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A NOTE ON THE TWO CARDINAL PROBLEM

Aleksandar Jovanovi�c

Let T be a a theory in a countable language L with 1-placed predicate symbol
U and let A = hA; V; . . . i be a model for L, V being interpretation of predicate
symbol U . We say that A is an (�; �) model if j A j= � and j V j= �. If T has an
(�; �) model, we say that T admits the pair of cardinals (�; �). Given a theory T ,
the question is which pairs (�; �) does T admit. Theorems 1 through 5 are from
(1) (consequtively, Proposition 3.2.11, Theorem 4.3.10, Corollary 4.3.11, Theorem
6.5.11).

Theorem 1. Let T be a theory in a countable language L, and let �; �; 

range over in�nite cardinals. Then:

(i) if T admits (�; �) then T admits (
; �) for all 
 such that � � 
 � �.

(ii) if T admits (�; �) then T admits all (
; 
).

(iii) for each n 2 !, there is theory T such that T admits every (@n(�); �)
and T does not admit any (@n(�)

+; �).

(iv) for each n 2 !, there is a theory T such that T admits every (@n(�); �)
and T does not admit any (@n+1(�); �).

Theorem 2. If a countable theory T admits (�; �) with � > � � !, then T

admits the pair (!1; !).

Theorem 3. If a theory T admits (�; �) and � � !, then for all cardinals 
,
T admits (�
 ; �
). In fact every (�; �) model has an elementary extension, which
is an (�
 ; �
) model.

Corollary 4. Assume the GCH. Suppose � � �0 � �0 � � � ! and
kLk � �0. Then every theory T in L which admits (�; �), admits (�0; �0).

Theorem 5. Let L have a 1-placed predicate symbol U .

(i) if �! � �0 � �! and � � � � !, then every (�; �) model has a complete
extension which is an (�!; �0) model.
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(ii) suppose � � �0 � �0 � �!, � � ! and �0 � kLk. Then every theory
which admits (�; �), admits (�0; �0).

From the above it is clear that, given a pair (�; �) which a theory T admits, inter-
esting would be to get other pairs (
; Æ) admitted by T , such that � � 
 � Æ � �

does not hold, with 
 and Æ being as far apart as possible.

Theorem 3 is obtained using ultrapowers of (�; �) model, over an regular
ultra�lter with the cardinal 
 as index set. Similarly, it follows that if a theory T

admits the pair (�; �), then T admits the pair

 �����
Y
D

�

����� ;
�����
Y
D

�

�����
!
;

for any ultra�lter D. The following theorem is obtained generalizing the proof of
Theorem 3.

Theorem 6. If T admits pairs (�i; �i), where i 2 I and D is an ultra�lter
over I then T admits the pair

 �����
Y
D

�i

����� ;
�����
Y
D

�i

�����
!
:

Hence, if using ultraproducts in two cardinal problem, the goal would be to keep
j
Q

D �ij and j
Q

D �ij as far apart as possible.

The following theorem is from (2).

Theorem 7. If D is (�; �) regular and �; k are cardinals such that

� � � � �; � � k � � and

k� = k, then

(i) j
Q

D kj � 2� and

(ii) j
Q

D kj = j
Q

D kj� .

Corollary 8

(iii) If (cf
)
cf

^= cf
 then j

Q
D cf
j

cf

= j
Q

D cf
j.

(iv) If 
 is strongly inaccessible or (
 = �+ and 2� = �+) then

�����
Y
D




����� = 2
 :
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This indicates that the ultra�lter D above should be as irregular as possible.

To obtain nonregular ultra�lters, large cardinal axioms are used. In fact, the
smaller the cardinal over which nonregular ultra�lter is constructed, the stronger
large cardinal property is used.

Theorem 9. Let k be a measurable cardinal and let D be an normal ultra�letr
over k. Let T be a theory in a countable language.

(i) if T admits pairs (�+; �) for a set of �0s in D then T admits (k+; k).

(ii) if T admits (2�; �) for a set of �0s in D, then T admits the pair (2k; k).

(iii) if T admits (�i; �i) with �i being unlimited almost everywhere and �i
being limited almost everywhere, with, say � then T admits the pair (2k; �).

Proof. Using method of 4.3 of (1).

Theorem 10. Let k be a measurable cardinal with normal ultra�lter D

and let D+ be a k complete uniform ultra�lter over k+; let f = h�i: i 2 ki and
g = h�i: i 2 ki be such that g <D id �D f , id being identity function on k. If a
theory T admits pairs (�i; �i), i 2 k, then there is � < k such that T admits the
pair (2k+; �).

Proof. From theorem 9, it follows that T admits (2k; �). Taking ultrapower
modulo �lter D+ (which is (k; k)-regular and (k+; k+)-regular), we have, applying
Theorem 7, that �����

Y
D+

2k

����� =
�����
Y
D+

k+
k+

����� =
�����
Y
D+

k+
k+
^

����� k+^= 2k+:

The assertion then follows from Theorem 6 and Theorem IX.

With assumption of huge cardinals Magidor (3) obtained the following result.

Theorem 11. If there is a huge cardinal then

(i) there is an uniform ultra�lter D over !2 such that j
Q

D !j � !2

(ii) there is an uniform ultra�lter E over !3 which is not (!3; !1) regular and
such that �����

Y
E

!1

����� � !3:

Applying Corrollary 8, Theorem 5 and Theorem 6 we can conclude.
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Corollary 12

(i) if there is a �lter D over !2 like in (i) of Theorem 11 and 2!1 = !2 (which
is true in the model of (3)) then

if T admits the pair (!2; !) then T admits (2!2 ; !2).

(ii) if there is a �lter E over !3, like in (ii) of Theorem 11 and 2!2 = !3
(which is true in the model of (3)) then

if T admits the pair (!3; !1) then T admits (2!3 ; !3).

The proof of Theorem 11 is general giving rise to similar �lters over the other
cardinals, which can be used similarly as above.
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