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ON FIXED POINT THEOREMS OF MAIA TYPE

Bogdan Rzepecki

1. In this note we present some variants of the following result of Maia [10]:
Let X be a non-empty set endowed in with two metrics �, �, and let f be a mapping
of X into itself. Suppose that �(x; y) � �(x; y) in X, X is a complete space and f

is continuous with respect to �, and �(fx; fy) � k � �(x; y) for all x, y in X, where
0 � k < 1. Then, f has a unique �xed point in X.

This theorem (cf. also [18], [11], [4], [12], [17]) generalizes the Banach �xed-
point principle and is connected with Bielecki's method [1] of changing the norm
in the theory of di�erential equations. Our results follow as a consequence of two
metrics, of two transformations [3] and of the generalized metric space concept ([8],
[9]).

2. Let (E; k � k) be a Banach space, let S be a normal cone in E (see e.g. [6])
and let � denote the partial order in E generated by the cone S. Suppose that X
is a non-empty set and a function dE :X �X ! S satisfying for arbitrary elements
x, y, z in X the following conditions:

(A 1) dE(x; y) = � if and only if x = y (� denotes the zero of the space E);

(A 2) dE(x; y) = dE(y; x);

(A 3) dE(x; y) � dE(x; z) + dE(z; y)

Then, this function dE is called the generalized metric in X .

Further, let us put d+(x; y) = kdE(x; y)k for x and y inX . If every d+-Cauchy
sequence in X is d+-convergent (i.e., limp;q!1 d+(xp; xq) = 0 for a sequence (xn)
in X , implies the existence of an element x0 in X such that limn!1 d+(xn; x0) =),
then (X; dE) is called [6] a generalized complete metric space.

Moreover, in this paper we shall use the notations of L�-space, the L�-product
of L�-spaces and a continuous mapping of L�-space into L�-space (see e.g. [7]).

3. Let E, S and � be as above. In this section suppose we are given:

L { a bounded positive linear operator of E into itself with the spectral radius
r(L) less than one (see e.g. [6]);
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X , A { two non-empty sets;

�E ; �E { two generalized metrics in X such that �E(x; y) � C � �E(x; y) for
all x, y in X , where C is a positive constant;

T { a transformation from A to X such that (T [A]; �E) s a generalized com-
plete metric space1.

Modifying the reasoning from [6, Th. II. 6. 2], we obtain the following result:

Proposition 1. Let (X; �E) be a generalized complete metric space, let
f :X ! X be a continuous mapping with respect to �+, and let �E(fx; fy) �
L(�E(x; y)) for all x, y in X. Then f has a unique �xed point � in X. Moreover,
if x0 2 X and xn = fxn�1 for n � 1, then:

(i) limn!1 k�E(xn; �)k = 0,

(ii) k�E(xm; �)k � N � C � kLmuk for all m � 0, where N is same constant
and u is a solution of equation u = �E(x0; fx0) +Lu in the space E (see [6, Th. I.
2. 2]).

Now, we shall prove

Proposition 2. Let (X; �E) be a generalized complete metric space, let
fm:X ! X (m = 0; 1; . . . ) be continuous mappings with respect to �+, and let
�E(fmx; fmy) � L(�E(x; y)) for all x, y in X. Denote by �m(m = 0; 1; . . . ) a
unique �xed point of fm, and suppose that limn!1 k�E(fnx; f0x)k = 0 for every x
in X. Then limn!1 k�E(�n; �0)k = 0.

Proof. Consider the linear equation u = �E(�0; fn�0) + Lu (n = 1; 2; . . . )
with the unique solution un in E (see [6, Th. I. 2. 2]). By Proposition 1 we obtain
k�E(�n; �0)k � N � C � kunk for n � 1, where N is constant.

Let " > 0 by such that r(L)+ " < 1. Further, let us denote by k � k" the norm
equivalent to k � k such that kLk" � "+ r(L) (see [6, p. 15]) (kLk" is the norm of
L generated by k � k"). We have

kunk" � k�E(fn�0; f0�0)k" + kLunk" � k�E(fn�0; f0�0)k" + (r(L) + ")kunk"

for n � 1. Since limn!1 k�E(fn�0; f0�0)k" = 0, so limn!1 kunk" � (" + r(L)) �
limn!1 kunk", and consequently lim k�E(�n; �0)k = 0.

Theorem 1. Let H :A ! X be a mapping such that H [A] � T [A] and
�E(Hx;Hy) � L(�E(Tx; Ty)) for all x, y in A. Suppose that limn!1 k�E(Hxn,
Hx)k = 0 for every sequence (xn) in A with limn!1 k�E(Txn; Tx)k = 0 Then:

(i) for every u in T [A] the set H [T�1u] contains only one element2;

(ii) there exists a unique element � in T [A] such that H [T�1�] = �, and
every sequence of successive approximations un+1 = H [T�1un] (n = 1; 2; . . . ) is
�+-convergent to �;

1T [A] denotes the image of the set A by the transformation T
2T�1u denotes the inverse image of u under T



On �xed point theorems of Maia type 181

(iii) Hx = Tx for all x in T�1�;

(iv) if Hxi = Txi (i = 1; 2), then Tx1 = Tx2.

Proof. Let us put fz = H [T�1z] for z in T [A]. Obviously, fz 2 T [A]
for all z in T [A]. If vi 2 fz (i = 1; 2), then vi = Hxi with Txi = z. Hence
� � �E(v1; v2) � L(�E(Tx1; Tx2)) = � and v1 = v2. Therefore, H [T�1z] contains
only one element.

It can be easily seen that the mapping f of T [A] into itself is continuous with
respect to �+. Indeed, let zn 2 T [A] for n � 1 and let limn!1 k�E(zn; z0)k = 0.
Then there exist xm 2 T�1zm (m = 0; 1; . . . ) such that fzm = Hxm. We have
k�E(Hxn; Hx0)k = k�E(fzn; fz0)k for n � 1, and consequently limn!1 k�E(fzn,
fz0)k = limn!1 k�E(Hxn; Hx0)k = 0.

Further, it is easy to verify that �E(fu; fv) � L(�E(u; v)) for all u, v in T [A].
Consequently, applying Proposition 1 the proof of (ii) is completed.

Obviously, (iii) holds and we omit the proof. Now, we prove (iv): Suppose
thatHxi = Txi (i = 1; 2) and Txi 6= Tx2. Then, �E(Tx1; Tx2) � L(�E(Tx1; Tx2))
and{�E(Tx1; Tx2) 62 S. Therefore, by theorem II. 5. 4 from [6. p. 81], we obtain
r(L) � 1. This contradiction completes our proof.

Using Theorem 1 and Proposition 2 we obtain the following

Theorem 2. Let Hm:A ! X (m = 0; 1; . . . ) be mappings with Hm[A] �
T [A] and �E(Hmx;Hmy) � L(�E(Tx; Ty)) for all x, y in A. Further, sup-
pose that limn!1 k�E(Hmxn; Hmx)k = 0 for every sequence (xn) in A with
limn!1 k�E(Txn; Tx)k = 0.

Let �m(m = 0; 1; . . . ) be an element in T [A] such that Hm[T�1�m] = �m. As-
sume that limn!1 k�E(Hnx;H0x)k = 0 for every x in A. Then limn!1 k�E(Tyn,
Ty0)k = 0, where ym 2 T�1�m for m � 0.

4. M. Krasnoselskii [5] has given the following version of well-known result
of Schauder: If W is a non-empty bounded closed convex subset of a Banach space,
f is a contraction and g is completely continuous on W with fx+ gy 2 W for all
x, y in W , then the equation fx+ gx = x has a solution in W .

Now, we give a modi�cation and some generalization of this Krasnoselskii's
result.

Let (E; k �k) be a Banach space, let S be a cone in E with the partial order �
such that if � � x � y then kxk � kyk, and let L be as in Sec. 3. Further, let X be
a vector space endowed with two generalized norms jjj � jjji:X ! S (i = 1; 2) (see
[6, p. 94]) such that jjjxjjj1 � C � jjjxjjj2 for all x in X . Denote: �E , �E{generalized
metrics in X generated by jjj � jjj1 and jjj � jjj2, respectively.

Theorem 3. Let K be a non-empty convex subset of X, let (K; �+) be a
complete space and let Q, F be transformations with the values in K de�ned on K

and K �K respectively. Assume, moreover, that the following condition holds:

(i) Q: (K; �+) ! (K; �+) is continuos, Q[K] is a conditionally compact set
with respect to �+ and jjjF (u; y)� F (v; y)jjj2 � jjjQu�Qvjjj2 for all u, v, y in K;
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(ii) jjjF (x; y)� F (x; z)jjj2 � L(jjjy � zjjj2) for all x, y, z in K;

(iii) for every x in K the function y 7! F (x; y) of K into itself is continuous
with respect to �+.

Then there exists a point x in K such that F (x; x) = x.

Proof. Consider the mapping y 7! F (x; y) (x is �x in K) of K into itself.
By Proposition 1, there exists exactly one ux in K such that F (x; ux) = ux. Now
de�ne an operator V as x 7! ux.

This operator V maps continuously (K; �+) into itself. Indeed, let (xn) be a
sequence in K such that �+(xn; x0) ! 0 as n ! 1. Let us put fmx = F (xm; x)
(m = 0; 1; . . . ) for x inK. The conditions (i) and (ii) imply that all the assumptions
of the Proposition 2 are satis�ed. Therefore, fm has a unique �xed point �m and
�+(�n; �0)! 0 as n!1, so we are done.

Now we are going to show that V [K] is conditionally compact with respect to
�+: Let (xn) be a sequence in K, and let yn = F (xn; uxn) for n � 1. Let " > 0 be
such that r(L)+" < 1, let k�k" be the norm equivalent to k�k with kLk" � r(L)+",
and let us put �+" (x; y) = kjjjx� yjjj2k" for x, y in K. We have

kjjjyi � yj jjj2k" � kL(jjjyi � yj jjj2) + jjjQxi �Qxj jjj2k2k" �

� (r(L) + ")kjjjyi � yj jjj2k" + kjjjQxi �Qxj jjj2k":

hence
(1� (r(L) + ")) � kjjjyi � yj jjj2k" � kjjjQxi �Qxj jjj2k"

for every i, j � 1. Suppose that (Qxn) is a �+-Cauchy sequence. Then, (Qxn) is
a �+" -Cauchy sequence and consequently (yn) is �

+-convergent in K.

By application of the Schauder �xed point theorem, our proof is completed.

Remark. The above theorem will remain true if (i) is repleaced by the
following condition: Q is continuous and Q[K] is a conditionally compact set with
respect to �+, and jjjF (u; y)� F (v; y)jjj2 � jjjQu�Qvjjj1 for all u, v, y in K.

5. Let us remark applications and further results can be obtained if the
concept of a generalized metric space in the Luxemburg sense [9] (not every two
points have necessarily a �nite distance) will be used. Cf. [13]{[17]. How, we give
some application of Theorem 2 (in the cose of) to functional equations.

In this section, let (Rk; k � k) denote the k-dimensional Euclidean space,
let E = R

k, and let S = f(t1; t2 . . . ; tk) 2 R
k: ti � 0 for 1 � i � kg. Then,

(x1; x2; . . . ; xk) � (y1; y2; . . . ; yk) if we have xi � yi for every 1 � i � k.

Suppose that J = [0;1), Kij � 0 (i; j = 1; 2; . . . ; k) are constants, and
p: J ! J is a locally bounded function. Let us denote by:

A { the set of continuous functions (x1; x2; . . . ; xk) from J to Rk such that
x1(t) = 0(exp(p(t))) (1 � i � k) for every t in J ;

X { the set of bounded continuous functions from J to Rk ;

� { the metric space with the metric Æ;
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F { the set of continuous functions (f1; f2; . . . ; fk) from J �Rk �� into Rk

satisfying the following conditions:

j fi(t; t1; . . . ; tk; �) � fi(t; s1; s2; . . . ; sk; �) j�

kX
j=1

Kij j tj � sj j

(1 � i � k) for every t in J , tj , sj in Rk and � in �; fi(t; �; �) = 0(exp(p(t)))
(1 � i � k) for �xed � in � and every t in J (� denotes the zero of space Rk).

The set A admits a norm jjj � jjj de�ned as jjjxjjj = supfexp(�p(t)) � jx(t)j: t �
0g. In X we de�ne the generalized metric dE as follows: for each x = (x1; . . . ; xk)
and y = (y1; . . . ; yk) write dE(x; y) = (kx1 � y1k; kx2 � y2k; . . . ; kxk � ykk), where
k�k denotes the usual supremum norm in the space of bounded continuous functions
on J . Obviously, (X; dE) is a generalized complete metric space.

We shall deal with the set F as an L�-space endowed with convergence:

limn!1(f
(n)
1 ; f

(n)
2 ; . . . ; f

(n)
k = (f

(0)
1 ; f

(0)
2 ; . . . ; f

(0)
k ) if an only if

lim
n!1

supfexp(�p(t)) � jf
(n)
i (t; u; �)� f

(0)
i (t; u; �)j: (t; u) 2 J �Rkg = 0

for every � in � and evry 1 � i � k. Moreover, F � � be the L�-product of the
L�-spaces F , �.

Further, suppose that h: J ! J is a continuous function, there exists a con-
stant q > 0 such that exp(p(h(t))) � q � exp(p(t)) for all t in J , and [q � Kij ]
(1 � i; j � k) is a non-zero matrix with

�������

1� qK11 �qK12 � � � �qK1i

�qK21 1� qK22 � � � �qK2i

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

�qKi1 �qKi2 � � � 1� qKii

�������
> 0

for every i = 1; 2; . . . ; k.

Under these conditions we have the following theorem:

For an arbitary F in F and � in � there exists a unique function x(F 0�) in
A such that

x(F 0�)(t) = F (t; x(F 0�)(h(t)); �)

for every t � 0. Moreover, if there exists functions �, � from J to J such that
�(t) = 0(exp(p(t))) for t � 0, �(t)! 0 as t! 0+ and

jfi(t; u; �)� fi(t; u; �)j � �(t) � �(Æ(�; �)) (1 � i � k)

for all (f1; f2; . . . ; fk) 2 F , t � 0, u 2 Rk and �, � in �, then the function

(F; �) 7! x(F 0�)
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maps continuously L�-space F � � into Banach space A.

Proof. Let m = 0; 1; . . . Let F (m) = (f
(m)
1 ; . . . ; f

(m)
k ) 2 F and �m 2 � be

such that limn!1 F (n) = F (0) and limn!1 Æ(�n; �0) = 0. For each x in A, de�ne:

(Tx)(t) = exp(�p(t)) � x(t);

(Hmx)(t) = exp(�p(t)) � F (m)(t; x(h(t)); �m)

on J .

For x = (x1; x2; . . .xk) 2 A and t � 0 we obtain

j(Hmx)(t)j � (jF (m)(t; x(h(t)); �(m))� F (m)(t; �; �m)j+

+ jF (m)(t; �; �m)j) � exp(�p(t)) �

�

0
@

kX
j=1

kX
j=1

Kij jxj(h(t))j + jF (m)(t; �; �m)

1
A � exp(�p(t) �

� (c1 � exp(p(h(t))) + c2 � exp(p(t))) � exp(�p(t)) � c1q + c2

with some constants c1, c2, and therefore Hm maps A into X . Further, it can be
easily seen that T [A] = X and Hm[A] � T [A].

We observe [2] that the operator L generated by the matrix [q � Kij ] is a
bounded positive linear operator with the spectral radius less than 1. For x =
(x1; . . . ; xk), y = (y1; . . . ; yk) in A and t � 0 we have

exp(�p(t)) � jf
(m)
i (t; x(h(t)); �m)� f

(m)
i (t; y(h(t)); �mj �

�

0
@

kX
j=1

Kij � sup
t�0

exp(�p(t))jxj(t)� yj(t)j

1
A � exp(�p(t)) � exp(p(h(t))) �

� q �

kX
j=1

Kij � sup
t�0

exp(�p(t)) � jxj(t)� yj(t)j;

dE(Hmx;Hmy) = (sup
t�0

exp(�p(t)) � jf
(m)
1 (t; x(h(t)); �m)� f

(m)
1 (t; y(h(t)); �m)j;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

sup
t�0

exp(�p(t)) � jf
(m)
k (t; x(h(t)); �m)� f

(m)
k (t; y(h(t)); �m)j);

L(dE(Tx; Ty)) =

0
@q �

kX
j=1

K1j � sup
t�0

exp(�p(t)) � jxj(t)� yj(t)j; . . .

. . . ; q �

kX
j=1

kkj � sup
t�0

exp(�p(t)) � jxj(t)� yj(t)j

1
A
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and therefore dE(Hmx;Hmy) � L(dE(Tx; Ty)).

Let us �x x in A. For t � 0, 1 � i � k and n � 1 we get

jf
(n)
i (t; x(h(t)); �n)� f

(0)
i (t; x(h(t)); �0)j � �(t) � �(Æ(�n; �0))+

+jf
(n)
i (t; x(h(t)); �0)� f

(0)
i (t; x(h(t)); �0)j

hence

sup
t�0

exp(�p(t))jf
(n)
i (t; x(h(t)); �n)� f

(0)
i (t; x(h(t)); �0)j � c � �(Æ(�n; �0))+

+ supfexp(�p(t))jf
(n)
i (t; u; �0)� f

(0)
i (t; u; �0)j: (t; u) 2 J �Rkg

with some constant c, and it follows

lim
n!1

sup
t�0

exp(�p(t))jf
(n)
i (t; x(h(t)); �n)� f

(0)
i (t; x(h(t)); �0)j = 0:

Finally, kdE(Hnx;H0x)k ! 0 as n!1.

This proves that the theorem 1 and 2 is applicable to the mappings T ,
Hm(m = 0; 1; . . . ), and the proof is �nished.
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