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ON INTEGRABILITY OF TRIGONOMETRIC SERIES

WITH QUASI{MONOTONE COEFFICIENTS

Tatjana Ostrogorski

1. Introduction and results

Consider the formal sine and cosine series

g(x) =

1X
1

an sinnx and f(x) =
1

2
a0 +

1X
1

an cosnx:

The following problem has been studied by many authors: if  is a given
positive function, what hypothesis on fang are equivalent to g 2 L(0; �) or to
f 2 L(0; �)?

First assume that the sequence fang is monotonely decreasing to zero as
n!1.

Boas [4] proved that for  (x) = x�
 , 0 < 
 < 2, the following holds

(1) g 2 L(0; �),

1X
1

 (n)

n
an <1:

Aljan�ci�c, Bojani�c, Tomi�c [1] proved that assertion (1) holds true also for
 (x) = x�
L

�
1
x

�
, 0 < 
 < 2, where L is a slowly varying function; and Aljan�ci�c

[3] obtained a similiar result for  (x) = K
�
1
x

�
where K 2 K (0 < �; � < 2).

Here K(�; �) denotes the class of function de�ned on Ia = [a;1), a > 0, which
are 0-regularly varying (0-RV) at in�nity with lower index � and upper index � [2].

More generally, suppose that the sequence fang is quasi-monotone, i.e. an � 0
and for some � > 0

an+1 � an

�
1 +

�

n

�
;

for n large enough [8].
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Shah [6] and Yong [7] proved, for  (x) = x�
 and  (x) = x�
L
�
1
x

�
, 0 < 
 <

2, respectively, that formula (1) still remains true if fang is quasi-monotone and
tending to zero as n!1.

Moreover, Igari [5] and Yong [7] considered the integrability of  gp, where
p � 1.

Similar results are valid for f .

In the present paper we combine the before mentioned results to prove (1)
for both fang quasi-monotone and  0-regularly varying.

Theorem 1. Let fang be quasi-monotone and an ! 0, n ! 1, and let

K 2 K(1� p < �; � < 1 + p), for 1 � p <1. Then

K

�
1

x

�
gp(x) 2 L(0; �),

1X
1

np�2K(n)an
p <1:

Theorem 2. Let fang be quasi-monotone and an ! 0, n ! 1, and let

K 2 K(1� p < �; � < 1), for 1 � p <1. Then

K

�
1

x

�
fp(x) 2 L(0; �),

1X
1

np�2K(n)an
p <1:

Remark. These theorems give on one hand, a generalisation of Theorems
2 and 3 [3], in which the sequence fang is monotone and p = 1, and on the other
hand, a generalisation of Theorems 1 and 2 [7], in which the function K is regularly
varying and the sequence fang satis�es the further assumption

(�) 0 < M1 � n�L(n)an �M2 <1; � > 0;

where L is a slowly varying function and M1, M2 are constants.

In the proof of the theorems we shall have need of the following lemmas. They
are generalisations of Theorem 1 [5] to 0-regularly varying functions.

By C, possibly with subscripts, we denote a constant; a C may stay for
di�erent constants from one appearence to another.

Lemma 1. Let K 2 K(�; � < p� 1), for 1 � p <1.

1) Let f � 0 be locally integrable on Ia and F (t) =
R t
a
f(u)du. Then

1Z
a

K(t)

�
F (t)

t

�p
dt � C

1Z
a

K(t)fp(t)dt:
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2) Let cn � 0 and An =
Pn

k=1 ck. Then

1X
1

K(n)

�
An

n

�p
� C

1X
1

K(n)cn
p:

Lemma 2. Let K 2 K(p� 1 < �; �), for 1 � p <1.

1) Let f � 0 be locally integrable on Ia and G(t) =
R
1

t f(u)du. Then

1Z
a

K(t)

�
G(t)

t

�p
dt � C

1Z
a

K(t)fp(t)dt:

2) Let cn � 0 and Bn =
P
1

k=n ck. Then

1X
1

K(n)

�
Bn

n

�p
� C

1X
1

K(n)cn
p:

Corollary 1. Let K 2 K(�; � < 1�p), for 1 � p <1. Let f � 0 be locally

integrable in (0; 1=a) and G(t) =
R 1=a
t f(u)du. Then

1=aZ
0

K

�
1

t

��
G(t)

t

�p
dt � C

1=aZ
0

K

�
1

t

�
fp(t)dt:

Corollary 2. Let K 2 K(1�p < �; �), for 1 � p <1. Let f � 0 be locally

integrable in (0; 1=a) and F (t) =
R t
0 f(u)du. Then

1=aZ
0

K

�
1

t

��
F (t)

t

�p
dt � C

1=aZ
0

K

�
1

t

�
fp(t)dt:

2. Properties of 0-regularly varying functions

In this section we cite some properties of 0-regularly varying functions that
are needed in the proof of the theorems. As before, K is assumed to belong to the
class K(�; �).

(i-1) if � < � then
xR
a

t���1K(t)dt � C1x
��K(x).
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2) if � > � then
1R
x

t���1K(t)dt � C2x
��K(x).

(ii) There exist positive constants C1, C2 such that

C1n
�2K(n) �

1=(n�1)Z
1=n

K

�
1

x

�
dx � C2n

�2K(n):

(iii) If � < � then for g locally integrable in (0;1)

1)
1R
a

x�g(x)dx � C1
1R
a

g(x)K(x)dx

2)
1=aR
0

x��g(x)dx � C2
1=aR
0

g(x)K

�
1

x

�
dx.

3. Proofs of the theorems

Proof of Theorem 1. To prove part ( consider

jg(x)j =

�����
1X
k=1

ak sin kx

����� �
nX

k=1

akkx+

�����
1X

k=n+1

ak sin kx

����� :
An application of Abel's transformation to the second sum yields

jg(x)j � x
nX

k=1

kak +

����� 1

2 sin x
2

1X
k=n

(ak � ak+1)

�
cos

�
n+

1

2

�
x� cos

�
k +

1

2

�
x

������ �
� x

nX
k=1

kak +
�

x

1X
k=n

jak � ak+1j:

If we put �
n < x � �

n�1 then we have

(2) jg(x)j �
�

n� 1

nX
k=1

kak + n

1X
k=n

jak � ak+1j:

The sequence fang being quasi-monotone, it follows by [8, p. 5]

(3)

1X
k=n

jak � ak+1j � an + 2�

1X
k=n

ak
k
:

Therefore we obtain by substituting (3) into (2)

jg(x)j �
�

n� 1

nX
k=1

kak + n

 
an + 2�

1X
k=n

ak
k

!
;

�

n
< x �

�

n� 1
;



On integrability of trigonometric series with quasi-monotone coeÆcients 139

and introducing the notation An =
Pn

k=1 kak, Bn =
P
1

k=n
ak
k , we have

(4) jg(x)j � C

�
1

n
An + nan + nBn

�
;

�

n
< x �

�

n� 1
:

Now, this implies that

(5)

�Z
0

jg(x)jpK

�
1

x

�
dx =

1X
n=1

�=(n�1)Z
�=n

jg(x)jpK

�
1

x

�
dx �

� C

1X
n=1

�
1

n
An + nan + nBn

�p �=(n�1)Z
�=n

K

�
1

x

�
dx �

� C1

1X
n=1

�
1

n
An + nan + nBn

�p
n�2K(n)

(where for the last inequality we have used property (ii) of 0-RV functions).

An application of Minkowsky's inequality yields
(6)2
4 �Z
0

jg(x)jpK

�
1

x

�
dx

3
5
1=p

� C1

"
1X
n=1

�
1

n
An + nan + nBn

�p

n�2K(n)

#1=p
�

� C1

"
1X
1

�
An

n

�p
n�2K(n)

#1=p
+ C1

"
1X
1

npan
pn�2K(n)

#1=p
+

+ C1

"
1X
1

npBn
pn�2K(n)

#1=p
= S1 + S2 + S3:

To estimate S1 put cn = nan and K1(n) = n�2K(n). By hypothesis we have
�(K) < 1 + p. Thus it follows that �(K1) = �(K)� 2 < 1 + p� 2 = p� 1, so that
K1 satis�es the assumptions of Lemma 1. Applying the second part of this lemma
to S1 we obtain

(7)

S1
p =

1X
1

n�2K(n)

�
An

n

�p
=

1X
1

K1(n)

�
An

n

�p
� C

1X
1

K1(n)cn
p =

= C

1X
1

n�2K(n)npan
p:

To estimate S3 put cn = an
n and K2(n) = n2p�2K(n). Since �(K) > 1� p, it

follows that �(K2) = �(K) + 2p� 2 > 1� p+ 2p� 2 = p� 1; thus K2 satis�es the
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assumptions of Lemma 2. Applying this lemma to S3 we obtain

(8)

S3
p =

1X
1

n2p�2K(n)

�
Bn

n

�p
=

1X
1

K2(n)

�
Bn

n

�p
� C

1X
1

K2(n)cn
p =

= C

1X
1

n2p�2K(n)
�an
n

�p
= C

1X
1

np�2K(n)an
p:

Finally, from (6), (7) and (8) it follows that2
4 �Z
0

jg(x)jpK

�
1

x

�
dx

3
5
1=p

� C

"
1X
1

np�2K(n)an
p

#1=p
:

This establishes part ( of the theorem.

Remark. If, like in [7], the sequence fang is supposed to satisfy the addi-
tional assumption (�), the proof of part ( becomes somewhat shorter. Indeed, it
is easily seen that in this case Bn � Can; therefore S3 in (6) is estimated by S2.

The proof of part ) is very similar to the corresponding part in Theorem 1
[7] (assumption (�) not being used at all for this part). The only di�erence is that
we replace the class of regularly varying functions by the larger class of 0-regularly
varying functions.

First note that K
�
1
x

�
gp(x) 2 L(0; �) implies g 2 L(0; �). Indeed,

(9)

�Z
0

jg(x)jdx �

0
@ �Z

0

x��pjg(x)jpdx

1
A
1=p0
@ �Z

0

x�p
0

dx

1
A
1=p0

by H�older's inequality. Chose � such that 0 < �p < � (this is possible, since
� > p � 1 > 0). For such � both integrals in (9) converge (the �rst by property
(iii-2) of 0-RV functions).

Now since the integrability of g implies that an are the Fourier coeÆcients of
g, it follows that

G(x) =

xZ
0

g(t)dt =

1X
k=1

ak
k
(1� cos kx) = 2

1X
k=1

ak
k

sin2
kx

2
:

Therefore

(10)

G
��
n

�
= 2

1X
k=1

ak
k

sin2
k�

2n
� 2

nX
k=[n2 ]

ak
k

sin2
k�

2n
�

� 2

nX
k=[n2 ]

ak
k

�
2

�

k�

2n

�2
�

2

4n

nX
k=[n2 ]

ak:
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Now according to the de�nitions of quasi-monotone sequences it follows that
for n

2 < k � n

ak �
ak+1
1 + �

k

� � � � �
ak�

1 + �
k

�n�k � an�
1 + �

k

�k � ane
��:

Hence (10) implies that

(11) G
��
n

�
�

1

2n

nX
[n2 ]+1

ak �
1

2n
ane

��n = Can:

Denoting  (x) =
R x
0 jg(t)jdt we have

1X
1

np�2K(n)an
p � C

1X
1

np�2K(n)Gp
��
n

�
� [by (11)]

� C

1X
1

np�2K(n) p
��
n

�
� C1

1X
1

 p
��
n

� �=(n�1)Z
�=n

�
1

x

�p
K

�
1

x

�
dx [by (ii)]

� C1

1X
1

�=(n�1)Z
�=n

�
1

x

�p

K

�
1

x

�
 p(x)dx = C1

�Z
0

K

�
1

x

��
 (x)

x

�p

dx �

� C2

�Z
0

K

�
1

x

�
jg(x)jpdx

by Corollary 2 (since �(K) > 1� p). This completes the proof of Theorem 1.

Note that in the proof of part) only condition �(K) > 1�p is used; therefore
no restiction on the upper index is necessary for this part of the theorem.

Proof of Theorem 2. To prove part ( consider

jf(x)j =

�����
1X
k=1

ak cos kx

����� �
nX

k=1

ak +

�����
1X

k=n+1

ak cos kx

����� �
�

nX
k=1

ak +

����� 1

2 sin x
2

1X
k=n

(ak � ak+1)

�
sin

�
n+

1

2

�
x� sin

�
k +

1

2

�
x

������ �
�

nX
k=1

ak +
�

x

1X
k=n

jak � ak+1j:

If we set �
n < x � �

n�1 and apply (3) we obtain

jf(x)j �

nX
k=1

ak + n

 
an + 2�

1X
k=n

ak
k

!
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or, introducing the notation An =
Pn

k=1 ak, Bn =
P
1

k=n
ak
k ,

jf(x)j � C(An + nan + nBn):

Now we have like in the proof of Theorem 1

(12)

2
4 �Z
0

jf(x)jpK

�
1

x

�
dx

3
5
1=p

+ C

"
1X
1

(An + nan + nBn)
pn�2K(n)

#1=p
�

� C

"
1X
1

An
pn�2K(n)

#1=p
+ C

"
1X
1

npan
pn�2K(n)

#1=p
+

+ C

"
1X
1

npBn
pn�2K(n)

#1=p
= S1 + S2 + S3:

Since in estimating the sum S3 in (8) only condition �(K) > 1� p was used,
it follows that (8) remains in this case also.

On the other hand, since �(K) < 1, if we set K3(n) = np�2K(n) it follows
that �(K3) = �(K) + p � 2 < 1 + p � 2 = p � 1. Therefore Lemma 1.2 may be
applied to K3

(13)

S1
p
=

1X
1

np�2K(n)

�
An

n

�p

=

1X
1

K3(n)

�
An

n

�p
� C

1X
1

K3(n)an
p =

= C

1X
1

np�2K(n)an
p:

Finally, from (12), (8) and (13) it follows that

2
4 �Z
0

jf(x)jpK

�
1

x

�
dx

3
5
1=p

� C

"
1X
1

np�2K(n)an
p

#1=p

which establishes part ( of the theorem.

To prove the converse, �rst note that fp(x)K
�
1
x

�
2 L(0; �) implies f 2

L(0; �) (cf. (9)). Therefore

F (x) =

xZ
0

f(t)dt =

1X
1

ak
k

sin kx:

Denote ak
k by bk. It is easily seen that whenever fang is quasi-monotone, then so

is fbng

bk+1 =
ak+1
k + 1

�
ak
k + 1

�
1 +

�

k

�
�
ak
k

�
1 +

�

k

�
= bk

�
1 +

�

k

�
:
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Thus we can apply part ) of Theorem 1 to the function

F (x) =

1X
1

bk sin kx

and conclude that the for 0-RV functions K4 such that �(K4) > 1� p the following
holds

1X
1

np�2K4(n)bn
p � C

�Z
0

K4

�
1

x

�
jF (x)jpdx:

Putting K4(n) = npK(n) (for which �(K4) = p+ �(K) > �(K) > 1� p) we obtain

(14)

1X
1

np�2npK(n)bn
p � C

�Z
0

K

�
1

x

�
jF (x)jp

xp
dx:

Therefore, since jF (x)j �
R x
0 jf(t)jdt �  (x), relation (14) yields

1X
1

np�2K(n)an
p � C

�Z
0

K

�
1

x

�
 p(x)

xp
dx:

Finally we can apply Corollary 1 to the last integral to obtain

1X
1

np�2K(n)an
p � C1

�Z
0

K

�
1

x

�
jf(x)jpdx

which completes the proof of the theorem.

4. Proofs of the lemmas

Proof of Lemma 1. Since by hypothesis � < p � 1 and p � 1, it follows
that � < 0. Thus it is possible to chose � such that � < �p < 0.

Now we have by H�older's inequality

F (t) =

tZ
a

f(u)du �

0
@ tZ

a

u�pfp(u)du

1
A
1=p0
@ tZ

a

u��p
0

du

1
A
1=p0

�

� (Ct��p
0+1)1=p

0

0
@ tZ

a

u�pfp(u)du

1
A
1=p
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or

F p(t) � C1t
��p+ p

p0

tZ
a

u�pfp(u)du:

This implies that

(15)

1Z
a

K(t)
F p(t)

tp
dt � C1

1Z
a

K(t)t�pt
��p+ p

p0

tZ
a

u�pfp(u)du dt =

= C1

1Z
a

u�pfp(u)

1Z
u

K(t)��p�1dt du:

Now since � is closen such that �p > �, we can apply property (i-2) of 0-RV
functions to the inner integral in (15) and obtain

1Z
a

K(t)
F p(t)

tp
dt � C2

1Z
a

u�pfp(u)K(u)u��pdu = C2

1Z
a

fp(u)K(u)du:

This establishes part 1) of the lemma. It is obvious that the proof of part 2) follows
along the same lines.

The proof of Lemma 2 is very similar to the proof of Lemma 1 (except that
property (i-1) of 0-RV functions has to be used instead of property (i-2)), and we
therefore omit it.

Corollaries 1 and 2 follow from Lemma 1 and 2 respectively, by introducing
an obvious change of variables in the integrals.
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