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�-ENDOMORPHISM NEAR-RINGS

Vu�ci�c Da�si�c

The concept of a distributively generated near-rings arise if we de�ne addition
and multiplication of endomorphisms of the group (G;+) in the usal manner. It is
possibble to consider the set of the mappings of (G;+) into itself which are similar
to the endomorphisms of a group in such a way that their \linearity" is corrected
by the elements from a normal subgroup � of the group (G;+). These mappings
are called �-endomorphisms of (G;+). The set of �-endomorphisms of G generate
(additively) a near-ring E�(G), whose defect depends on the shoice of the subgroup
�. Also, �-endomorphisms for which is invariant every fully invariant subgroup of
the group (G;+), are investigated. In this case we obtain the subnearring E�(G)
of the near-ring E�(G). Some known properties of the endomorphism near-rings
were transfered to the �-endomorphism near-rings.

Some elementary results relating to the E�-invariant subgroups of (G;+) are
presented in Section 2. In Secton 3 we consider the structure of ideals of the near-
ring E�(G), generalizing the results which were obtained by H . Johnson in [8] and
[9] for the near-ring of endomorphisms. The result in Section 4 refers to the problem
embedding of near-rings into some near-ring of �-endomorphisms and generalizes
the Theorem Heatherly and Malone in [7]. Also, a D-direct sum of subnear-rings
of the near-ring E�(G) is considered, where D is a defect of E�(G).

1. Preliminaries

Throughout this paper term \near-ring" shall mean \left near-ring" R satis-
fying ox = o for all x 2 R. The necessary de�nitions concerning near-rings with a
defect of distributivity are now given.

A set of generators of the near-ring R is a multiplicative subsemigroup S of
R whose elements generale (R;+). Let S be a set of generators of the near-ring R
and let

DS = fd: d = �(xs+ ys) + (x + y)s; x; y 2 R; s 2 Sg:
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The normal subgroup D of the group (R;+) which is generated by the set
DS is called the defect of distributivity of the near-ring R. Thus, for all x; y 2 R
and s 2 S there exists d 2 D such that

(x+ y)s = xs+ ys+ d:

The near-ring R with the defect D will be detoned by (R;S) when we wish to stress
the set of generators S. A near-ring R is called D-distributive if R = S, i.e. for
each x; y; z 2 R there exists d 2 D such that

(x+ y)z = xz + yz + d:

Let (R;S) be a near-ring with the defect D and A � R. The normal subgroup
�A of (R;+) generated by the set A [ AS has the elements of the form

�a =
X
i

(ri � aisi +miai
0 � ri); (ri 2 R; ai; ai

0 2 A; si 2 S; mi{ integers):

For all r, ri 2 R, ai, ai
0 2 A and s, si 2 S there exists d1, d2 2 D such that

(r + �a)s = rs+ �as+ d1 = rs+

 X
i

(ri � aisi +miai
0 � ri)

!
s+ d1

(r + �a)s =
X
i

(ris� aisis+miai
0s� ris) + d2 + d1:

The normal subgroup Dr of the group (R;+) generated by the elements d2 + d1 =
d 2 D which have been obtained in the previous manner, is called a relative defect
of the subset A with respect to R. It is obvious that Dr � D.

Lemma 1.1. ([4]. Lemma 3.2) Let (R;S) be a near-ring with defect. The
normal subgroup B of the group (R;+) is a right ideal of R if and only if B is an
S-subgroup which contains the relative defect of the subset B with respect to R.

Proposition 1.2. ([5], Coroll. of Lemma 1.1) Let (R;S) be a near-ring with
defect and A � R. The normal subgroup �A of (R;+) generated by A[RA[AS[RAS
is an ideal of R if and only if �A contains the relative defect of the subset A [ RA
with respect to R.

Proposition 1.3. ([4], Theorem 2.3 b) Every direct sum of the near-rings
Ri with the defect Di respectively, is a near-ring R whose defect is a direct sum of
the defects Di.
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2. Elementary properties of �-endomorphisms

Let M0(G) be a set of zero preserving mappings of the group (G;+) into
itself.

Definition. Let � be a normal subgroup of the group (G;+). The mapping
f 2M0(G) with (�)f � � is called �-endomorphism of the group (G;+) if for all
x; y 2 G there exists Æ 2 � such that

(x+ y)f = (x)f + (y)f + Æ:

It is easy to prove by induction that for each x1; . . . ; xn 2 G and some �-
endomorphism f there exists Æ 2 � such that

(x1 + . . . + xn)f = (x1)f + � � �+ (xn)f + Æ:

In the case � = (0) we obtain the endomorphisms of the group (G;+). The set of
all �-endomorphisms of the group (G;+) will be denoted by End�(G). This set is
a semigroup with respect to composition.

Let us denote by (G;�)0 the set of all mappings h: G ! � with (0)h = 0.
It is clear that (G;�)0 � End�(G). Thus, for � 6= (0) it follows that End�(G) 6=
End(G).

If (G;+) is non-commutative, then the set of all �-endomorphisms of G will
not be closed under pointwise addition. However, the set of all (�nite) sums and
di�erences of �-endomorphisms of G forms a near-ring, which will be designated
by E�(G). Namely, if f =

P
i(�ti) and h =

P
j(�tj

0); (ti; tj
0 2 End�(G)), then for

all x 2 G we have

(x)fh =
X
j

�

 X
i

((�x)ti)

!
tj

0

=
X
j

�

 X
i

(�x)titj
0 + Æij

!

=
X
j

�

 X
i

(�x)titj
0

!
+ Æ; (Æij ; Æ 2 �):

But, the element Æ 2 � depends on x. If we put Æ = (x)�, then � 2 (G;�)0 i.e.
� 2 End�(G). Hence,

(x)fh = (x)

2
4
0
@X

j

 
�
X
i

titj
0

!1
A+ �

3
5 ; i.e.

fh =
X
j

 X
i

(�tij)

!
+ �;
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where titj
0 = tij 2 End�(G) and � 2 End�(G).

The normal subgroup D of the group (E�(G); +) generated by

fÆ: Æ = �(ht+ ft) + (h+ f)t; h; f 2 E�(G); t 2 End�(G)g

is a defect of distributivity of the near-ring E�(G). It is clear that D � (G;�)0.
For example, the near-ring E�(Z4) = ff0; f1; . . . ; f15g, where � = f0; 2g, has the
defect D = ff0; f3; f12; f13g (table 1).

If the commutator subgroup G0 of (G;+) is a subset of �, then E�(G) is a
D-distributive near-ring, where D is the defect of E�(G). Let G be a nilpotent
group and � its maximal subgroup. Then by Corollary 10.3.2 of [6] it follows that
the near-ring E�(G) is D-distributive, where D is the defect of E�(G).

Let (R;S) be a near-ring with the defect D. For all s 2 S and x 2 R there
is a map fs:x ! xs from R into R. These maps are D-endomorphisms. Let us
denote by ED(R) the near-ring of \right multiplications" of the near-ring R with
the defect D. The defect of distributivity of ED(R) is the set

ffd: (x)fd = xd; x 2 R; d 2 Dg:

Proposition 2.1. If � is a proper normal subgroup of the group (G;+),
then E�(G) �M0(G).

Proof. Anyhow E�(G) � M0(G). If (0) 6= � 6= G and y 2 Gn�, then the
maph 2M0(G) can be de�ned as follows

x(h) =

8><
>:

y; x 2 �, x 6= 0

0 x = 0

x; x 62 �

Since (�) E�(G) � �, we have h 62 E�(G).

If B is a fully invariant subgroup of the group (G;+), then B must not be
invariant with respect to all �-endomorphisms of (G;+). For example, the sub-
group B = f0; 2; 4g of (Z6;+) is not invariant with respect to the �-endomorphism
f =

�
012345
003003

�
, where � = f0; 3g.

Let � be a proper normal subgroup of the group (G;+). There exist nontrivial
�-endomorphisms for which are invariant all subgroups of (G;+). For instance, the
mapping f 2M0(G) with (x)f = x for all x = �, and (x)f = 0 for all x 2 Gn� is
such a �-endomorphism. Let us denote by End�(G) the biggest subsemigroup of
the semigroup End�(G) for which are invariant all fully invariant subgroups of the
group (G;+). If we denote by E�(G) the additive group generated by End�(G),
then E�(G) is a near-ring whose set of generators End�(G) is contained in a set
of generators End�(G) of the near-ring E�(G). Every fully invariant subgroup of
(G;+) which is invariant with respect to End�(G), is invariant with respect to
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E�(G) as well. For this reason we say that the subgroups of this kind are E�-
invariant.

Example 1. The group (Z6;+) has 96 �-endomorphisms for which only the
subgroup � = f0; 3g is invariant. However, the set End�(Z6) = ff0; f1; . . . ; f23g
contains all �-endomorphisms of (Z6;+) for which both subgroups � and B =
f0; 2; 4g are invariant (table 2). If we take for � the subgroup B, then there
exist 486 �-endomorphisms. But by claiming that both subgroups of (Z6;+) are
invariant this number will be reduced to 54.

If � is a fully invariant subgroup of (G;+), then a near-ring E�(G) contains
the endomorphism near-ring E(G). A several following propositions are related
to the elementary proposities of E�-invariant subgroup and they generalize the
corresponding results of M. Jonson in [8].

Proposition 2.2. Let � be a fully invariant subgroup of (G;+) and let
y 2 G, (y 6= 0). If H is a right E�(G)-subgroup, then (y)H is E�-invariant
subgroup of (G;+).

The proof is quite analagous with that in ([8], Lemma 3.1).

Corollary. Let B be E�-invariant subgroup of (G;+) and let y 2 B,
(y 6= 0). If H is a right E�(G)-subgroup, then (y)H is E�-invariant subgroup of
(G;+).

Definition. Let B be a subgroup of the group (G;+) and H �M0(G). If
B is an invariant subgroup with respect to H, then we say that H acts transitively
on B if for all x 2 B, (x 6= 0) we have (x)H = B.

Definition. The group (G;+) is called E�-simple if and only if (G;+) has
not proper E�-invariant subgroups.

Using Corollary of Proposition 2.2 we obtain the following.

Proposition 2.3. Let B be an E�-invariant subgroup of the group (G;+).
Then B is a minimal E�-invariant subgroup of (G;+) if and only if E�(G) acts
transitively on B.

Corollary. Let � be a fully invariant subgroup of (G;+). E�(G) acts
transitively on G if and only if G is E�-simple.

Let G be a group and B � G. Denote by A(B) a right annihilator of B in
E�(G), that is, A(B) = ff 2 E�(G): (b)f = 0 for all b 2 Bg.

Proposition 2.4. Let Bi (i 2 I) be a collection of minimal E�-invariant
subgroups of the group (G;+) and let N be a right E�(G)-subgroup of E�(G)
containing only nilpotent elements. Then N � \iA(Bi).

Proof. Let h 2 N and suppose that for some b 2 Bp (p 2 I), (b)h 6= 0. By
Proposition 2.2 (b)hE�(G) is E�-invariant subgroup. Since Bp is a minimal E�-
invariant subgroup of (G;+), there exists f 2 E�(G) such that (b)hf = b. Hence
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hf is not nilpotent. On the other hand, hf 2 N and this contradiction establishes
the proposition.

The next proposition is easily veri�ed.

Proposition 2.5. Let Bi (i 2 I) be a collection of E�-invariant subgroups
of the group (G;+). If � �

P
i Bi then

P
i Bi is E�-invariant subgroup.

3. The ideal structurs of E�(G)

The results in this section refer to the ideal structures of the near-ring E�(G).
The results of M. Johnson ([8], Lemmas 6.1, 8.5, Thms 6.2, 6.11, 6.12, Propositions
8.9, 8.15) and ([9], Lemma 11, Thms 8 and 16) become a special case of these, when
we take an endomorphism near-ring E(G) instead E�(G).

If H is a subset of E�(G), we de�ne

=(H) = f(x)h:x 2 G; h 2 Hg:

Obvious, =(D) � �, where D is the defect of the near-ring E�(G).

Proposition 3.1. Let B be an E�-invariant subgroup of the group (G;+).
If =(Dr) � B, where Dr is the relative defect of the subset B = ff 2 E�(G):=(f) �
Bg with respect to E�(G), then B is an ideal of E�(G).

Proof. It is easy to show that B is a normal subgroup of (E�(G);+) and
E�(G)-subgroup of E�(G). If Æ 2 Dr then Æ 2 B because =(Dr) � B. Hence B
contains the relative defect of the subset B with respect to E�(G). Therefore, by
Lemma 1.1 it follows that B is a right ideal of E�(G). Also, B is a lift E�(G)-
subgroup. Thus B is an ideal of E�(G).

Proposition 3.2. Let � 6= G be a nonzero fully invariant subgroup of the
group (G;+). Then E�(G) is not a simple near-ring.

Proof. Let Dr be a relative defect of the subset

B = ff 2 E�(G):=(f) � �g

with respect to E�(G). Because Dr � D � (G;�)0, we have =(Dr) � �. By
Proposition 3.1, D is an ideal of E�(G). Since � 6= G it follows that the identity
map is not in B, i.e. B 6= E�(G). Let us de�ne the maph 2 (G;�)0 as follows

(x)h =

�
x; x 2 �

0; x 62 �

This map is a nonzero �-endomorphism and =(h) � �, i.e. h 2 B. Hence, B is a
proper ideal of E�(G).

Proposition 3.3. Let � be a fully invariant subgroup of the group (G;+) �
E�(G) is simple if and only if G is E�-simple.
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Proof. If G is a nonzero E�-simple group it must be either � = (0) or
� = G. For � = (0) the results follows from ([8], Th. 6.12) and for � = G it
follows from ([2], Lemma 4).

Conversely, let now E�(G) be a simple near-ring. If � = (0) the result follows
from ([8], Th. 6.12). If � 6= (0) then it is not a proper subgroup of G. Namely, if
� 6= G then by Proposition 3.2 E�(G) is not a simple near-ring. Thus, let � = G,
i.e. E�(G) = H0(G). If B is a proper subgroup of (G;+), then there always exists
f 2M0(G) for that B is not invariant. Therefore, G is an E�-simple group.

Theorem 3.4. If B is a sum of all minimal nozero E�-invariant subgroups
of a �nite group (G;+) and � � B is fully invariant subgroup of (G;+), then
B = fh 2 E�(G):=(h) � Bg is a proper nonzero ideal of E�(G).

Proof. By Proposition 2.5 it follows that B is E�-invariant subgroup. If Dr

is a relative defect of the subset B with respect to E�(G), then Dr � D � (G;�)0.
Since, � � B we have =(Dr) � B. Thus, by Proposition 3.1 B is an ideal of E�(G).
Clearly, B 6= E�(G). Let fx1; . . . ; xng = G. By Proposition 2.2 (xp)E�(G)(p =
1; . . . ; n) is E�-invariant subgroup of (G;+). Thus, (xp)E�(G) \ B 6= (0) for all
p = 1; . . . ; n. Now the proof is similar to the proof of the Theorem 6.2 in [8].

Proposition 3.5. Let B be a sum of all minimal nonzero E�-invariant
subgroups of a �nite group (G;+) and let � � B be a fully invariant subgroup of
(G;+). If H is a minimal right E�(G)-subgroup of E�(G) then =(H) � B.

The proof is the same as that in ([9], Proposition 6.)

Theorem 3.6. Let B a minimal nonzero E�-invariant subgroup of the group
(G;+). If b 2 B(b 6= 0), then A(b) is a maximal right ideal of E�(G).

Proof. If � = G then E�(G) =M0(G). In this case the result follows from
([10], Th. 3). If � = (0) then result follows by Lemma 8.5 of [8]. Let now � 6= (0)
and � 6= G. Since e 62 A(b) (e is the identity map ), we have that A(b) 6= E�(G).
Let us suppose that there is a right ideal P of E�(G) such that A(b) is a proper
subset of P . By Corollary of Proposition 2.2 it follows that (b)P is an E�-invariant
subgroup of (G;+). Thus, either (b)P = B or (b)P = (0), because B is a minimal
E�-invariant subgroup. Since A(b) � P we have (b)P = B. Consequently, there
exists f 2 P such that (b)f = b. Let h = �f + e, where e is the identity map of G
itself. Clarly h 2 A(b). Thus, e = h+ f 2 P and P = E�(G). Therefore, A(b) is a
maximal ideal of E�(G).

Theorem 3.7. Let B be a minimal nonzero E�-invariant subgroup of the
group (G;+). Then A(B) is a maximal ideal of E�(G).

The proof is similar to the proof of the Proposition 8.15 in [8].

Example 2. Let E�(Z6) be a near-ring of �-endomorphisms of the group
(Z6;+) (table 2). The subgroups B1 = � = f0; 3g and B2 = f0; 2; 4g of (Z6;+)
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are minimal E�-invariant subgroups. The annihilator ideals

A(B1) = ff0; f2; f4; f6; f7; f9; f12; f14; f16; f18; f20; f22g

and

A(B2) = ff0; f3; f9; f11; f12; f13; f14; f21g

are maximal ideals of E�(Z6).

The following theorem gives another type of a maximal right ideal of E�(G)
and generalizes the Proposition 8.9 in [8].

Theorem 3.8. Let B be a maximal E�-invariant subgroup of a �nite group
(G;+) and let � � B be a fully invariant subgroup of (G;+). If x 2 GnB then
B = f� 2 E�(G): (x)� 2 Bg is a maximal right ideal of E�(G).

Proof. It is easy to show that B is a normal E�(G)-subgroup. Let Dr be
a relative defect of the subset B with respect to E�(G). Since Dr � D � (G;�)0
we have Dr � B. Thus, by Lemma 1.1 it follows that B is a right ideal of E�(G).
Morover, B 6= E�(G), because B contains no the identity map e of G into itself.

We will prove that B is a maximal right ideal of E�(G). Let P be a right
ideal of E�(G) such that B � P . Assume that � 2 P and � 62 B i.e. (x)� 62 B.
The normal subgroup (x)�E�(G) +B is E�-invariant. Namely, for all f 2 E�(G)
and t 2 End�(G) we have

((x)�f + b) t = (x)�ft+ (b)t+ Æ 2 (x)�E�(G) +B;

because Æ 2 � � B and b; (b)t 2 B. Since B is a maximal E�-invariant subgroup
of (G;+), then (x)�E�(G) +B = G. Thus, there exist f 2 E�(G) and b 2 B such
that (x)�f + b = x. The maph:G! G with h = ��f+e belongs to E�(G). Since
(x)h = �(x)�f + x = b� x+ x = b 2 B we hawe h 2 B, i,e. h 2 P . Also, �f 2 P .
Hence e = (�f + h) 2 P and P = E�(G). Therefore, B is a miximal right ideal of
E�(G).

Example 3. Let E�(Z4) be a near-ring of �-endomorphisms of the group
(Z4;+) (table 1). The subgroup � = f0; 2g is a maximal E�-invariant subgroup
of (Z4;+). For x = 3 62 � the set

B = ff 2 E�(Z4): (3)f 2 �g = ff0; f3; f7; f8; f12; f13; f14; f15g

is a maximal right ideal of E�(Z4).

Theorem 3.9 Let B 6= G be a sum of all minimal monzero E�-invariant
subgroups of a �nite group (G;+). If � � B is a fully invariant subgroup of (G;+)
then the nil radical of E�(G) is nonzero.

Proof. Let Bi (i 2 I) be a collection of all minimal nonzero E�-invariant
subgroups of (G;+) and let A(Bi) be annihilator ideals of the subgroups Bi (i 2 I).
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We prove �rst that \iA(Bi) is nonzero. Suppose, if possible \iA(Bi) = (0). By
using the Proposition 2.4 it follows that E�(G) contains no nonzero right E�(G)-
subgroup consisting of nilpotent elements. Thus, by Theorem 3 of [3] E�(G) is
a direct sum of minimal nonzero E�(G)-subgroups. Hence, by Proposition 3.5
we obtain =(E�(G)) � B. In particular, for identitety map e 2 E�(G) we have
G = (G)e � B, i.e. G = B. But this contradictory to the supposition that G 6= B.
Therefore \iA(Bi) 6= (0). Since the nil radical is the sum of all nil ideals and
\iA(Bi) is nonzero nil ideal, it follows that the nil radical of E�(G) is nonzero.

Proposition 3.10. Let � be a minimal fully invariant subgroup of a �nite
group (G;+) and let N be any nilpotent E�(G)-subgroup of E�(G). If the normal
subgroup W of the group (E�(G);+), generated by the set E�(G)N , contains the
relative defect of the subset E�(G)N with respect to E�(G), then W is a nilpotent
ideal of E�(G).

Proof. By Proposition 1.2 W is an ideal of E�(G). Since N is a right
E�(G)-subgroup of E�(G) and E�(G) has identity, the elements of W have the
form w =

P
i(fi � hini � fi); (fi; hi 2 E�(G); ni 2 N ). If x 2 G, x 6= 0,

and n 2 N , then E�-invariant subgroup of (G;+) generated by (x)n is properly
contained in the E�-invariant subgroup generated by x. Indeed, let X be E�-
invariant subgroup generated by x and let Y be E�-invariant subgroup generated
by (x)n. Clearly Y � X . Let us suppose that Y = X . Then there exists f 2 E�(G)
such that (x)nf = x and, we have a contradiction, because nf 2 N and N is a
nilpotent E�(G)-subgroup. Thus Y � X .

Let B =
P

k Bk be a sum of all minimal E�-invariant subgroups of (G;+)
and let w =

P
i(fi�hini� fi) 2 W ; (fi; hi 2 E�(G); ni 2 N ). Then there exists

a positive integer p such that (x)wp 2 B, because every fully invariant subgroup
generated by (x)hini is properly contained in the fully invariant subgroup generated
by (x)hi. Thus,

(x)wp+1 = ((x)wp)w =

 X
k

bk

!
w

=
X
i

" X
k

bk

!
fi �

 X
k

bk

!
hini �

 X
k

bk

!
fi

#
:

By Proposition 2.5 B is E�-invariant subgroup, i.e. X
k

bk

!
hini =

 X
k

bk
0

!
ni; (bk; bk

0 2 Bk):

Let ni =
P

j(�tij); (tij 2 End�(G)), then X
k

bk

!
hini =

 X
k

bk
0

!
ni =

 X
k

bk
0

!X
j

(�tij) =

=
X
j

�

 X
k

bk
0

!
tij =

X
j

�

 X
k

(bk
0)tij

!
+ Æ; (Æ 2 �):
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The elements of di�erent minimal E�-invariant subgroups Bk commute element-
wise. Thus

 X
k

bk

!
hini =

X
k

2
4(bk 0)

X
j

(�tij)

3
5+ Æ =

X
k

(bk
0)ni + Æ:

Therefore

(x)wp+1 =
X
i

" X
k

bk

!
fi �

 X
k

(bk
0)ni + Æ

!
�

 X
k

bk

!
fi

#
:

By Proposition 2.4, ni 2 A(Bk) for all k and hence (x)wp+1 2 �. Thus, there exist
Æ0; Æ00 2 � such that

(x)wp+2 = ((x)wp+1)w = (Æ0)w = (Æ0)
X
i

(fi � hini � fi) =

=
X
i

[(Æ0)fi � (Æ0)hini � (Æ0)fi] =

=
X
i

[(Æ0)fi � (Æ00)ni � (Æ0)fi] = 0:

Thus, every element w 2 W is nilpotent. Because G is �nite it follows that W is
nilpotent.

Theorem 3.11. Let � be a minimal fully invariant subgroup of a �nite
group (G;+) and let N be any nilpotent E�(G)-subgroup of E�(G). If the normal
subgroup ! of the group (E�(G);+) generated by the set E�(G)N contains the
relative defect of the subset E�(G)N with respect to E�(G), then the nil radical
�(E�(G)) coincides with the radical J2(E�(G)).

Proof. By Proposition 3.10 N � �(E�(G)), because the nil radical
�(E�(G)) is the sum of all nil ideals. Thus, E�(G)=�(E�(G)) contains no nonzero
nilpotent right E�(G)-subgroups. By using two theorems of Blackett ([3], Thms 1
and 2) it follows that every minimal right ideal of E�(G)=�(E�(G)) contains an
idempotent element. By Beidleman [1], a proper ideal B of a near-ring R is called
a strong radical-ideal of R if and only if every nonzero right ideal R=B contains a
minimal right ideal which contains an idempotent element. Hence, �(E�(G)) is a
strong radical-ideal of E�(G). The following step in the proof is the same as that
of ([1], Th. 8).

If the group (G;+) is equal to the sum of its minimal fully invariant subgroups,
then as an immediate consequence of Proposition 3 of [1], J2(E(G)) = (0), where
E(G) is an endomorphism near-ring. However, this is not true for near-ring E�(G)
if (G;+) is equal to the sum its minimal E�-invariant subgroups, where � is a
proper minimal E�-invariant subgroup of (G;+). For example, the group (Z6;+)
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is a direct sum of a minimal E�-invariant subgroups B1 = � = f0; 3g and B2 =
f0; 2; 4g, but the radical

J2(E�(Z6)) = D = ff0; f9; F12; f14g 6= (0);

where D is the defect of the near-ring E�(Z6) (table 2). In general, let (G;+) be a
direct sum of minimal E�-invariant subgroups, where � is a proper E�-invariant
subgroup and let D be the defect of the near-ring E�(G). Is it J2(E�(G)) = D?
The answer is connected to the posiibility that every �-endomorphism f of (G;+)
can be uniqeuly expressed in the form f = h+ Æ, where h 2 E(G) and Æ 2 D.

4. Embeddings of near-ring with defect into some E�(G)

The problem of embedding the near-rings with the defect of distributivity is
not easy. The following results refer to the particular case and generalize corre-
sponding results for distributively generated near-ring (see [7]).

By using the technique of \right multiplicator" we have.

Proposition 4.1. Let (R;S) be a near-ring with the defect D. If A(R) =
(0), then R embeos in ED(R).

Proposition 4.2. Let R be a near-ring such that R = A(R)� B, where B
is an ideal of R. Let D 6= R be the defect of distributivity of R. Then D is the
defect of the near-ring B.

Proof. Since B ' R=A(R) it follows that B is a near-ring with the defect
D0. On the other hand A(R) = fa 2 R: ra = 0, for all r 2 Rg, i.e. A(R) is a
near-ring with the defect D00 = (0). By Proposition 1.3 R is a near-ring with the
defect D = D0 �D00 = D0.

Theorem 4.3. Let (R;S) be a near-ring with the defect D 6= R and let R be
a direct sum of ideals which include A(R), where A(R) is �nite. Then there exist
the group (G;+) and its normal subgroup � such that R embeds in E�(G).

Proof. Let R = A(R)� B. By Proposition 3 of [7], A(R) embeds in some
E(G1). Bu Lemma 2 of [7], A(B) = (0). Since D is a defect of B (Proposition
4.2), it follows that B embeds in ED(B) (Proposition 4.1). Thus, R embeds in
R = E(G1) � ED(B), whereby multiplication on R is componentwise. Let D
be a defect of the near-ring ED(B). Then, by Proposition 1.3 it follows that
R is a near-ring with defect D 6= R, because the defect of E(G1) is zero. The
nearring R contains identity e = (e1; e2), where e1 2 E(G1) and e2 2 ED(B)
are identity mappings, thus A(R) = (0). Hence by Proposition 4.1 R embeds in
ED(R). Consequently, there exist the group (G;+) and its normal subgroup �
such that R embeds in E�(G).

Definition. Let (R;+) be a direct sum of the subgroups (A;+) and (B;+).
Let (A;+; :) and (B;+; :) be two subnear-rings of the nearring



72 Vu�ci�c Da�si�c



�-Endomorphism near-rings 73



74 Vu�ci�c Da�si�c



�-Endomorphism near-rings 75

(R;+; :) with the defect D. A multiplication on R is D-componentwise if for all
a; a0 2 A and b; b0 2 B there exists d 2 D such that (a+ b)(a0 + b0) = aa0 + bb+d.
We say that R is a D-direct sum of thee subnear-rings A and B.

Let E�(G) be a �-endomorphism near-ring with the defect D. For some
idempotent e 2 E�(G) let A be the subgroup of (E�(G);+) generated by fs �
es: s 2 End�(G)g and M be the subgroup of (E�(G);+) generated by fes: s 2
End�(G)g.

Theorem 4.4. Let G = B � C be a direct sum of E�-invariant subgroups
B and C, where B is summand and � is a subset of one of the summands. If e
is the projection map e:G! B and AM � D, then E�(G) is the D-direct sum of
the subnear-rings A and M, where D is the defect of E�(G).

Proof. The projection map e:G ! B is an endomorphism of (G;+). The
idempotent e 2 End(G) is a right identity for M. Hence, M is a subnear-ring
of E�(G). Also, by Corollary 2.3 of [11] it follows that A is an ideal of E�(G).
Because B and C commute elementwise and B is E�-invariant abelian summand,
it follows that the decomposition E�(G) = A +M has M in the additive center
of E�(G), i.e. semidirect sum A+M is direct.

We shall now prove that the multiplication on E�(G) is D-componentwise.
Let a; a0 2 A and m;m0 2 M, where a0 = s0 � es0, m = et, m0 = et0(s0; t; t0 2
End�(G)). Then

(a+m)(a0 +m0) = (a+m)(s0 � es0) + (a+m)et0

= (a+m)s0 � (a+m)es0 + (a+m)et0 =

= as0 +ms0 + Æ1 � (aes0 +mes0 + Æ2) + aet0 +met0 + Æ3 =

= as0 � aes0 + aet0 +ms0 �mes0 +met0 + Æ =

= aa0 + am0 +ma0 +mm0 + Æ

= aa0 +mm0 + Æ0; (Æ1; Æ2; Æ3; Æ; Æ
0 2 D)

because ma0 = et(s0 � es0) = ets0 � etes0 = 0 and AM � D.

For example, if for an idempotent of the near-ring E�(Z6) with the defect
D = ff0; f9; f12; f14g (table 2) we take the map e = f3:G ! B = f0; 3g then,
E�(Z6) is a D-direct sum of the subnear-rings

A = ff0; f2; f4; f6; f7; f9; f11; f12; f13; f14; f16; f18; f20; f22g

and M = ff0; f3g
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