| = 0$ for every sequence (x_n) in A with $\lim_{n\to\infty} \|\rho_E(Tx_n, Tx)\| = 0$.

Let $\xi_m(m = 0, 1, ...)$ be an element in T[A] such that $H_m[T_{-1}\xi_m] = \xi_m$. Assume that $\lim_{n\to\infty} \|\sigma_E(H_nx, H_0x)\| = 0$ for every x in A. Then $\lim_{n\to\infty} \|\rho_E(Ty_n, Ty_0)\| = 0$, where $y_m \in T_{-1}\xi_m$ for $m \ge 0$.

4. M. Krasnoselskii [5] has given the following version of well-known result of Schauder: If W is a non-empty bounded closed convex subset of a Banach space, f is a contraction and g is completely continuous on W with $fx + gy \in W$ for all x, y in W, then the equation fx + gx = x has a solution in W.

Now, we give a modification and some generalization of this Krasnoselskii's result.

Let $(E, \|\cdot\|)$ be a Banach space, let S be a cone in E with the partial order \leq such that if $\theta \leq x \leq y$ then $\|x\| \leq \|y\|$, and let L be as in Sec. 3. Further, let X be a vector space endowed with two generalized norms $\||\cdot||_i: X \to S$ (i = 1, 2) (see [6, p. 94]) such that $\||x\||_1 \leq C \cdot \||x\||_2$ for all x in X. Denote: ρ_E , σ_E -generalized metrics in X generated by $\||\cdot||_1$ and $\||\cdot||_2$, respectively.

THEOREM 3. Let K be a non-empty convex subset of X, let (K, ρ^+) be a complete space and let Q, F be transformations with the values in K defined on K and $K \times K$ respectively. Assume, moreover, that the following condition holds:

(i) $Q: (K, \rho^+) \to (K, \rho^+)$ is continuos, Q[K] is a conditionally compact set with respect to σ^+ and $|||F(u, y) - F(v, y)|||_2 \preceq |||Qu - Qv|||_2$ for all u, v, y in K;

B. Rzepecki

(ii) $|||F(x,y) - F(x,z)|||_2 \leq L(|||y-z|||_2)$ for all x, y, z in K;

(iii) for every x in K the function $y \mapsto F(x, y)$ of K into itself is continuous with respect to ρ^+ .

Then there exists a point x in K such that F(x, x) = x.

PROOF. Consider the mapping $y \mapsto F(x, y)$ (x is fix in K) of K into itself. By Proposition 1, there exists exactly one u_x in K such that $F(x, u_x) = u_x$. Now define an operator V as $x \mapsto u_x$.

This operator V maps continuously (K, ρ^+) into itself. Indeed, let (x_n) be a sequence in K such that $\rho^+(x_n, x_0) \to 0$ as $n \to \infty$. Let us put $f_m x = F(x_m, x)$ (m = 0, 1, ...) for x in K. The conditions (i) and (ii) imply that all the assumptions of the Proposition 2 are satisfied. Therefore, f_m has a unique fixed point ξ_m and $\rho^+(\xi_n, \xi_0) \to 0$ as $n \to \infty$, so we are done.

Now we are going to show that V[K] is conditionally compact with respect to ρ^+ : Let (x_n) be a sequence in K, and let $y_n = F(x_n, u_{x_n})$ for $n \ge 1$. Let $\varepsilon > 0$ be such that $r(L) + \varepsilon < 1$, let $\|\cdot\|_{\varepsilon}$ be the norm equivalent to $\|\cdot\|$ with $\|L\|_{\varepsilon} \le r(L) + \varepsilon$, and let us put $\sigma_{\varepsilon}^+(x, y) = \|\|\|x - y\|\|_2\|_{\varepsilon}$ for x, y in K. We have

$$\begin{aligned} \||||y_i - y_j||_2\|_{\varepsilon} &\leq \|L(|||y_i - y_j||_2) + \||Qx_i - Qx_j||_2\|_2\|_{\varepsilon} \leq \\ &\leq (r(L) + \varepsilon)\||||y_i - y_j||_2\|_{\varepsilon} + \|||Qx_i - Qx_j||_2\|_{\varepsilon}. \end{aligned}$$

hence

$$(1 - (r(L) + \varepsilon)) \cdot |||||y_i - y_j|||_2||_{\varepsilon} \le |||||Qx_i - Qx_j|||_2||_{\varepsilon}$$

for every $i, j \leq 1$. Suppose that (Qx_n) is a σ^+ -Cauchy sequence. Then, (Qx_n) is a σ_{ε}^+ -Cauchy sequence and consequently (y_n) is ρ^+ -convergent in K.

By application of the Schauder fixed point theorem, our proof is completed.

REMARK. The above theorem will remain true if (i) is repleaced by the following condition: Q is continuous and Q[K] is a conditionally compact set with respect to ρ^+ , and $|||F(u, y) - F(v, y)|||_2 \leq |||Qu - Qv|||_1$ for all u, v, y in K.

5. Let us remark applications and further results can be obtained if the concept of a generalized metric space in the Luxemburg sense [9] (not every two points have necessarily a finite distance) will be used. Cf. [13]–[17]. How, we give some application of Theorem 2 (in the cose of) to functional equations.

In this section, let $(\mathbf{R}^k, ||\cdot||)$ denote the k-dimensional Euclidean space, let $E = \mathbf{R}^k$, and let $S = \{(t_1, t_2, \ldots, t_k) \in \mathbf{R}^k : t_i \ge 0 \text{ for } 1 \le i \le k\}$. Then, $(x_1, x_2, \ldots, x_k) \preceq (y_1, y_2, \ldots, y_k)$ if we have $x_i \le y_i$ for every $1 \le i \le k$.

Suppose that $J = [0, \infty)$, $K_{ij} \ge 0$ (i, j = 1, 2, ..., k) are constants, and $p: J \to J$ is a locally bounded function. Let us denote by:

A – the set of continuous functions (x_1, x_2, \ldots, x_k) from J to \mathbf{R}^k such that $x_1(t) = 0(\exp(p(t)))$ $(1 \le i \le k)$ for every t in J;

X – the set of bounded continuous functions from J to \mathbf{R}^{k} ;

 Λ – the metric space with the metric δ ;

 \mathcal{F} – the set of continuous functions (f_1, f_2, \ldots, f_k) from $J \times \mathbf{R}^k \times \Lambda$ into \mathbf{R}^k satisfying the following conditions:

$$|f_i(t, t_1, \dots, t_k, \lambda) - f_i(t, s_1, s_2, \dots, s_k, \lambda)| \le \sum_{j=1}^k K_{ij} |t_j - s_j|$$

 $(1 \leq i \leq k)$ for every t in J, t_j , s_j in \mathbf{R}^k and λ in Λ ; $f_i(t, \theta, \lambda) = 0(\exp(p(t)))$ $(1 \leq i \leq k)$ for fixed λ in Λ and every t in J (θ denotes the zero of space \mathbf{R}^k).

The set A admits a norm $||| \cdot |||$ defined as $|||x||| = \sup\{\exp(-p(t)) \cdot |x(t)|: t \ge 0\}$. In X we define the generalized metric d_E as follows: for each $x = (x_1, \ldots, x_k)$ and $y = (y_1, \ldots, y_k)$ write $d_E(x, y) = (||x_1 - y_1||, ||x_2 - y_2||, \ldots, ||x_k - y_k||)$, where $||\cdot||$ denotes the usual supremum norm in the space of bounded continuous functions on J. Obviously, (X, d_E) is a generalized complete metric space.

We shall deal with the set \mathcal{F} as an \mathcal{L}^* -space endowed with convergence: $\lim_{n\to\infty}(f_1^{(n)}, f_2^{(n)}, \dots, f_k^{(n)}) = (f_1^{(0)}, f_2^{(0)}, \dots, f_k^{(0)})$ if an only if

$$\lim_{n \to \infty} \sup\{\exp(-p(t)) \cdot | f_i^{(n)}(t, u, \lambda) - f_i^{(0)}(t, u, \lambda)| \colon (t, u) \in J \times \mathbf{R}^k\} = 0$$

for every λ in Λ and evry $1 \leq i \leq k$. Moreover, $\mathcal{F} \times \Lambda$ be the \mathcal{L}^* -product of the \mathcal{L}^* -spaces \mathcal{F} , Λ .

Further, suppose that $h: J \to J$ is a continuous function, there exists a constant q > 0 such that $\exp(p(h(t))) \leq q \cdot \exp(p(t))$ for all t in J, and $[q \cdot K_{ij}]$ $(1 \leq i, j \leq k)$ is a non-zero matrix with

$1 - qK_{11}$	$-qK_{12}$		$-qK_{1i}$	
$-qK_{21}$	$1 - qK_{22}$	• • •	$-qK_{1i} \\ -qK_{2i} \\ \dots \dots \dots$	> 0
$-qK_{i1}$	$-qK_{i2}$	· · · · · ·	$1 - qK_{ii}$	

for every i = 1, 2, ..., k.

Under these conditions we have the following theorem:

For an arbitrary F in F and λ in Λ there exists a unique function $x_{(F'\lambda)}$ in A such that

$$x_{(F'\lambda)}(t) = F(t, x_{(F'\lambda)}(h(t)), \lambda)$$

for every $t \ge 0$. Moreover, if there exists functions α , β from J to J such that $\alpha(t) = 0(\exp(p(t)))$ for $t \ge 0$, $\beta(t) \to 0$ as $t \to 0_+$ and

$$|f_i(t, u, \lambda) - f_i(t, u, \mu)| \le \alpha(t) \cdot \beta(\delta(\lambda, \mu)) \quad (1 \le i \le k)$$

for all $(f_1, f_2, \ldots, f_k) \in \mathcal{F}, t \geq 0, u \in \mathbf{R}^k$ and λ, μ in Λ , then the function

$$(F,\lambda) \mapsto x_{(F'\lambda)}$$

B. Rzepecki

maps continuously \mathcal{L}^* -space $\mathcal{F} \times \Lambda$ into Banach space A.

PROOF. Let $m = 0, 1, \ldots$ Let $F^{(m)} = (f_1^{(m)}, \ldots, f_k^{(m)}) \in \mathcal{F}$ and $\lambda_m \in \Lambda$ be such that $\lim_{n\to\infty} F^{(n)} = F^{(0)}$ and $\lim_{n\to\infty} \delta(\lambda_n, \lambda_0) = 0$. For each x in A, define:

$$(Tx)(t) = \exp(-p(t)) \cdot x(t),$$

$$(H_m x)(t) = \exp(-p(t)) \cdot F^{(m)}(t, x(h(t)), \lambda_m)$$

on J.

For $x = (x_1, x_2, \dots, x_k) \in A$ and $t \ge 0$ we obtain

$$\begin{aligned} |(H_m x)(t)| &\leq (|F^{(m)}(t, x(h(t)), \lambda_{(m)}) - F^{(m)}(t, \theta, \lambda_m)| + \\ &+ |F^{(m)}(t, \theta, \lambda_m)|) \cdot \exp(-p(t)) \leq \\ &\leq \left(\sum_{j=1}^k \sum_{j=1}^k K_{ij} |x_j(h(t))| + |F^{(m)}(t, \theta, \lambda_m) \right) \cdot \exp(-p(t)) \leq \\ &\leq (c_1 \cdot \exp(p(h(t))) + c_2 \cdot \exp(p(t))) \cdot \exp(-p(t)) \leq c_1 q + c_2 \end{aligned}$$

with some constants c_1 , c_2 , and therefore H_m maps A into X. Further, it can be easily seen that T[A] = X and $H_m[A] \subset T[A]$.

We observe [2] that the operator L generated by the matrix $[q \cdot K_{ij}]$ is a bounded positive linear operator with the spectral radius less than 1. For $x = (x_1, \ldots, x_k), y = (y_1, \ldots, y_k)$ in A and $t \ge 0$ we have

and therefore $d_E(H_m x, H_m y) \preceq L(d_E(Tx, Ty))$.

Let us fix x in A. For $t \ge 0, 1 \le i \le k$ and $n \ge 1$ we get

$$\begin{aligned} |f_i^{(n)}(t, x(h(t)), \lambda_n) - f_i^{(0)}(t, x(h(t)), \lambda_0)| &\leq \alpha(t) \cdot \beta(\delta(\lambda_n, \lambda_0)) + \\ + |f_i^{(n)}(t, x(h(t)), \lambda_0) - f_i^{(0)}(t, x(h(t)), \lambda_0)| \end{aligned}$$

hence

$$\sup_{t \ge 0} \exp(-p(t)) |f_i^{(n)}(t, x(h(t)), \lambda_n) - f_i^{(0)}(t, x(h(t)), \lambda_0)| \le c \cdot \beta(\delta(\lambda_n, \lambda_0)) + \sup\{\exp(-p(t))|f_i^{(n)}(t, u, \lambda_0) - f_i^{(0)}(t, u, \lambda_0)|: (t, u) \in J \times \mathbf{R}^k\}$$

with some constant c, and it follows

$$\lim_{n \to \infty} \sup_{t \ge 0} \exp(-p(t)) |f_i^{(n)}(t, x(h(t)), \lambda_n) - f_i^{(0)}(t, x(h(t)), \lambda_0)| = 0.$$

Finally, $||d_E(H_n x, H_0 x)|| \to 0$ as $n \to \infty$.

This proves that the theorem 1 and 2 is applicable to the mappings T, $H_m(m = 0, 1, ...)$, and the proof is finished.

REFERENCES

- A. Bielecki, Une remarque sur la méthode de Banach-Cacciopoli-Tikhonow dans la théorie des équations différentielles ordinaires, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 4 (1956), 261-264.
- [2] F. R. Gantmacher, The theory of matrices, [in Russian], Moscow 1966.
- [3] K. Goebel, A coincidence theorem, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 16 (1968), 733-735.
- [4] K. Iseki, A common fixed point theorem, Rend. Sem. Mat. Univ. Padova 53 (1975), 13-14.
- [5] M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspehi Mat. Nauk 10 (1955), 123-127 [in Russian].
- [6] M. A. Krasnoselskii, G. M. Vainikko, P. P. Zabreiko, Ja. B. Rutickii and V. Ja. Stecenko, Approximate solution of operator equations, Moscow 1969 [in Russian].
- [7] C. Kuratowski, Topologie, vol. I, Warsaw 1952.
- [8] D. Kurepa, Tableaux ramifiés d'ensembles. Espaces pseudodistanciés, C. R. 198 (1934), 1563-1565.
- W. A. J. Luxemburg, On the convergence of successive approximations in the theory of ordinary differential equations II, Indag. Math. 20 (1958), 540-546.
- [10] M. G. Maia, Un' Osservazione sulle contrazioni metriche, Ren. Sem. Mat. Univ. Padova 40 (1968), 139-143.
- B. Ray, On a fixed point theorem in a space with two metric, The Math. Education 9 (173), 57 A-58A.
- [12] B. E. Rhoades, A common fixed point theorem, Rend. Sem. Mat. Univ. Padowa 56 (1977), 265-266.
- [13] B. Rzepecki, A generalization of Banach's contraction theorem, to appear in Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.

B. Rzepecki

- [14] B. Rzepecki, *Oo some classes of differiantial equations*, in preparation (Publ. Inst. Math.).
- [15] B. Rzepecki, Note of differential equation F(t, y(t), y(h(t)), y'(t)) = 0, to appear in Comment. Math. Univ. Caroline.
- [16] B. Rzepecki, Existance and continuous dependence of solutions for some classes of nonlinear differential equations and Bielecki's method of changing the norm, in preparation.
- [17] B. Rzepecki, Remarks on the Banach Fixed Point Principle and its applications, in preparation.
- [18] S. P. Singh, On a fixed point theorem in metric space, Rend. Math. Sem. Univ.Padova 43 (1970), 229-231.

Institute of Mathematics A. Mickiewicz University Matejki 48/49, Pozań, Poland

Osiedle Bohaterów II Wojny Swiatowej 43/13 $61{-}385$ Poznań, Poland

186