ON AN INEQUALITY OF P.M. VASIĆ and R.R. JANIĆ

Josip E. Pečarić

0. In [1], P.M. Vasić and R.R. Janić have given generalization of the inequality by Z. Opial ([2], see also [3, p. 351]. Their result, in not so rigorous from, is as follows.

Theorem A. Let $p_{i}(i=1, \ldots, 2 n+1)$ and $x_{i} \in[a, b]=I(i=1, \ldots, 2 n+$ 1) $\left(\frac{\sum_{i=1}^{2 k+1} p_{i} x_{i}}{\sum_{i=1}^{2 k+1} p_{i}} \in I, k=1, \ldots, n\right)$, be such real numbers, that it is for every $k=$ $1, \ldots, n$

$$
\begin{aligned}
& 1^{\circ} p_{1}>0, p_{2 k} \leqq 0, p_{2 k}+p_{2 k+1} \leqq 0, \sum_{i=1}^{2 k} p_{i} \geq 0, \sum_{i=1}^{2 k+1} p_{i}>0 \\
& 2^{\circ} x_{2 k} \leqq x_{2 k+1}, \sum_{i=1}^{2 k} p_{i}\left(x_{i}-x_{2 k+1}\right) \geqq 0
\end{aligned}
$$

then, for every convex function f on I, the following inequality holds

$$
\begin{equation*}
\sum_{i=1}^{2 n+1} p_{i} f\left(x_{i}\right) \leqq\left(\sum_{i=1}^{2 n+1} p_{i}\right) f\left(\frac{\sum_{i=1}^{2 n+1} p_{i} x_{i}}{\sum_{i=1}^{2 n+1} p_{i}}\right) \tag{1}
\end{equation*}
$$

If f is concave, the reverse inequality holds.
If we change the conditions 1° and 2° in Theorem A, we shall show that the following similar results hold:
($\alpha .1$) If the condition 1° holds and the revese inequalites hold in conditions 2°, then, for every convex function f on $I,(1)$ is valid. If f is concave, the reverse inequality in (1) is valid.
($\alpha .2$) If, instead of conditions 1° and 2°, the following ones hold

$$
\begin{aligned}
& 3^{\circ} p_{1}>0, p_{2 k+1} \geqq 0, p_{2 k}+p_{2 k+1} \geqq 0, \sum_{i=1}^{2 k} p_{i} \geqq 0 ; \sum_{i=1}^{2 k+1} p_{i}>0 \\
& 4^{\circ} x_{2 k} \leqq x_{2 k+1}, \sum_{i=1}^{2 k-1} p_{i}\left(x_{i}-x_{2 k}\right) \leqq 0
\end{aligned}
$$

then, for every convex function f, the reverse inequality in (1) holds. If f is concave, the inequality (1) holds.
$(\alpha .3)$ If 3° holds and the reverse inequalitios hold in 4°, then, for every convex function f, the reverse inequality in (1) holds. If f is concave, the inequality (1) holds.

In their proof, P.M. Vasić and R.R. Janić started from the Jensen-Steffensen inequality, in the form postulated by Steffensen [3, p. 109], for $n=3$. In this form we have a nondecreasing sequence of points. However, the Jensen. Steffensen inequality is valid in the same form for a nonincreasing sequence of points (see, for instance, $[4$, Theorem A]) and ($\alpha .1$) can be proved by complete analogy. If we apply directly the method mathematical induction, given in the proof of P.M. Vasić and R.R. Janić, on the Jensen-Steffensen inequality for $n=3$, we get (α. 3) .

Remark 1. Result ($\alpha .3$) is generalization of the inequality by G. Szegö [5] (see also [3, p. 112])

1. We can use Theorem $\mathrm{A},(\alpha, 1),(\alpha, 2)$ and $(\alpha, 3)$, by analogy to Ch.O. Imoru [6], in order to obtain various conditions for which the well-known inequality from Fuchs's generalization [3, p. 165] of the Majorization theorem [3, p. 164] is valid. Denoting by

$$
c_{k}=\sum_{i=1}^{k-1} b_{i}\left(x_{i}-y_{i}\right)
$$

Then, the following theorem is valid:
Theorem 1. Let the numbers $b_{1} \geqq \cdots \geqq b_{n}>0$, and $x_{i}, y_{i} \in I(i=1, \ldots, n)$ $\left(0 \in I ; x_{k+1}+c_{k+1} / b_{k+1} \in I, k=1, \ldots, n-1\right)$ satisfy the conditions

$$
\begin{align*}
& y_{k} \leqq x_{k+1}, \quad\left(k=1, \ldots, n ; x_{n+1} \equiv 0\right) \tag{A}\\
& \sum_{i=1}^{k} b_{i} x_{i} \geqq \sum_{i=1}^{k} b_{i} y_{i}, \quad(k=1, \ldots, n-1) \tag{B}\\
& \sum_{i=1}^{n} b_{i} x_{i}=\sum_{i=1}^{n} b_{i} x_{i} \tag{C}
\end{align*}
$$

Then, for every convex function on I, the followinng inequality holds

$$
\begin{equation*}
\sum_{i=1}^{n} b_{i} f\left(x_{i}\right) \leqq \sum_{i=1}^{n} b_{i} f\left(y_{i}\right) \tag{2}
\end{equation*}
$$

If f is concave, the reverse inequality holds.
Proof. Let, in Theorem A, be $x_{2 n+1}=0$ and $p_{2 n+1}=1-\sum_{i=1}^{2 n} p_{i}$. Then, from (1) we get

$$
\begin{equation*}
\sum_{i=1}^{2 n} p_{i} f\left(x_{i}\right)+\left(1-\sum_{i=1}^{2 n} p_{i}\right) f(0) \leqq f\left(\sum_{i=1}^{2 n} p_{i} x_{i}\right) \tag{3}
\end{equation*}
$$

For $k=n$, from 1°, we get

$$
P_{2 n} \leqq 0, \quad \sum_{i=1}^{2 n-1} p_{i} \geqq 1, \quad \sum_{i=1}^{2 n} p_{i} \leqq 0
$$

Using the substitutions: $x_{2 k-1} \rightarrow x_{k}, x_{2 k} \rightarrow y_{k}, p_{2 k-1} \rightarrow b_{k}>0, p_{2 k} \rightarrow-b_{k},(3)$ becomes

$$
\begin{equation*}
\sum_{i=1}^{n} b_{i} f\left(x_{i}\right)-\sum_{i=1}^{n} b_{i} f\left(y_{i}\right)+f(0) \leqq f\left(\sum_{i=1}^{n} b_{i} x_{i}-\sum_{i=1}^{n} b_{i} y_{i}\right) \tag{4}
\end{equation*}
$$

and using (C) we get (2).
On the other hand, form $1^{\circ}(k=1, \ldots, n)$ and $\left(1^{\circ}\right)^{\prime}(k=n)$ we get $b_{k+1} \leqq b_{k}$, $b_{n} \geqq 1$, e.i. $b_{1} \geqq b_{2} \geqq \cdots \geqq b_{n} \geqq 1$, and from 2° we get (A) and (B).

One can casily conclude that the condition $b=1$ can be replaced by the condition $b_{n}>0$. Namely, when $0<b_{n}<1$, the weights $b_{k}{ }^{\prime}=b_{k} / b_{n}$ satisfy the conditions for which (2) is valid, so multiplying with b_{n} (i.e. with the previous weights) we can see that (2) is also valid for b_{k}.

We get the following similar results if we use $(\alpha .1),(\alpha .2)$ or ($\alpha .3$), instead of Theorem A, in proving a previous theorem.
($\beta .1$) If Theorem 1 the condition (C) holds and the reverse inequalities holds in conditions (A) and (B) then, for every convex function $f,(2)$ is valid. If f is concave, the reverse inequality holds.
(β. 2) Let the real numbers $0<b_{1} \leqq \cdots \leqq b_{n}$ and $x_{i}, y_{i} \in I(i=1, \ldots, n)$ $\left(0 \in I ; x_{k+1}+c_{k+1} / b_{k+1} \in I, k=1, \ldots, n-1\right)$ satisfy the conditions (A) and (C) as conditions (B) with reverse inequalities. Then, for every convex function f, the reverse inequality in (2) is valid. If f is concave, then the inequality (2) holds.
$(\beta .3)$ If in $(\beta .2)$ the conditions (B) and (C) hold and the reverse inequalities hold in conditions (A), then, for every convex function f, the reverse inequality in (2) is valid. If f is concave, then the inequality (2) holds.

If, instead of (C), the following condition is valid
(D)

$$
\sum_{i=1}^{n} b_{i} x_{i} \geqq \sum_{i=1}^{n} b_{i} y_{i}
$$

then, for nonincreasing convex function f

$$
f\left(\sum_{i=1}^{n} b_{i} x_{i}-\sum_{i=1}^{n} b_{i} y_{i}\right) \leqq f(0)
$$

and from (4) follows (2). Hence the following theorem is valid:
THEOREM 2. Let the real numbers $b_{1} \geqq \cdots \geqq b_{n}>0$ and $x_{i}, y_{i} \in I$, $(i=1, \ldots, n)\left(c_{n} \in I\right.$ if $b_{n} \geqq 1$ and $c_{n} / b_{n} \in I$ if $\bar{b}_{n}<1 ; x_{k+1}+c_{k+1} / b_{k+1} \in I, k=$ $1, \ldots n-1)$ satisfy the conditions (A), (B) and (D). Then, for every nonincreasing convex function f on I, the inequality (2) is valid. If f is nondecreasing concave, the reverse inequality holds.

We get by analogy
($\gamma .1$) If in Theorem 2 the reverse inequalities hold for conditions (A), (B) and (D), then, for every nondecreasing convex function $f,(2)$ is valid. If f is nonicreasing concave, the reverse inequality holds.
$(\gamma .2)$ Let the real numbers $0<b_{1} \leqq \cdots \leqq b_{n}$ and $x_{i}, y_{i} \in I(i=1, \ldots, n)$ $\left(c_{n} \in I\right.$ if $b_{n} \leq 1$ and $c_{n} / b_{n} \in I$ if $\left.b_{n}>1 ; \bar{x}_{k+1}+c_{k+1} / b_{k+1} \in I, k=1, \ldots, n-1\right)$ satisfy conditions (A) as conditions (B) and (D) with reverse inequalities. Then, for every nonicreasing convex function f, the reverse inequality in (2) is valid. If f is nonicreasing concave, then (2) holds.
$(\gamma .3)$ If in $(\gamma .2)$ the conditions (B) and (D) hold and the reverse inequalities hold in conditions (A), then for every nondecreasing convex function f, the reverse inequality in (2) is valical. If f is noninereasing concave, then (2) holds.
2. Lj.R. Stanković and I.B. Lacković ([7]) proved the following result:

Theorem B. Let a and b be nonegative real numbers and let $a+b \leqq c$. Then for every convex functions $x \mapsto f(x)$ defined defined for all $x \geqq 0$, the following inequality holds

$$
\begin{equation*}
f(a)+f(b+c) \geqq f(a+b)+f(c) \tag{5}
\end{equation*}
$$

If the function f is concave the above inequality is reversed.
Let $a_{i}(i=1, \ldots, 2 n+1)$ be nonnegative real numbers. We shall prove the following generalization Theorem B:

THEOREM 3. If $a_{1} \geqq a_{3} \geqq \cdots \geqq a_{2 n+1}$ then, for every convex function f on $[0, \infty)$ the following inequality holds

$$
\begin{align*}
& f\left(a_{1}+a_{2}\right)+\cdots+f\left(a_{2 n-1}+a_{2 n}\right)+f\left(a_{2 n+1}\right) \geqq \tag{6}\\
& \quad \geqq f\left(a_{1}\right)+f\left(a_{2}+a_{3}\right)+\cdots+f\left(a_{2 n}+a_{2 n+1}\right)
\end{align*}
$$

If f is concave, the reverse inequality holds.

Proof. Let, in ($\beta .1$), be: $b_{i} \equiv 1(i=1, \ldots, n) ; n=n+1 ; x_{1}=a_{1}$, $x_{2}=a_{2}+a_{3}, \ldots, x_{n+1}=a_{2 n}+a_{2 n+1} ; y_{1}=a_{1}+a_{2}, \ldots, y_{n}=a_{2 n+-1}+a_{2 n}, y_{n+1}=$ $a_{2 n+1}$. Then, from (2), we get (6)

Remark 2. From Theorem 3, for $n=1$, we get that (5) is valid if $a \leqq c$.
By means of complet analogy, substituting: $b_{i} \equiv 1(i=1, \ldots, n) ; n=n+1$; $x_{1}=a_{1}+a_{2}, \ldots, x_{n}=a_{2 n-1}+a_{2 n}, x_{n+1}=a_{2 n+1} ; y_{1}=a_{2}+a_{3}, \ldots, y_{n}=$ $a_{2 n}+a_{2 n+1} \cdot y_{n+1}=a_{1}$; from ($\beta .1$) and ($\beta .3$) we get the following similar results:
(δ. 1) If $a_{2} \geqq a_{4} \geqq \cdots \geqq a_{2 n}$ and $a_{2 k+1} \geqq a_{1}(k=1, \ldots, n)$, then, for every convex function f on $[0, \infty)$, the reverse inequality in (6) holds. If f is concave, then (6) holds.
($\delta .2$) If $a_{2} \geqq a_{0} \geqq \cdots \geqq a_{2 n}$ and $a_{2 k+1} \leqq a_{1}(k=1, \ldots, n)$ then, for every convex function f on $[0, \infty)$, (6) holds. If f is concave the revese inequality holds.

REFERENCES

[1] P.M. Vasić and R.R. Janić, An inequality for convex functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 302 - No. 319 (1970), 39-42.
[2] Z. Opial, Sur une inégalité, Ann. Polon. Math. 8 (1960), 29-32.
[3] D. S. Mitrinović (In cooperation with P. M. Vasić), Analytic inequalities Berlin HeidelbergNew York, 1970.
[4] J. E. Pečarić, On the Jensen-Steffensen inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 634 - No. 677 (1979).
[5] G. Szegö, Uber eine Verallgemeinerung des Dirichleschen Integrals, Math. Z. 52 (1950), 676-685.
[6] Ch. O. Imoru, The Jensen-Steffensen inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 461- No. 497 (1974) 91-105.
[7] Lj.R. Stankovic and I. B. Lackovič, Some remarks on the paper "A note on an inequality" of V.K. Lim. Ibid. No. 461 - No. 497 (1974), 51-54.

