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ON INTEGRABILITY OF TRIGONOMETRIC SERIES
WITH QUASI-MONOTONE COEFFICIENTS

Tatjana Ostrogorski

1. Introduction and results

Consider the formal sine and cosine series
o0 1 o0
g(z) = 21: apsinnz and f(x) = 540 + 21: Gy, COSNLE.

The following problem has been studied by many authors: if ¢ is a given
positive function, what hypothesis on {a,} are equivalent to g¢p € L(0,7) or to
fw e L(0,m)?

First assume that the sequence {a,} is monotonely decreasing to zero as
n — oo.

Boas [4] proved that for ¢(z) =2z~ 7, 0 < v < 2, the following holds

Ay < 00.

W) g e L0, &y 1

Aljancié¢, Bojanié, Tomi¢ [1] proved that assertion (1) holds true also for
Y(x) =z L (%), 0 < v < 2, where L is a slowly varying function; and Aljancié¢
[3] obtained a similiar result for ¢(z) = K (%) where K € K (0 < p,p < 2).

Here K(p, p) denotes the class of function defined on I, = [a,0), a > 0, which
are O-regularly varying (0-RV) at infinity with lower index p and upper index 7 [2].

More generally, suppose that the sequence {ay} is quasi-monotone, i.e. a, >0
and for some a > 0 o

Gn+1 < ap (1 + E) >

for n large enough [8].



136 T. Ostrogorski

Shah [6] and Yong [7] proved, for ¢(z) =2~ and ¢(z) =z "L (1),0 <~ <
2, respectively, that formula (1) still remains true if {a,} is quasi-monotone and
tending to zero as n — 0.

Moreover, Igari [5] and Yong [7] considered the integrability of ¢ g?, where
p>1

Similar results are valid for f.

In the present paper we combine the before mentioned results to prove (1)
for both {a,} quasi-monotone and ¢ 0-regularly varying.

THEOREM 1. Let {a,} be quasi-monotone and a, — 0, n — oo, and let
KeK(1-p<p,p<l+p), for1<p<oc. Then

K G) (@) € L0, 7) & insz(n)an” < 0.

THEOREM 2. Let {a,} be quasi-monotone and a, — 0, n — oo, and let
KeK(l-p<pp<1), forl1<p<oo. Then

K (i) ) € LO,m) & ilo:n”2K(n)anp < 0.

REMARK. These theorems give on one hand, a generalisation of Theorems
2 and 3 [3], in which the sequence {a,} is monotone and p = 1, and on the other
hand, a generalisation of Theorems 1 and 2 [7], in which the function K is regularly
varying and the sequence {a,} satisfies the further assumption

(%) 0< M <nPL(n)a, < My < oo, >0,

where L is a slowly varying function and M;, M> are constants.

In the proof of the theorems we shall have need of the following lemmas. They
are generalisations of Theorem 1 [5] to O-regularly varying functions.

By C, possibly with subscripts, we denote a constant; a C' may stay for
different constants from one appearence to another.

LeEMMA 1. Let K € K(p,p <p—1), for 1 <p < c0.
1) Let f > 0 be locally integrable on I, and F(t) = f: f(u)du. Then

7OK(t) <@>pdt < C’]oK(t)f”(t)dt.
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2) Let cp, >0 and Ay =3 _, ck. Then

i K(n) (%) "<c i K (n)e?.

LEMMA 2. Let K € K(p—1< p,p), for 1 <p < oo.
1) Let f > 0 be locally integrable on I, and G(t) = ftoo f(u)du. Then

7K(t) (@)pdt < C’]OK(t)f”(t)dt.

2) Let cp, >0 and By, =Y -, ck. Then

i K(n) (%) "<c ilo: K (n)e?.

1

COROLLARY 1. Let K € K(p,p < 1—p), for 1 <p < oo. Let f > 0 be locally

integrable in (0,1/a) and G(t) = t/a f(u)du. Then

—Jt

1/a

(M) (C9Y w<e [ (1) pro

COROLLARY 2. Let K € K(1—p < p,p), for 1 <p < oo. Let f > 0 be locally
integrable in (0,1/a) and F(t) = fot fw)du. Then

1/a

[ (M) (P9 wee [ (1) proa

2. Properties of 0-regularly varying functions

In this section we cite some properties of O-regularly varying functions that
are needed in the proof of the theorems. As before, K is assumed to belong to the
class K(p,p).

(i-1) if o < p then [t 7 'K(t)dt < Crz~ " K(x).
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2) if 7 >pthen [ 771K (t)dt < Cox K ().

(ii) There exist positive constants Cy, Co such that

1/(n—1)
Cin?K(n) < / K <1> dr < Con 2K (n).
x
1/n

(iii) If o < p then for g locally integrable in (0, co)
1) [27¢g(z)dx < Cy [ g(2)K (z)dz
a

a

—

/a 1/a
2) [z9(x)dz <Cs [ g(z)K <l> dz.
0 0

T

3. Proofs of the theorems

PrRoOOF OF THEOREM 1. To prove part <= consider

o0 o0
Z ay sin kx Z ay, sin kx
k=1

k=n+1
An application of Abel’s transformation to the second sum yields

1 & 1 1
e ;(ak — Qg41) (cos <n+ 5) T — cos <k+ 3

n o0
T
Swg kak-i—g E lax, — agt1]-
k=1 k=n

If we put 7 < x < %5 then we have

lg(z)] =

n
< Z arkr +
k=1

n
lg()] <2 kag +
k=1

n [ee]

™

(2) lg(x)] < n—lgkak +nkz:|ak_ak+1|-
- —

The sequence {a,} being quasi-monotone, it follows by [8, p. 5]

oo o) ap
(3) ;|ak—ak+1|ﬁan+2a; T

Therefore we obtain by substituting (3) into (2)

T ~ > ag T T
kay, nt+2 — 1, - < ,

l9(z)] <
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and introducing the notation A, = >"p_, kay, B, = > ., %, we have

1
(4) 9@ < C (240 +nan 408, ), T<os T
n n n—1
Now, this implies that
m o T/(n=1)
Jusrx (Ha=3 [ s (3)as
X T -
0 n=1 w/n
m/(n—1)
[} 1 p 1
(5) <C Z <—An + na,, + an> / K <—> dr <
n=1 n T
- w/n

) P
1
<Oy g (ﬁAn + na, + an> n2K(n)
n=1

(where for the last inequality we have used property (ii) of 0-RV functions).
An application of Minkowsky’s inequality yields

(6)

7r L/ o] 1/p

/|g(a:)|pK e dx <C; Z lA + na, +nB pn_QK(n) <
z ~ — n n n n >~

0 n=
o0 A p 1/1) [e%e] 1/p

<Gy [Z (—n> n 2K (n) +Ch Zn”an”nﬁK(n) +

TN 1

00 1/p
+ C4 anBnpn_QK(n)] =S +.5 + 5;.
1

To estimate S; put ¢, = na, and K;(n) = n~2K(n). By hypothesis we have
p(K) <1+ p. Thus it follows that p(K;) =p(K) —2<1+p—2=p—1, so that
K, satisfies the assumptions of Lemma 1. Applying the second part of this lemma
to S1 we obtain

o0

S,P = Zn_QK(n) <%>P = il(l(n) <%>P < CiKl(n)cnP =
7 1 1 1
" = Cij:n_2l((n)npanp.

To estimate S3 put ¢, = 2= and K»(n) = n**~?K(n). Since p(K) > 1—p, it

n

follows that p(K2) = p(K) +2p—2>1—p+2p—2=p—1; thus K satisfies the
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assumptions of Lemma 2. Applying this lemma to S3 we obtain
V4 o0
p_ZnQP °K(n ( > ZK2 <7"> ngl:Kg(n)c P —
—C’Zn2p ’K(n (an) —C’an ’K(n

Finally, from (6), (7) and (8) it follows that

T 1/p
[l (3)as|  <c
0

This establishes part < of the theorem.

s 1/p
an_2K(n)anp] .
1

REMARK. If, like in [7], the sequence {a,} is supposed to satisfy the addi-
tional assumption (*), the proof of part < becomes somewhat shorter. Indeed, it
is easily seen that in this case B, < Ca,; therefore S; in (6) is estimated by Ss.

The proof of part = is very similar to the corresponding part in Theorem 1
[7] (assumption (*) not being used at all for this part). The only difference is that
we replace the class of regularly varying functions by the larger class of O-regularly
varying functions.

First note that K (1) g*(z) € L(0,7) implies g € L(0, 7). Indeed,
T T 1/p T I/P’
) / lg(@)lde < / z |g(x) [P da / 77 da
0 0 0

by Hoélder’s inequality. Chose $ such that 0 < Bp < p (this is possible, since
p > p—1>0). For such 8 both integrals in (9) converge (the first by property
(iii-2) of 0-RV functions).

Now since the integrability of g implies that a,, are the Fourier coefficients of
g, it follows that

Therefore
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Now according to the definitions of quasi-monotone sequences it follows that

for g <k <n
Q41 ag
ap > T2 =% 2> 2
T (+8)"" ()
Hence (10) implies that
™ I 1
11 (£)>5- > =
(11) Gn_QnZak_%ane n=Ca,
3
Denoting 1(z) = [ |g(t)|dt we have
[by (11)]

inHK(n)anl’ < cinl’ K (T) <
Ty () wo

<C’an 2K (n)y? ()<012¢p() / (
©/n

/1)
1 p
<ay [ () x|
L w/n !
ro/1
<o [ K (1) wapas
0

by Corollary 2 (since p(K) > 1 — p). This completes the proof of Theorem 1
Note that in the proof of part = only condition p(K) > 1—pis used; therefore
no restiction on the upper index is necessary for this part of the theorem.

PROOF OF THEOREM 2. To prove part <= consider

Z ay coskx| <

k=n+1

IN

T

mﬁgmﬂmwm@wpkmgw))

< Zak+
< Zak+§Z|ak_ak+l|-
k=n

k=1
* < x < -5 and apply (3) we obtain

If weset T
|<Zak +n (an+2az ak)
k=n
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or, introducing the notation A, = Y}’ ax, B, = Y oo, %,

|f(z)] < C(An + na, +nB,).

Now we have like in the proof of Theorem 1

n 1/p 00 1/p
[ / F(2)PK (%) dm] +C |3 (An + 100 +nB)Pn~2K(m)| <

0 1

0 1/p 00 1/p
(12) <C Z Ap,Pn 2K (n) +C Zn”an”nﬁK(n) +
1 1
%) 1/p
+C Z annpn_QK(n)] =514+ 85+Ss.

1

Since in estimating the sum S3 in (8) only condition p(K) > 1 — p was used,
it follows that (8) remains in this case also.

On the other hand, since p(K) < 1, if we set K3(n) = n?~2K(n) it follows
that p(K3) = p(K)+p—2 < 14+p—2=p—1. Therefore Lemma 1.2 may be
applied to K3

S’ = inHK(n) <%>p = im(n) <%>p < CiKg(n)anP -
(13) ' ' '

=C Z n? 2K (n)a,?.
1

Finally, from (12), (8) and (13) it follows that

|' bid ‘| 1/p
1
[irors (1) a| <c
x
! |
which establishes part < of the theorem.

To prove the converse, first note that fP(z)K (2) € L(0,7) implies f €
L(0,7) (cf. (9)). Therefore

o 1/p
Z nsz(n)anp]
1

F(z) = /f(t)dt = i % sin kz.
o 1

Denote 4% by bg. It is easily seen that whenever {a,} is quasi-monotone, then so

is {b,}

o= B 2 (1) <2 1 5) = (143).
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Thus we can apply part = of Theorem 1 to the function
[ee]
F(z) = Z by, sin kx
1

and conclude that the for 0-RV functions K, such that p(K4) > 1 —p the following
holds

S P K (n)ba? < C/K4 (%) |F(2)|Pda.
1 0

Putting K4(n) = nPK(n) (for which p(Ky) = p+ p(K) > p(K) > 1 —p) we obtain
= [ (L) [F@P
2 P z
(14) zljnp nP K (n)b,? < C/K <x> - dz.
0

Therefore, since |F(z)| < [ |f(t)|dt = ¢(x), relation (14) yields

> oo [ (1) V(@)
zljn 2K (n)a,? < C’/K (E) m—pmda:
0

Finally we can apply Corollary 1 to the last integral to obtain

inpfzK(n)anl’ <c ]K (i) \f (2)|Pdz
! 0

which completes the proof of the theorem.

4. Proofs of the lemmas

PrRoOOF Or LEMMA 1. Since by hypothesis p < p— 1 and p > 1, it follows
that p < 0. Thus it is possible to chose A such that p < Ap < 0.

Now we have by Holder’s inequality

t 1/p t 1/p'

Ft) = /t Flu)du < / W £ () du / M| <

a a
t 1/p

< (thkp’ﬂ)l/p’ /u)‘pfp(u)du

a
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or
t

FP(t) < Oyt Pher / w7 (u)du.

a

This implies that

t

71{( )Fp( ) at < 01/1( Yt PPt /u)‘pf”(u)du dt =
(15) o o

Now since A is closen such that Ap > p, we can apply property (i-2) of 0-RV
functions to the inner integral in (15) and obtain

/K dt < Cy / u? fP(u) K (u)u Pdu = Cgffp(u)K(u)du.

This establishes part 1) of the lemma. It is obvious that the proof of part 2) follows
along the same lines.

The proof of Lemma 2 is very similar to the proof of Lemma 1 (except that
property (i-1) of 0-RV functions has to be used instead of property (i-2)), and we
therefore omit it.

Corollaries 1 and 2 follow from Lemma 1 and 2 respectively, by introducing
an obvious change of variables in the integrals.
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