PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 28 (42), 1980, pp. 167-177

A CONTRIBUTION TO BEST APPROXIMATION IN THE L_2 -NORM

S.R.H. Rizvi and O.P. Juneja

1. Let E denote a closed and bounded Jordan region in the complex plane with transfinite diameter d > 0. Let w(z) be a positive continuous function on E and let $\mathcal{H}_2(E)$ denote the Hilbert space of functions analytic in D with inner product.

(1.1)
$$(f,g) = \iint_E w(z)f(z)\overline{g(z)}dxdy, \quad f,g \in \mathcal{H}_2(E)$$

so that for any $f \in \mathcal{H}_2(E)$, we have

(1.2)
$$||f|| = \left[\iint_{E} w(z)|f(z)|^2 dx dy\right]^{1/2} < \infty$$

If $\mathcal{A}(E) \equiv \{p_{n-1}(z)\}_{n=1}^{\infty}$, $p_n(z)$ being a polynomial of degree *n*, is a complete orthonormal sequence in $\mathcal{H}_2(E)^1$, set, for any $f \in \mathcal{H}_2(E)$ and for n = 0, 1, 2, ...

(1.3)
$$\Delta_n(f) \equiv \Delta_n(f; E) =$$
$$= \inf_{\{ci\}} \left[\iint_E w(z) |f(z) - c_0 - c_1 p_1(z) - \dots - c_n p_n(z)|^2 dx dy \right]^{1/2}$$
$$(1.4) \qquad a_n \equiv a_n(f; E) = \iint_E w(z) f(z) \overline{p_n(z)} dx dy.$$

 $\Delta_n(f; E)$ is called the minimum error of f in L^2 -norm with respect to the system $\mathcal{A}(E)$ and a_n is called the nth Fourier coefficient of f with respect to the

¹Such a sequence of polynomials always exists in $\mathcal{H}_2(E)$ as can be easily seen with the help of Faber polynomials ([2] and [8]).

system $\mathcal{A}(E)$. It is wel known (see e.g. [3] that if U denotes the unit disc and $|w(z)| \equiv 1$, then $\mathcal{A}(U) \equiv \left\{\sqrt{\frac{n}{\pi}}z^{n-1}\right\}_{n=1}^{\infty}$ forms a complete orthonormal sequence in $\mathcal{H}_2(U)$ and that if $f(z) = \sum_{n=0}^{\infty} b_n z^n (|z| < 1)$ is in $\mathcal{H}_2(t)$ then

(1.5)
$$b_n = \sqrt{\frac{n+1}{\pi}} a_n(f; U).$$

Hence it follows from (1.5) that if f can be extended to an entire function of order ρ , lower order λ and type T then in all the results that give ρ , λ , T in terms of the coefficients b_n 's (see [1], [4], [5] etc.), one can replace b_n by $a_n(f; U)$. In fact, much more than this can be said. Authors have recently shown [7] that if $f \in \mathcal{H}_2(E)$, the Fourier series $\sum_{k=0}^{\infty} a_k p_k(z)$ converges uniformly to f(z) on E and f can be extended to an entire function, if and only if,

(1.6)
$$\lim |a_n(f;E)|^{1/n} = 0.$$

Further, if f is of order $\rho(0 < \rho < \infty)$, type T and lower order λ then

(1.7)
$$\rho = \lim_{n \to \infty} \sup \frac{n \log n}{\log |a_n(f; E)|^{-1}};$$

(1.8)
$$Td^{\rho} = \lim_{n \to \infty} \sup(n/e_{\rho}) |a_n(f;E)|^{\rho/n};$$

(1.9)
$$\lambda = \sup_{\{n_k\}} \liminf_{k \to \infty} \frac{n_k \log n_{k-1}}{\log |a_{n_k}(f; E)|^{-1}};$$

where supremum in (1.9) is taken over all increasing sequences $\{n_k\}$ of positive integers.

Attempts have also been made to connect the minimum error $\Delta(f; U)$ with the growth of the entire function f. Thus, for $w(z) \equiv 1$, Reedy [6] has obtained relations essentially involving $\Delta_n(f; U)$ and the order and the type of entire function f. The aim of the present paper is to generalize the results of Reddy to any bounded and closed Jordan region E and for any weight function w(z), positive and continuous on E. We also obtain relations involving $\Delta_n(f; E)$ and the lower order of f the analogues of which for the unit disc U have not been obtained by Reddy. We shall assume troughout that E is a bounded and closed Jordan region with transfinite diameter d > 0 and that for $f \in \mathcal{H}_2(E)$, $\Delta_n(f)$ and a_n are given by (1.3) and (1.4) respectively.

2. We first prove few lemmas which will be required in the sequel.

LEMMA 1: Let $f \in \mathcal{H}_2(E)$, then

(2.1)
$$\Delta_n(f) = \left[\sum_{n=1}^{\infty} |a_k|_2\right]^{1/2}, \quad n = 1, 2, 3, \dots$$

PROOF. By (1.3), we have

$$\Delta_n(f) \le \left[\iint_E w(z) \left| f(z) - \sum_{k=0}^n a_k p_k(z) \right|^2 dx dy \right]^{1/2}.$$

Since $\sum_{k=0}^{\infty} a_k p_k(z)$ converges to f(z) on E, we get,

(2.2)
$$\Delta_n(f) \leq \left[\iint_E w(z) \left|\sum_{n+1}^\infty a_k p_k(z)\right|^2 dx dy\right]^{1/2} \\= \left[\sum_{n+1}^\infty |a_k|_2\right]^{1/2}.$$

Again as for any (n + 1) complex numbers $\{a_o', a_1', \dots, a_n'\}$

$$\iint_{E} w(z) |f(z) - a_{0}' p_{0}(z) - a_{1}' p_{1}(z) - \dots - a_{n}' p_{n}(z)|^{2} dx dy$$

$$= \iint_{E} \left| \sum_{k=0}^{n} (a_{k} - a_{k}') p(z) + \sum_{k=n+1}^{\infty} a_{k} p_{k}(z) \right|^{2} dx dy$$

$$= \sum_{k=0}^{n} |a_{k} - a_{k}'|^{2} + \sum_{k=n+1}^{\infty} |a_{k}|^{2}$$

$$\ge \sum_{k=n+1}^{\infty} |a_{k}|^{2}.$$

Since this is true for any (n + 1) complex numbers a_0', a_1', \ldots, a_n' , we have

(2.3)
$$[\Delta_n(f)]^2 \ge \sum_{n+1}^{\infty} |a_k|^2.$$

Combining (2.2) and (2.3) we get (2.1).

LEMMA 2 [9]: Let $w = \varphi(z)$ be the function mapping the complement of Eonto |w| > 1 such that $\varphi(\infty) = \infty$ and $\varphi'(\infty) > 0$ and let $E_r = \{z: |\varphi(z)| = r\}$. Let f be an entire function of order $\rho(0 < \rho < \infty)$, lower order λ , type T and let

(2.4)
$$\overline{M}(r) = \max_{z \in E_r} |f(z)|$$

then

(2.5)
$$\rho = \lim_{r \to \infty} \sup_{i \to \infty} \frac{\log \log \overline{M}(r)}{\log r}$$

S.R.H. Rizvi and O.P. Juneja

(2.6)
$$d^{\rho}T = \limsup_{r \to \infty} \frac{\log M(r)}{r^{\rho}}$$

LEMMA 3: Let f be an entire function and $\overline{M}(r)$ be given by (2.4), then for any $\varepsilon > 0$

(2.7)
$$\Delta_n(f) \le A \frac{\overline{M}(r)}{r^n} e^{n\varepsilon}$$

for $r \ge r_0(\varepsilon)$, and $n \ge n_0(\varepsilon)$, where A is a constant independent of n and r.

PROOF. We known [9] that there exist polynomials $\{g_n(z)\}_{n=1}^{\infty}$ of respective degree less than or equal to n, such that for all $z \in E$

(2.8)
$$f(z) - g_n(z) \le K \frac{\overline{M}(r)}{r^n} e^{n\varepsilon}$$

for $n \ge n_0(\varepsilon, E)$ and $r \ge r_0(\varepsilon)$ and where K is a constant independent of n and depends only on ε and E.

Now as each $g_n(z)$ can be written as a linear combination of $\{p_k(z)\}_{k=0}^n$, it follows that

$$[\Delta_n(f)]^2 \le \iint_E w(z)|f(z) - g_n(z)|^2 dx dy.$$

Using (2.8) we get

$$\Delta_n(f) \le A \frac{\overline{M}(r)}{r^n} e^{n\varepsilon}$$

where A is a independent of n and r.

3. In this section we give necessary and sufficient conditions, in terms of $\Delta_n(f)$, for an entire function to be of order $\rho(0 < \rho < \infty)$ and Type *T*. First we have

THEOREM 1. Let $f \in \mathcal{H}_2(E)$. Then f can be extended to an entire function if and only if,

(3.1)
$$\lim_{n \to \infty} \Delta_n(f)^{1/n} = 0.$$

PROOF. Suppose f can be extended to an entire function. Then, by (1.6), we have

$$\lim_{n \to \infty} |a_n|^{1/n} = 0;$$

so that for any ε satisfying $0 < \varepsilon < 1$, there exists an $n_0 = n_0(\varepsilon)$ such that

$$|a_n| < \varepsilon^n$$
 for $n \ge n_0$.

Using (2.1), we get

$$\Delta_n(f) \le \frac{\varepsilon^n}{(1-\varepsilon^2)^{1/2}}.$$

 So

$$\lim_{n \to \infty} \sup \Delta_n(f)^{1/n} \le \varepsilon$$

i.e.

$$\lim_{k \to \infty} \sup \Delta_n(f)^{1/n} = 0.$$

Conversely, if $\lim_{n\to\infty} \Delta_n(f)^{1/n} = 0$, then as (2.1) gives

$$\Delta_n(f) > |a_{n+1}|$$

for every n, we get

$$\lim_{n \to \infty} |a_n|^{1/n} = 0.$$

Hence (1.6) yields that f is entire.

THEOREM 2. Let $f \in \mathcal{H}_2(E)$; then f can be extended to an entire function of finite order ρ , if and only if,

(3.2)
$$\mu \equiv \lim_{n \to \infty} \sup \frac{n \log n}{\log \Delta_n(f)^{-1}} < \infty.$$

Further $\mu = \rho$ also holds.

PROOF. Suppose first that (3.2) holds. Let ε be any positive number, then there exists $n_0 = n_0(\varepsilon)$ such that

$$\frac{n\log n}{\log \Delta_n(f)^{-1}} < \mu + \varepsilon \text{ for } n \ge n_0,$$

or

$$\Delta_n(f) < n^{-n/\mu+\varepsilon}$$
 for $n \ge n_0$,

which gives $\lim_{n\to\infty} \Delta_n(f)^{1/n} = 0.$

So, in view of Theorem 1, f can be extended to an entire function. Let its order be $\rho.$ Since, by (2.1)

$$(3.3)\qquad \qquad \Delta_n(f) > |a_{n+1}|$$

for every n, (3.3) gives

$$\lim_{n \to \infty} \sup \frac{n \log n}{\log \Delta_n(f)^{-1}} \ge \lim_{n \to \infty} \sup \frac{n \log n}{\log |a_n|^{-1}}.$$

So, using (1.7) we get

$$\rho \leq \lim_{n \to \infty} \sup \frac{n \log n}{\log \Delta_n(f)^{-1}}$$

i.e.

$$(3.4) \qquad \qquad \rho \le \mu$$

which shows that f is of finite order.

Conversely, suppose that f is an entire function of finite order ρ . Then (1.7) gives that, for any $\varepsilon > 0$ there exists $n_0(\varepsilon)$ such that

$$|a_n| \leq n^{-n/\rho+\varepsilon}$$
 for $n \geq n_0$.

Using (2.1) we get

$$[\Delta_n(f)]^2 \le \sum_{k=n+1}^{\infty} k^{-2k/\rho+\varepsilon} \text{ for } n \ge n_0$$

or

$$[\Delta_n(f)]^2 \le (n+1)^{-\frac{2(n+1)}{\rho+\varepsilon}} [1+o(1)] \text{ as } n \to \infty.$$

i.e.

$$\lim_{n \to \infty} \sup \frac{n \log n}{\log \Delta_n(f)^{-1}} \le (\rho + \varepsilon)$$

As this is true for every $\varepsilon > 0$, we get

which shows that (3.2) holds.

Combining (3.4) and (3.5) we also get $\mu = \rho$.

THEOREM 3. Let $f \in \mathcal{H}_2(E)$ and v defined by

(3.6)
$$\lim_{n \to \infty} \sup n |\Delta_n(f)|^{\rho/n} = v \quad (0 < \rho < \infty)$$

satisfies $0 < v < \infty$). Then f can be extended to an entire function of order ρ and type T, if and only if

$$v = (e\rho T)d^{\rho},$$

where d is the transfinite diameter of E.

PROOF. Suppose $v = (e\rho T)d^{\rho}$ and $0 < v < \infty$. Then (3.6) gives easily

$$\lim_{n \to \infty} \sup \frac{n \log n}{\log \Delta_n(f)^{-1}} = \rho$$

So, Theorem 2 gives that f can be extended to an entire function of order ρ . Now, we shall show that its type is $v/(e\rho d^{\rho})$.

Let f be of type T. By (2.6), we have, for any $\varepsilon > 0$, there exists $r_0 = r_0(\varepsilon)$ such that

(3.7)
$$\log \overline{M}(r) < (T' + \varepsilon)r^{\rho} \text{ for } r \ge r_0,$$

where

$$T' = T d^{\rho}$$

Using (2.7) and (3.7), we get

$$\log \Delta_n(f) \ge \log A + n\varepsilon - n\log r + (T' + \varepsilon)r^{\rho}$$

for $n \ge n_0$ and $r \ge r_0$.

Chose a sequence $r_n \to \infty$ as

$$r_n = \left[\frac{n}{\rho(T'+\varepsilon)}\right]^{1/\rho},$$

then for large n, we have

$$\log \Delta_n(f) \le \log A + n\varepsilon - \frac{n}{\rho} [\log n - \log(T' + \varepsilon)\rho] + \frac{n}{\rho}$$

or,

$$n\Delta_n(f)^{\rho/n} \le e\rho(T'+\varepsilon)e^{\rho\varepsilon} + o(1).$$

Hence

$$\lim_{n\to\infty}\sup n\Delta_n(f)^{\rho/n}\leq e\rho(T'+\varepsilon)e^{\rho\varepsilon} \text{ as } n\to\infty$$

as this true for every $\varepsilon > 0$ so we get

$$v \equiv \lim_{n \to \infty} \sup n\Delta_n(f)^{\rho/n} \le e\rho T' = e\rho T d^{\rho}.$$

i.e.,

(3.8)
$$T \ge v/(e\rho d^{\rho}).$$

For reverse inequality, we obverse that, since

$$\Delta_n(f) \ge |a_{a+1}|$$
 for all n ,

 \mathbf{SO}

$$\limsup_{n \to \infty} n |a_n|^{\rho/n} \le \limsup_{n \to \infty} n \Delta_n(f)^{\rho/n}.$$

Using (1.8) we get

$$e\rho T d^{\rho} \leq \limsup_{n \to \infty} n\Delta_n(f)^{\rho/n} = v$$

i. e.,

(3.9)
$$T \le v/(e\rho d^{\rho}).$$

Combing (3.8) and (3.9) we get $e\rho d^{\rho}T = v$.

This proves the theorem.

4. We now obtain relations involving $\Delta_n(f)$ and the lower order of f. We thus have

THEOREM 4. Let $f \in \mathcal{H}_2(E)$. Then f can be extended to an entire function of finite lower order λ , and only if,

$$\lambda = \sup_{\{n_k\}} \liminf_{n \to \infty} \frac{n_k \log n_{k-1}}{\log \Delta_{n_k}(f)^{-1}} < \infty$$

where supremum is taken over all increasing sequences $\{n_k\}$ of positive integers.

PROOF. Suppose f can be extended to an entire function of finite lower order λ . We show that λ satisfies (4.1). Let $\{n_k\}$ be an increasing sequence of positive integers. Since (2.1) gives

$$\Delta_{n_k}(f) \ge |a_{n_k+1}|$$

for every k, we get

$$\liminf_{k \to \infty} \frac{n_k \log n_{k-1}}{\log \Delta_{n_k}(f)^{-1}} \ge \liminf_{k \to \infty} \frac{n_k \log n_{k-1}}{\log |a_{n_k}|^{-1}}.$$

Hence

$$\sup_{\{n_k\}} \liminf_{k \to \infty} \frac{n_k \log n_{k-1}}{\log \Delta_{n_k}(f)^{-1}} \ge \sup_{\{n_k\}} \liminf_{k \to \infty} \frac{n_k \log n_{k-1}}{\log |a_{n_k}|^{-1}}$$

Using (1.9) we get

$$\lambda \le \sup_{\{n_k\}} \liminf_{k \to \infty} \frac{n_k \log n_{k-1}}{\log \Delta_{n_k}(f)^{-1}}$$

,

Now for reverse inequality we proceed as follows. For any increasing sequence $\{n_k\}$ of positive integers define

(4.3)
$$\alpha \equiv \alpha(\{n_k\}) = \liminf_{k \to \infty} \frac{n_k \log n_{k-1}}{\log \Delta_{n_k}(f)^{-1}}.$$

Obviously $0 \le \alpha \le \infty$. Consider first the case when $0 < \alpha < \infty$. Let $\varepsilon > 0$ be such that $0 < \varepsilon < \alpha$, then, by (4.3), there exists $k_0 = k_0(\varepsilon)$ such that

$$\frac{n_k \log n_{k-1}}{\log \Delta_{n_k}(f)^{-1}} > \alpha - \varepsilon \text{ for } k \ge k_0.$$

Or

(4.4)
$$\Delta_{n_k}(f) \ge n_{k-1}^{-n_k/(\alpha-\varepsilon)} \text{ for } k \ge k_0$$

Using (2.7) and (4.4), we get, for $r \ge r_0$ and $k \ge k_0$,

$$\log A + \log \overline{M}(r) > -\frac{n_k}{\alpha - \varepsilon} \log n_{k-1} + n_k \log r - n_k \varepsilon.$$

Define a sequence $r_k \to \infty$ as

(4.5)
$$r_k = e^{1+\varepsilon} n_{k-1}^{1/\alpha-\varepsilon}.$$

Then, if k is large and $r_k \leq r \leq r_{k+1}$,

$$\log A + \log \overline{M}(r) > -\frac{n_k}{\alpha - \varepsilon} \log n_{k-1} + n_k \log r_k - n_k \varepsilon$$

Or,

$$\log A + \log \overline{M}(r) \ge \left(\frac{r_{n_k+1}}{e^{1+\varepsilon}}\right)^{\alpha-\varepsilon}$$

i.e.,

$$\log A + \log \overline{M}(r) \ge \left(\frac{r}{e^{1+\varepsilon}}\right)^{\alpha-\varepsilon}.$$

Hence

$$\lambda \equiv \liminf_{r \to \infty} \frac{\log \log \overline{M}(r)}{\log r} \ge \alpha - \varepsilon.$$

Since ε is arbitrary so we get $\lambda \ge \alpha$; which holds good in case $\alpha = 0$. Moreover, when $\alpha = \infty$, λ can not be finite. Hence

$$\lambda \ge \liminf_{k \to \infty} \frac{n_k \log n_{k-1}}{\log \Delta_{n_k}(f)^{-1}}.$$

Since, this is true for any increasing $\{n_k\}$ of positive integers, we get

(4.6)
$$\lambda \ge \sup_{\{n_k\}} \liminf_{k \to \infty} \frac{n_k \log n_{k-1}}{\log \Delta_{n_k}(f)^{-1}}$$

Combing (4.2) and (4.6) we get (4.1)

Conversely, suppose (4.1) is true while f can not be extended to an entire function (3.1) gives

$$\limsup_{n \to \infty} \Delta_n(f)^{1/n} = l = 0$$

Since for every $f \in \mathcal{H}_2(E)$, $\Delta_n(f) \to 0$, it is clear that $0 < l \leq 1$. Let $\varepsilon > 0$ be any positive number such that $0 < \varepsilon < l$, then there exists an increasing sequence $\{n_k\}$ of positive integers such that

$$\Delta_{n_k}(f) > (l - \varepsilon)^{n_k}$$
 for every k.

Now on this sequence $\{n_k\}$

$$\liminf_{k \to \infty} \frac{n_k \log n_{k-1}}{\log \Delta_{n_k}(f)^{-1}} = \infty,$$

which contradicts the fact that (4.1) holds. Hence f can be extended to an entire function and then its lower order λ is given by (4.1).

The following theorem can also be proved in a similar manner.

THEOREM 5. Let $f \in \mathcal{H}_2(E)$. Then f can be extended to an entire function of finite lower order λ , if and only if,

(4.7)
$$\lambda = \sup_{\{n_k\}} \liminf_{k \to \infty} \frac{(n_k - n_{k-1}) \log n_{k-1}}{\log \left| \frac{\Delta_{n_{k-1}}(f)}{\Delta_{n_k}(f)} \right|} < \infty,$$

where supremum is taken over all increasing sequences $\{n_k\}$ of positive integers.

5. In this section we study about the sequence $\{n_k\}$ of those values of n for which $\Delta_{n-1}(f) > \Delta_n(f)$ i.e.,

$$\Delta_n(f) = \Delta_{n_k}(f)$$
 for $n_{n-1} \le n < n_k$.

We shall see that for function of regular growth this sequence can not grow too rapidly. In fact we have

THEOREM 6. Let $f \in \mathcal{H}_2(E)$ be such that its extension is an entire function of order ρ and lower order $\lambda(0 \leq \lambda \leq \rho < \infty)$; and let $\{n_k\}$ be the sequence defined by (5.1); then

$$\lambda \le \lim_{k \to \infty} \inf \frac{\log n_k}{\log n_{k+1}}.$$

PROOF. Set $h(z) = \sum_{k=1}^{\infty} \pi_k(f) z^{nk}$, where $\pi_k(f) = \Delta_{n_{k-1}}(f) - \Delta_{n_k}(f)$. In wiew of (1.7), (1.9) and theorem 2 and 4 it can be easily seen that h(z) is an entire function of order ρ and lower order λ .

 \mathbf{So}

$$\rho = \limsup_{k \to \infty} \frac{n_k \log n_k}{\log \pi_k^{-1}(f)}$$

and

$$\lambda = \sup_{\{m_h\}} \liminf_{h \to \infty} \frac{n_{m_h} \log n_{m_{h-1}}}{\log \pi_{m_h}^{-1}(f)}$$

$$\leq \sup_{\{m_h\}} \limsup_{h \to \infty} \frac{n_{m_h} \log n_{m_h}}{\log \pi_{m_h}^{-1}(f)} \times \sup_{\{m_h\}} \liminf_{h \to \infty} \frac{\log n_{m_{h-1}}}{\log n_{m_h}}$$

$$= \rho \liminf_{k \to \infty} \frac{\log n_k}{\log n_{k+1}}$$

which completes the proof.

COROLLARY. For entire functions or regular growth

$$\log n_n \sim \log n_{k-1}$$
 as $k \to \infty$

Finally we have

THEOREM 7. Let f be an entire function. Then there exist integers

$$0 \le n_1 < n_2 < \dots < n_k < \dots$$

for which $a_{n_{k+1}} \neq 0$ for every k and

$$\Delta_{n_k} \sim |a_{n_{k+1}}|$$
 as $k \to \infty$.

PROOF. Since f is entire, (1.6) gives

$$\lim_{k \to \infty} |a_k|^{1/k} = 0.$$

Let $\{\varepsilon_k\}$ be an arbitrary sequence of positive numbers each less than one and $\varepsilon \to \infty$ as $k \to \infty$. Now we shall show than there exists a sequence $\{n_k\}$ such that

$$|a_{n_k+j}| \le |a_{n_k+1}|\varepsilon_k^{j-1}$$
 for $k = 1, 2, \dots$

Since for each $\varepsilon_k > 0$, there exists N = N(k) such that

(5.4)
$$|a_n|^{1/n} \le \varepsilon_k \text{ for } n \ge N(k);$$

let $\{n_k\}$ be the sequence such that

$$\max_{n \ge N = N(k)} |a_n|^{1/n} = |a_{n_k+1}|^{1/(n_k+1)},$$

then (5.4) gives

$$|a_{n_k+1}|^{1/(n_k+1)} < \varepsilon_k$$

for every k; so

$$|a_{n_k+j}|^{1/(n_k+j)} \le |a_{n_k+1}|^{1/(n_k+1)} < \varepsilon_k$$

for everu \boldsymbol{j} or

$$|a_{n_k+j}| < |a_{n_k+1}|^{\frac{n_k+j}{n_k+1}} \varepsilon_k^{n_k+j}$$

$$\leq |a_{n_k+1}| |a_{n_k+1}|^{\frac{j-1}{n_k+1}}$$

Or

$$|a_{n_k+j}| < |a_{n_k+1}|\varepsilon_k^{j-1}.$$

Now as

$$(\Delta_n(f))^2 = \sum_{n=1}^{\infty} |a_k|^2.$$

So we get

$$(\Delta_{n_k}(f))^2 < \sum_{j=1}^{\infty} |a_{n_k+1}|^2 \varepsilon_k^{(j-1)/2}$$

or

(5.5)
$$\Delta_{n_k}(f) < \frac{|a_{n_k+1}|}{(1-\varepsilon_k^2)^1/2}$$

Combining (5.5) together with the fact that $\Delta_n(f) > |a_{n+1}|$ we get that

$$\lim_{k \to \infty} \frac{\Delta_{n_k}(f)}{|a_{n_k+1}|} = 1$$

i.e $\Delta_{n_k} \sim |a_{n_k+1}|$ as $k \to \infty$.

REFERENCES

- [1] Boas, R.P., Entire functions, Academic Press, New York, 1954.
- [2] Epstein, B., Orthogonal families of analutic functions, The Macmillan Co., New York, 1965.
- [3] Goffman C. and Pedrick, G. First course in Functional Analysis, Prentice Hall of India, New Delhi, 1974.
- [4] Juneja, O.P., On the coefficients of an entire series, J. Analyse Math., 24, 395-401 (1971).
- [5] Juneja, O.P. and Kapoor, G.P., On the lower order of entire functions, J. London Math. Soc. (2), 5, 310-312 (1972).
- [6] Reddy, A.R., A contribution to best approximation in the L^2 norm, J. Approximation Theory, **11**, 110-117 (1974).
- [7] Rizvi, S.R.H. and Juneja, O.P., Fourier expansions of entire functions, To appear,
- [8] Smirnov, V.I., and Lebedev, N.A., Function of a complex variable, Iliffe Books London, 1968.
- [9] Winiarski, T.N., Approximation and Interpolation of entire function, Annales Polonici Mathematici, 23, 259-273 (1970).

Department of Mathematics Indian Institute of Technology Kanpur 208016, INDIA