ON THE EMBEDDING OF PROPOSITIONAL MODELS

Marica D. Prešić

Abstract

We consider the problem of isomorpical embedding for propositional models (where propositional letters are represented by propositional letters and, more generally, by propositional formulae) and prove some general theorems which parallel to those due to Los [1] and Keisler [2]. As a consequence of the proved theorems we obtain necessary and sufficient condions for embedding each model α of the language P in some model β of the set \mathcal{F} of propositional formulae in the language Q. In the second part of the paper, in the case P, Q are finite and \mathcal{F} is empty we prove that such embedding can be characterised in some other ways.

1. A Propositional language is any non-empty set of symbols which are called propositional letters. We suppose that each propositional language is indexed by some well-odered set. Let P be a propositional language, or simply language. By model of P we mean each mapping α of the forme $\alpha: P \rightarrow\{\top, \perp\}$. If P, Q are languages and $\alpha: P \rightarrow\{\top, \top\}, \beta: Q \rightarrow\{\top, \perp\}$ their models, then β is an extension of α iff then following conditions are satisfied:
(i) $P \subseteq Q$.
(ii) Restriction of the mapping β to P equals α, i.e. $\left.\beta\right|_{P}=\alpha$. If β is an extension of α, then it is easy to see that for each formula F in P the following equivalence

$$
\begin{equation*}
\alpha=F \text { iff } \beta=F \tag{1}
\end{equation*}
$$

holds.
Further, let $f: P \rightarrow Q$ be an 1-1 mapping such that $\beta \circ f$ is an extension of α, where α, β are models of the languages P, Q respectively. Then we say that α is f-embedded in β. In other words:

$$
\alpha \text { is } f \text {-embedded in } \beta \text { iff } \beta \circ f=a
$$

1

[^0]If α if f-embedded in β and $F\left(u_{1}, \ldots, u_{n}\right), u_{i} \in P$ is any formula in P, then the following equivalence

$$
\begin{equation*}
\alpha \models F\left(u_{1}, \ldots, u_{n}\right) \text { iff } \beta \models F\left(f\left(u_{1}\right), \ldots, f\left(u_{n}\right)\right) \tag{2}
\end{equation*}
$$

holds, what can easily be proved.
If α, β are models of the languages P, Q raspectively, then we say that α is isomorphically embedable in β iff there exists an $1-1$ mapping $f: P \rightarrow Q$ such that α is f-embedded in β. For example,

$$
\alpha=\left(\begin{array}{ccccc}
p_{0} & p_{1} & \cdots & p_{n} & \cdots \\
\perp & \perp & \cdots & \perp & \cdots
\end{array}\right)_{n<\omega} \quad \beta=\left(\begin{array}{cccccc}
p_{0} & p_{1} & \cdots & q_{2 n} & q_{2 n+1} & \cdots \\
\top & \perp & \cdots & \top & \perp & \cdots
\end{array}\right)_{n<\omega}
$$

then α is isomorphically embeddable in β. One embedding is:

$$
f=\left(\begin{array}{ccccc}
p_{0} & p_{1} & \cdots & p_{n} & \cdots \\
q_{1} & q_{3} & \cdots & q_{2 n+1} & \cdots
\end{array}\right)_{n<\omega}
$$

Let now $P=\left\{p_{i} \mid i \in I\right\}, Q=\left\{q_{j} \mid j \in J\right\}$ be languages, α and β respectively their models, and let $\alpha\left(p_{i}\right)=\alpha_{i}(i \in I), \beta\left(q_{j}\right)=\beta_{j}(j \in J)$. It is easy to see that the following lemma holds.

Lemma 1. β is an extension of α iff β is a model of the set P^{α}, where

$$
P^{\alpha} \stackrel{\text { def }}{=}\left\{p_{i}^{\alpha^{i}} \mid i \in I\right\}
$$

2
The set P^{α} is the diagram of α and it parallels to the notion of diagram in the predicate logic.

Let futher α be a model of P and let \mathcal{F} be a set propositional formulae in the language $Q, P \subseteq Q$. Similar to the predicate case the following problem often arises: Decide wheather it is possible to extend α to some model β of the set \mathcal{F}. The sufficient and necessary conditions for this gives the following theorem.

Theorem 1. The model α can be extended to some model β of the set \mathcal{F} iff α is a model for each consequence A of \mathcal{F} which is of the form

$$
\begin{equation*}
u_{1}^{a_{1}} \vee u_{2}^{a_{2}} \vee \cdots \vee u_{k}^{a_{k}} \tag{3}
\end{equation*}
$$

where $a_{i} \in\{\top, \perp\}, u_{i} \in P$, such that $i \neq j \Rightarrow u_{i} \neq u_{j}$, i.e. iff for each formula of the form (3) the following condition

$$
\begin{equation*}
\mathcal{F} \vdash A \rightarrow \alpha=A \tag{4}
\end{equation*}
$$

${ }^{2} u^{\top}, u^{\perp}$ designate the formulae $u, \neg u$ respectively.

holds.

Proof. Only if: Suppose that β is an extension of α which is a model of \mathcal{F}. Further, let A be any formula in P such that $\mathcal{F} \vdash A$, then $\beta \neq A$. Using (1) we immediately conclude $\alpha=A$.
If: Suppose that (4) holds for each formula A of the form (3) and that α cannot be extended to a model of \mathcal{F}. That means that the set $\mathcal{F} \cup P^{\alpha}$ has no model. Using the compactness theorem we conclude that the set $\mathcal{F} \cup \mathcal{K}$, where \mathcal{K} is some finite subset of P, has no model. Let

$$
\mathcal{K}=\left\{p_{i_{1}}^{\alpha_{i_{1}}}, \ldots, p_{i_{k}}^{\alpha_{i_{k}}}\right\}
$$

Then the set

$$
F \cup\left\{p_{i_{1}}^{\alpha_{i_{1}}} \vee \cdots \vee p_{i_{k}}^{\alpha_{i_{k}}}\right\}
$$

has no model. Therefore

$$
\mathcal{F} \vdash \neg\left(p_{i_{1}}^{\alpha_{i_{2}}} \vee \cdots \vee p_{i_{k}}^{\alpha_{i_{k}}}\right\}
$$

i.e.

$$
\left.\mathcal{F} \vdash p_{i_{1}}^{\neg \alpha_{i_{1}}} \vee \cdots \vee p_{i_{k}}^{\neg \alpha_{i_{k}}}\right\}
$$

The formula

$$
p_{i_{1}}^{\neg \alpha_{i_{1}}} \vee \cdots \vee p_{i_{k}}^{\overbrace{i_{k}}}
$$

is obviously of the form (3), but it is not true on α, what contradicts (4).
We now generalise the notion of isomorphic embedding in the following way. Let P, Q be languages and $\operatorname{For}(Q)$ the set of all propositional formulae in Q. Further, let α, β be models of P, Q respectively and let f be an 1-1 mapping from P to $\operatorname{For}(Q)^{3}$. We say that α is f-embedded in β iff $\beta \circ f=\alpha$. If α is f-embedded in β and $P=Q$, than β is an f-extension of α. In the case f is identity mapping, the notion of f-extension reduces to the notion of extension defined in the first part of the paper.

We give an example. Let $P=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}, Q=\left\{q_{1}, q_{2}, q_{3}\right\}$ and let

$$
\alpha=\left(\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
\perp & \top & \top & \perp
\end{array}\right), \quad \beta=\left(\begin{array}{ccc}
q_{1} & q_{2} & q_{3} \\
\top & \perp & \top
\end{array}\right)
$$

If f is the following mapping

$$
f=\left(\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
\neg q_{1} & q_{1} \vee q_{2} & q_{3} \Rightarrow q_{1} & q_{2} \vee \neg q_{1}
\end{array}\right)
$$

then α is f-embedded in β, for

$$
\beta\left(\neg q_{1}\right)=\perp, \quad \beta\left(q_{1} \vee q_{2}\right)=\top, \quad \beta\left(q_{3} \Rightarrow q_{1}\right)=\top, \quad \beta\left(q_{2} \vee \neg q_{1}\right)=\perp
$$

[^1]therefrom it follows immediately $\beta \circ f=\alpha$.
Let α, β be models of P, Q respectively. We say that α is ismorphically embeddable in β (in the generalised sense) iff there exists an 1-1 maping $f: P \rightarrow$ $\operatorname{For}(Q)$ which is an f-embedding, i.e. such that the equality $\beta \circ f=\alpha$ holds.

If α is f-embedded in β, where α, β are models of P, Q respectively, then the equivalence (2) remains true for each formula $F\left(u_{1}, \ldots, u_{n}\right)$ in P.

The following lemma parallels to lemma 1.
Lemma 2. Let $P=\left\{p_{i} \mid i \in I\right\}, Q=\left\{q_{j} \mid j \in J\right\}$ be languages, α and β their models, where $\alpha\left(p_{i}\right)=\alpha_{i}(i \in I) \beta\left(q_{j}\right)=\beta_{j}(j \in J)$. Further, let $f: P \rightarrow \operatorname{For}(Q)$ be an 1-1 mapping, where $f\left(p_{i}\right)=P_{i}(i \in I)$. Then α is f-embedded in β iff β is a model of the set $f(P)^{\alpha}$, where

$$
f(P)^{\alpha} \stackrel{\text { def }}{=}\left\{P_{i}^{\alpha_{i}} \mid i \in I\right\}
$$

We prove the following theorem which is a generalisation of theorem 1.
Theorem 2. Let $P=\left\{p_{i} \mid i \in I\right\}, Q=\left\{q_{j} \mid j \in J\right\}$ be languages, α a model of P, where $\alpha\left(p_{i}\right)=\alpha_{i}$, and let \mathcal{F} be a set of forumlae in Q. α can be f-embedded in some model β of the set \mathcal{F}, where f is an 1-1 mapping from P to For (Q), iff for each formula A in Q which is of the form

$$
\begin{equation*}
U_{1}^{a_{1}} \vee U_{2}^{a_{2}} \vee \cdots \vee U_{k}^{a_{k}} \quad\left(U_{i} \in f(p), \quad U_{i} \neq U_{j} \text { if } i \neq j\right) \tag{5}
\end{equation*}
$$

the following condition

$$
\begin{equation*}
\mathcal{F} \vdash A \rightarrow \alpha \models f^{-1}(A) \tag{6}
\end{equation*}
$$

holds, where $f^{-1}(A)$ is the formula

$$
\begin{equation*}
f^{-1}\left(U_{1}\right)^{a_{1}} \vee f^{-1}\left(U_{2}\right)^{a_{1}} \vee \cdots \vee f^{-1}\left(U_{k}\right)^{a_{k}} \tag{7}
\end{equation*}
$$

Proof. Only if: Suppose that α is f-embedded in β, where β is a model of \mathcal{F}. Futher, let A be a formula in Q which is built up from the formulae in $f(P)$, i.e. A is of the form $A\left(U_{1}, \ldots, U_{k}\right)$, where $U_{i} \in f(P)$. If $\mathcal{F} \vdash A\left(U_{1}, \ldots, U_{k}\right)$, then $\beta \models A\left(U_{1}, \ldots, U_{k}\right)$ therefrom, using (2), we immediately conclude $\alpha=A\left(f^{-1}\left(U_{1}\right), \ldots, f^{-1}\left(U_{k}\right)\right)$.
$I f$: Suppose now that (6) holds for each formula A of the form (5) and that α cannot be f-embedded in a model of \mathcal{F}, where $f: P \rightarrow \operatorname{For}(Q)$ is a given 1-1 mapping. This means that the set $\mathcal{F} \cup f(P)^{\alpha}$ has no model. Then there exists a finite subset $\mathcal{K} \subseteq f(P)^{\alpha}$ such that $\mathcal{F} \cup \mathcal{K}$ has no model. Let

$$
\mathcal{K}=\left\{f\left(p_{i_{1}}\right)^{\alpha_{i_{1}}}, \ldots, f\left(p_{i_{k}}\right)^{\alpha_{i_{k}}}\right\}
$$

Similar to the proof of theorem 1 we deduce

$$
\mathcal{F} \vdash f\left(p_{i_{1}}\right)^{\neg \alpha_{i_{1}}} \vee \cdots \vee f\left(p_{i_{k}}\right)^{\neg \alpha_{i_{k}}}
$$

The formula

$$
f\left(p_{i_{1}}\right)^{\neg \alpha_{i_{1}}} \vee \cdots \vee f\left(p_{i_{k}}\right)^{\neg \alpha_{i_{k}}}
$$

is obviously of the form (5) but its unverse image

$$
p_{i_{1}}^{\neg \alpha_{i_{1}}} \vee \cdots \vee p_{i_{k}}^{\neg \alpha_{i_{k}}}
$$

is not true on α, what contradicts (6).
Using the preceding theorem it is easy to obtain the following result.
Theorem 3. Each model α can be f-embedded in some model β of the set of formulae \mathcal{F} iff there is no formula A of the form (5) which is a consequence of \mathcal{F}.

Proof. From the proceding theorem it follows that each model α can be f embedded in some model β of \mathcal{F} iff for each formula A of the form (5) the following condition

$$
(\forall \alpha)\left(\mathcal{F} \vdash A \rightarrow \alpha \models f^{-1}(A)\right) \text {, i.e, } \mathcal{F} \vdash A \rightarrow \models f^{-1}(A)
$$

holds. But the formula $f^{-1}(A)$ is of the form

$$
u_{1}^{a} \vee \cdots \vee u_{k}^{a} \quad\left(u_{i} \in P, u_{i} \neq u_{j} \text { if } i \neq j\right)
$$

and it cannot be a tautology. Thus, $\mathcal{F} \vdash A$ is not posible if A is of the form (5).
2. Let now $P=\left\{p_{1}, \ldots, p_{n}\right\}, Q=\left\{q_{1}, \ldots, q_{m}\right\}$ be finite languages, $\mathcal{F}=\emptyset$ and let f be the 1-1 maping

$$
f=\left(\begin{array}{llll}
p_{1} & p_{2} & \cdots & p_{n} \\
A_{1} & A_{2} & \cdots & A_{n}
\end{array}\right)
$$

where $A_{i} \in \operatorname{For}(Q)$. Obviously, each model α of P can be f-embedded in some model β of Q iff the sequence

$$
\begin{equation*}
\left(A_{1}, A_{2}, \ldots, A_{n}\right) \tag{9}
\end{equation*}
$$

can take each value $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in\{\top, \perp\}^{n}$, i.e. iff

$$
\begin{equation*}
\left(\forall \alpha_{1}, \ldots, \alpha_{n} \in\{\top, \perp\}\right)(\exists \beta: Q \rightarrow\{\top, \perp\}) \beta A_{1}=\alpha_{1}, \ldots, \beta A_{n}=\alpha_{n} \tag{10}
\end{equation*}
$$

It is easy to see that (10) implies the condition $n \leq m$. Further if (10) holds for the sequence (9) with $n=m$, then it also holds for each subsequence of (9). Therefore it suffices to consider the case $m=n$. Thus, let $P=\left\{p_{1}, \ldots, p_{n}\right\}, Q+\left\{q_{1}, \ldots, q_{n}\right\}$ and let f be 1-1 mapping from P to $\operatorname{For}(Q)$ determined by (8). Each model α of P can be f-embedded in some model of Q iff the condition (10) holds. Obviously,
there are just 2^{n} ! n-tuples ${ }^{4}$ (9) satisfying (10). Namely, the sequence (9) has n members and as it must take each value, each permutation of the set $\{T, \perp\}^{n}$ determines one sequence (9) satisfying the condition (10). For example, if $n=2$, the number of such sequences is 2^{2} !, i.e. 24 . It is easy to see that all possible sets $\left\{A_{1}, A_{2}\right\}$ are the following:

$$
\left\{q_{1}, q_{2}\right\},\left\{q_{1}, \neg q_{2}\right\},\left\{\neg q_{1}, q_{2}\right\}, \quad\left\{\neg q_{1}, \neg q_{2}\right\}, \quad\left\{q_{1}, q_{1} \Leftrightarrow q_{2}\right\}, \quad\left\{q_{1}, \neg\left(q_{1} \Leftrightarrow q_{2}\right)\right\}
$$

$$
\begin{align*}
\left\{\neg q_{1}, q_{1} \Leftrightarrow q_{2}\right\}, & \left\{\neg q_{1}, \neg\left(q_{1} \Leftrightarrow q_{2}\right)\right\}, \quad\left\{q_{2}, q_{1} \Leftrightarrow q_{2}\right\}, \quad\left\{q_{2}, \neg\left(q_{1} \Leftrightarrow q_{2}\right)\right\} \tag{11}\\
& \left\{\neg q_{2}, q_{1} \Leftrightarrow q_{2}\right\}\left\{\neg q_{2}, \neg\left(q_{1} \Leftrightarrow q_{2}\right)\right\} .
\end{align*}
$$

Therefrom we immediately obtain all 24 ordered pairs $\left(A_{1}, A_{2}\right)$.
Generally, for a given permutation

$$
\begin{equation*}
\left(\alpha_{11}, \alpha_{12}, \ldots, \alpha_{1 n}\right),\left(\alpha_{21}, \alpha_{22}, \ldots \alpha_{2 n}\right), \ldots,\left(\alpha_{2^{n}}, \ldots, \alpha_{2^{n} n}\right) \tag{12}
\end{equation*}
$$

of the set $\{\top, \perp\}^{n}$ any formula A_{i} in (9) is determined by ${ }^{5}$

$$
\underset{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in\{T, \perp\}^{n}}{\vee} a_{\lambda_{1} \cdots \lambda_{n}} q_{1}^{\lambda_{1}} q_{2}^{\lambda_{2}} \cdots q_{n}^{\lambda_{n}}
$$

where the sequence $\left(a_{\lambda_{1} \ldots \lambda_{n}}\right)_{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \leq(T, \ldots, T)}$ equals to $\left(\alpha_{j i}\right)_{j \leq 2^{n}}$. In what follows we are going to give some other sufficient and necessary conditions for f-embedding each model $\alpha: P \rightarrow\{\top, \perp\}$ in some model $\beta: Q \rightarrow\{\top, \perp\}$. First of all we give some definitions.

Let A, B be propositional formulae in some given language and $\mathcal{F}_{1}, \mathcal{F}_{2}$ be sets of formulae. Then we defined

$$
\begin{equation*}
A e q u B \text { iff }=A \Leftrightarrow B \tag{D1}
\end{equation*}
$$

$$
\begin{align*}
\mathcal{F}_{1} e q u \mathcal{F} \text { iff } & \left(\forall F_{1} \in \mathcal{F}_{1}\right)\left(\exists F_{2} \in \mathcal{F}_{2}\right) F_{1} \text { equ } F_{2} \\
& \left(\forall F_{2} \in \mathcal{F}_{2}\right)\left(\exists F_{1} \in \mathcal{F}_{1}\right) F_{2} \text { equ } F_{1} \tag{D2}
\end{align*}
$$

[^2]where A_{1}, \ldots, A_{n} are formulae and $a_{1}, \ldots, a_{n} \in\{\top, \perp\}$, we write
$$
A_{1}^{a_{1}} A_{2}^{a_{2}} \ldots A_{n}^{a_{n}}
$$

We note that equ is an equivalence relation for formulae, i.e. for sets of formulae. Further, if elements of $\mathcal{F}_{1}, \mathcal{F}_{2}$ respectively are nonequivalent formulae, then the condition \mathcal{F}_{1} equ \mathcal{F}_{2} implies $\overline{\overline{\mathcal{F}_{1}}}=\overline{\overline{\mathcal{F}_{2}}}$. We now prove the folowing theorem.

TheOrem 4. Let A_{1}, \ldots, A_{n} be formulae in $Q=\left\{q_{1}, \ldots, q_{n}\right\}$. Then the condition (10) is equivalent to

$$
\begin{align*}
\left\{A_{1}^{\alpha_{1}} A_{2}^{\alpha_{2}} \cdots A_{n}^{\alpha_{n}}\right. & \left.\mid\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\{\top, \perp\}^{n}\right\} e q u\left\{q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{n}^{\beta_{n}} \mid\right. \tag{14}\\
& \left.\mid\left(\beta_{1}, \ldots, \beta_{n}\right) \in\{\top, \perp\}^{n}\right\}
\end{align*}
$$

Proof. The implication (14) \rightarrow (10) follows immediately. To prove (10) \rightarrow (14) we first note that (10) is equivalent to

$$
\begin{equation*}
\left(\forall \alpha_{1}, \ldots, \alpha_{n} \in\{\top, \perp\}\right)\left(\exists_{1} \beta: Q \rightarrow\{\top, \perp\} \beta A_{1}=\alpha_{1}, \ldots, \beta A_{n}=\alpha_{n}\right. \tag{15}
\end{equation*}
$$

what can easily be proved. Suppose now (10) i.e. (15) and let $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be an element of $\{T, \perp\}^{n}$. By disjunctive normal form we have

$$
\begin{equation*}
A_{1}^{\alpha_{1}} A_{2}^{\alpha_{2}} \cdots A_{n}^{\alpha_{n}} e q u_{\left(\beta_{2}, \ldots, \beta_{n}\right) \in I} q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{n}^{\beta_{n}} \tag{16}
\end{equation*}
$$

where $I \subseteq\{\top, \perp\}^{n}$. If $\overline{\bar{I}} \geq 2$, then there would be at least two values

$$
\left(\beta_{1}, \ldots, \beta_{n}\right), \quad\left(\bar{\beta}_{1}, \ldots, \bar{\beta}_{n}\right) \in I
$$

such that for the corresponding models $\beta, \bar{\beta}$, say the following eqalities

$$
\beta\left(A_{1}^{\alpha_{1}} A_{2}^{\alpha_{2}} \cdots A_{n}^{\alpha_{n}}\right)=\top, \quad \bar{\beta}\left(A_{1}^{\alpha_{1}} A_{2}^{\alpha_{2}} \cdots A_{n}^{\alpha_{n}}\right)=\top
$$

hold what contradicts (15). So $\overline{\bar{I}}=1$, i.e. for some $\left(\beta_{1}, \ldots, \beta_{n}\right) \in\{\top, \perp\}^{n}$

$$
A_{1}^{\alpha_{1}} A_{2}^{\alpha_{2}} \cdots A_{n}^{\alpha_{n}} \text { equ } q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{n}^{\beta_{n}}
$$

Thus, we have just proved

$$
\begin{gather*}
\left(\forall \alpha_{1}, \ldots, \alpha_{n} \in\{\top, \perp\}\right)\left(\exists \beta_{1}, \ldots,\right. \\
\beta_{n} \in\{\top, \perp\} A_{1}^{\alpha_{1}} A_{2}^{\alpha_{2}} \cdots A_{n}^{\alpha_{n}} \text { equ } q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{n}^{\beta_{n}} \tag{17}
\end{gather*}
$$

It remains to prove

$$
\begin{gather*}
\left(\forall \beta_{2}, \ldots \beta_{n} \in\{\top, \perp\}\right)\left(\exists \alpha_{1}, \ldots,\right. \\
\left.\alpha_{n} \in\{\top, \perp\}\right) A_{1}^{\alpha_{1}} A_{2}^{\alpha_{2}} \cdots A_{n}^{\alpha_{n}} e q u q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{n}^{\beta_{n}} . \tag{18}
\end{gather*}
$$

Let $\left(\beta_{1}, \ldots, \beta_{n}\right)$ be an element of $\{T, \perp\}^{n}$ and β be the following model

$$
\begin{equation*}
\beta=\binom{q_{1} q_{2} \cdots q_{n}}{\beta_{1} \beta_{2} \cdots} \tag{19}
\end{equation*}
$$

Defining $\alpha_{1}, \ldots, \alpha_{n}$ as $\beta A_{1}, \ldots, \beta A_{n}$ respectively we immediately conclude

$$
\begin{align*}
& =q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{n}^{\beta_{n}} \Rightarrow A_{1}^{\alpha_{1}} A_{2}^{\alpha_{2}} \cdots A_{n}^{\alpha_{n}}, \text { i.e. } \tag{20}\\
& =q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{n}^{\beta_{n}} \Rightarrow A_{1}^{\beta A_{1}} A_{2}^{\beta A_{2}} \cdots A_{n}^{\beta A_{n}}
\end{align*}
$$

Using (15) it is easy to see that conversly

$$
\begin{align*}
& =A_{1}^{\alpha_{1}} A_{2}^{\alpha_{2}} \cdots A_{n}^{\alpha_{n}} \Rightarrow q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{n}^{\beta_{n}}, \text { i.e. } \tag{21}\\
& =A_{1}^{\beta A_{1}} A_{2}^{\beta A_{2}} \cdots A_{n}^{\beta A_{n}} \Rightarrow q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{n}^{\beta_{n}}
\end{align*}
$$

From (20) and (21) we obtain

$$
\begin{equation*}
F q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{n}^{\beta_{n}} \Leftrightarrow A_{1}^{\beta A_{1}} A_{2}^{\beta A_{2}} \cdots A_{n}^{\beta A_{n}} \tag{22}
\end{equation*}
$$

where β is defined by (19), wherefrom (18) follows immediately. The proof of the theorem is complete.

We now give another characterisation of the sequence (9) so that each model $\alpha: P \rightarrow\{\top, \perp\}$ can be f-embedded in some model $\beta: Q \rightarrow\{\top, \perp\}$.

Theorem 5. Each formula F in $Q=\left\{q_{1}, \ldots, q_{2}\right\}$ can be expressed in terms of A_{1}, \ldots, A_{n} in the unique way, i.e. there exitst the unique 2^{n}-tuple

$$
\left(f_{1}, f_{2}, \ldots, f_{2^{n}}\right) \in\{\top, \perp\}^{2^{n}}
$$

such that the equivalence

$$
\begin{equation*}
F e q u f_{1} A_{1}^{\top} A_{2}^{\top} \cdots A_{n}^{\perp} \vee f_{2} A_{1}^{\top} A_{2}^{\top} \cdots A_{n}^{\perp} \vee \cdots \vee f_{2^{n}} A_{1}^{\perp} A_{2}^{\perp} \cdots A_{n}^{\perp} \tag{23}
\end{equation*}
$$

holds iff the equivalence (14) holds.
Proof. If (14) holds, then using the fact that each formula $F\left(q_{1}, \ldots, q_{n}\right)$ is equivalent to some formula of the form

$$
a_{1} q_{1}^{\top} q_{2}^{\top} \cdots q_{n}^{\top} \vee a_{2} q_{1}^{\top} q_{2}^{\top} \cdots q_{n}^{\perp} \vee \cdots \vee a_{2^{n}} q_{1}^{\perp} q_{2}^{\perp} \cdots q_{n}^{\perp}
$$

the eqivalence (23) follows immediately, where $\left(f_{1}, f_{2}, \ldots, f_{2^{n}}\right)$ is a permutation of $\left(a_{1}, a_{2}, \ldots, a_{2^{n}}\right)$.

Suppose now that each formula $F\left(q_{1}, \ldots, q_{n}\right)$ can be expressed, in the uniqe way, in terms of A_{1}, \ldots, A_{n}. By uniqueness it follows that no formula of the form

$$
A_{1}^{\alpha_{1}} \cdots A_{n}^{\alpha_{n}}
$$

is a contradiction. Thus for each $\alpha_{1}, \ldots, \alpha_{n} \in\{\top, \perp\}$ there exists $\beta: Q \rightarrow\{\top, \perp\}^{n}$ such that

$$
\beta\left(A_{1}^{\alpha_{1}} \cdots A_{n}^{\alpha_{n}}\right)=\top, \quad \text { i.e. } \quad \beta A_{1}=\alpha_{1}, \ldots, \beta A_{n}=\alpha_{n}
$$

Therefrom we conclude that (10) holds and thus (14) holds what follows by theorem 4.

Using the preceding two theorems we immediately obtain the following consequence.

Consequence. Let $P=\left\{p_{1}, \ldots, p_{n}\right\}, Q=\left\{q_{1}, \ldots, q_{n}\right\}$ be languages and

$$
f=\binom{p_{1} p_{2} \cdots p_{n}}{A_{1} A_{2} \cdots A_{n}}
$$

an 1-1 mapping from P to For (Q). Then each model α of P can be f-embedded in some model β of Q iff the sequence $\left(A_{1}, \ldots, A_{n}\right)$ satisfies the following condition:

Each formula F in Q can be expressed in the unique way in terms of A_{1}, \ldots, A_{n}, i.e. there exists a unique 2^{n}-tuple $\left(f_{1}, f_{2}, \ldots, f_{2^{n}}\right)$, such that the equivalence (23) holds.

Problem. In the paper we give some caracterisations for f-embedding each model α of P in some model β of Q, when P, Q are finite languages. The problem is how to caracterise the same thing in the case P, Q are infinite.

Acknowledgement. In the first version of the paper the proofs of the theorems 4 and 5 were more comlicate. It was Ž. Mijajlović who sugested me to shorten them in the previous way.

REFERENCES

[1] Lós, On the extending of models I, Fund. Math. 42 (1955), pp. 38-54.
[2] Keisler, H.J., Theory of models with generalized atomic formulas, J. Symbolic Logic 25 (1960), pp. 1-26.
[3] Kreisel, G, and Krivine J.L., Eléments de logique mathématique, Dunod, Paris 1966.
[4] Prešić, M.D. and Prešić, S.B., On the embedded of Ω-algebras in groupoids, Publ. Inst. Math. Beograd, 21 (35), 1977, pp. 169-174.

[^0]: ${ }^{1}$ Where \circ is defined as follows: $(\beta \circ f)(x) \stackrel{\text { def }}{=} \beta(f(x))$

[^1]: ${ }^{3}$ This implies that $\overline{\bar{P}} \leq \overline{\overline{\operatorname{For}(Q)}}$.

[^2]: ${ }^{4}$ That means, 2^{n} ! n-tuples which are not equivalent to each other, i.e. which do not have equivalent corresponding cordinates.
 ${ }^{5}$ Throughout the paper instead of

 $$
 \left(\cdots\left(A_{1}^{a_{1}} \wedge A_{2}^{a_{2}}\right) \wedge \cdots \wedge A_{n}^{a_{n}}\right)
 $$

