Δ -ENDOMORPHISM NEAR-RINGS

Vučić Dašić

The concept of a distributively generated near-rings arise if we define addition and multiplication of endomorphisms of the group (G, +) in the usal manner. It is possibble to consider the set of the mappings of (G, +) into itself which are similar to the endomorphisms of a group in such a way that their "linearity" is corrected by the elements from a normal subgroup Δ of the group (G, +). These mappings are called Δ -endomorphisms of (G, +). The set of Δ -endomorphisms of G generate (additively) a near-ring $\mathcal{E}_{\Delta}(G)$, whose defect depends on the shoice of the subgroup Δ . Also, Δ -endomorphisms for which is invariant every fully invariant subgroup of the group (G, +), are investigated. In this case we obtain the subnearing $E_{\Delta}(G)$ of the near-ring $\mathcal{E}_{\Delta}(G)$. Some known properties of the endomorphism near-rings were transfered to the Δ -endomorphism near-rings.

Some elementary results relating to the E_{Δ} -invariant subgroups of (G, +) are presented in Section 2. In Secton 3 we consider the structure of ideals of the nearring $E_{\Delta}(G)$, generalizing the results which were obtained by H. Johnson in [8] and [9] for the near-ring of endomorphisms. The result in Section 4 refers to the problem embedding of near-rings into some near-ring of Δ -endomorphisms and generalizes the Theorem Heatherly and Malone in [7]. Also, a \mathcal{D} -direct sum of subnear-rings of the near-ring $E_{\Delta}(G)$ is considered, where \mathcal{D} is a defect of $E_{\Delta}(G)$.

1. Preliminaries

Throughout this paper term "near-ring" shall mean "left near-ring" R satisfying ox = o for all $x \in R$. The necessary definitions concerning near-rings with a defect of distributivity are now given.

A set of generators of the near-ring R is a multiplicative subsemigroup S of R whose elements generale (R, +). Let S be a set of generators of the near-ring R and let

$$D_S = \{ d: d = -(xs + ys) + (x + y)s, \quad x, y \in R, \quad s \in S \}.$$

This paper forms part of the author's doctoral dissertation to be submitted to the University of Sarajevo in 1979. I wish to express my gratitude to Prof. V. Perić for much helpful discussion and advice.

Vučić Dašić

The normal subgroup D of the group (R, +) which is generated by the set D_S is called the defect of distributivity of the near-ring R. Thus, for all $x, y \in R$ and $s \in S$ there exists $d \in D$ such that

$$(x+y)s = xs + ys + d.$$

The near-ring R with the defect D will be detoned by (R, S) when we wish to stress the set of generators S. A near-ring R is called D-distributive if R = S, i.e. for each $x, y, z \in R$ there exists $d \in D$ such that

$$(x+y)z = xz + yz + d.$$

Let (R, S) be a near-ring with the defect D and $A \subset R$. The normal subgroup \overline{A} of (R, +) generated by the set $A \cup AS$ has the elements of the form

$$\bar{a} = \sum_{i} (r_i \pm a_i s_i + m_i a_i' - r_i), \quad (r_i \in R, \ a_i, a_i' \in A, \ s_i \in S, \ m_i - \text{ integers}).$$

For all $r, r_i \in R, a_i, a_i' \in A$ and $s, s_i \in S$ there exists $d_1, d_2 \in D$ such that

$$(r+\bar{a})s = rs + \bar{a}s + d_1 = rs + \left(\sum_i (r_i \pm a_i s_i + m_i a_i' - r_i)\right)s + d_1$$
$$(r+\bar{a})s = \sum_i (r_i s \pm a_i s_i s + m_i a_i' s - r_i s) + d_2 + d_1.$$

The normal subgroup D_r of the group (R, +) generated by the elements $d_2 + d_1 = d \in D$ which have been obtained in the previous manner, is called a relative defect of the subset A with respect to R. It is obvious that $D_r \subseteq D$.

LEMMA 1.1. ([4]. Lemma 3.2) Let (R, S) be a near-ring with defect. The normal subgroup B of the group (R, +) is a right ideal of R if and only if B is an S-subgroup which contains the relative defect of the subset B with respect to R.

PROPOSITION 1.2. ([5], Coroll. of Lemma 1.1) Let (R, S) be a near-ring with defect and $A \subset R$. The normal subgroup \overline{A} of (R, +) generated by $A \cup RA \cup AS \cup RAS$ is an ideal of R if and only if \overline{A} contains the relative defect of the subset $A \cup RA$ with respect to R.

PROPOSITION 1.3. ([4], Theorem 2.3 b) Every direct sum of the near-rings R_i with the defect D_i respectively, is a near-ring R whose defect is a direct sum of the defects D_i .

2. Elementary properties of Δ -endomorphisms

Let $M_0(G)$ be a set of zero preserving mappings of the group (G, +) into itself.

DEFINITION. Let Δ be a normal subgroup of the group (G, +). The mapping $f \in M_0(G)$ with $(\Delta)f \subseteq \Delta$ is called Δ -endomorphism of the group (G, +) if for all $x, y \in G$ there exists $\delta \in \Delta$ such that

$$(x+y)f = (x)f + (y)f + \delta.$$

It is easy to prove by induction that for each $x_1, \ldots, x_n \in G$ and some Δ endomorphism f there exists $\delta \in \Delta$ such that

$$(x_1 + \ldots + x_n)f = (x_1)f + \cdots + (x_n)f + \delta.$$

In the case $\Delta = (0)$ we obtain the endomorphisms of the group (G, +). The set of all Δ -endomorphisms of the group (G, +) will be denoted by $\mathcal{E}nd_{\Delta}(G)$. This set is a semigroup with respect to composition.

Let us denote by $(G, \Delta)_0$ the set of all mappings $h: G \to \Delta$ with (0)h = 0. It is clear that $(G, \Delta)_0 \subseteq \mathcal{E}nd_{\Delta}(G)$. Thus, for $\Delta \neq (0)$ it follows that $\mathcal{E}nd_{\Delta}(G) \neq End(G)$.

If (G, +) is non-commutative, then the set of all Δ -endomorphisms of G will not be closed under pointwise addition. However, the set of all (finite) sums and differences of Δ -endomorphisms of G forms a near-ring, which will be designated by $\mathcal{E}_{\Delta}(G)$. Namely, if $f = \sum_{i} (\pm t_i)$ and $h = \sum_{j} (\pm t_j')$, $(t_i, t_j' \in \mathcal{E}nd_{\Delta}(G))$, then for all $x \in G$ we have

$$(x)fh = \sum_{j} \pm \left(\sum_{i} \left((\pm x)t_{i}\right)\right) t_{j}'$$
$$= \sum_{j} \pm \left(\sum_{i} (\pm x)t_{i}t_{j}' + \delta_{ij}\right)$$
$$= \sum_{j} \pm \left(\sum_{i} (\pm x)t_{i}t_{j}'\right) + \delta, \quad (\delta_{ij}, \delta \in \Delta).$$

But, the element $\delta \in \Delta$ depends on x. If we put $\delta = (x)\alpha$, then $\alpha \in (G, \Delta)_0$ i.e. $\alpha \in \mathcal{E}nd_{\Delta}(G)$. Hence,

$$(x)fh = (x)\left[\left(\sum_{j} \left(\pm \sum_{i} t_{i}t_{j}'\right)\right) + \alpha\right], \text{ i.e.}$$
$$fh = \sum_{j} \left(\sum_{i} (\pm t_{ij})\right) + \alpha,$$

where $t_i t_j' = t_{ij} \in \mathcal{E}nd_{\Delta}(G)$ and $\alpha \in \mathcal{E}nd_{\Delta}(G)$.

The normal subgroup \mathcal{D} of the group $(\mathcal{E}_{\Delta}(G), +)$ generated by

$$\{\delta: \delta = -(ht + ft) + (h + f)t, \quad h, f \in \mathcal{E}_{\Delta}(G), \ t \in \mathcal{E}nd_{\Delta}(G)\}$$

is a defect of distributivity of the near-ring $\mathcal{E}_{\Delta}(G)$. It is clear that $\mathcal{D} \subseteq (G, \Delta)_0$. For example, the near-ring $\mathcal{E}_{\Delta}(Z_4) = \{f_0, f_1, \ldots, f_{15}\}$, where $\Delta = \{0, 2\}$, has the defect $\mathcal{D} = \{f_0, f_3, f_{12}, f_{13}\}$ (table 1).

If the commutator subgroup G' of (G, +) is a subset of Δ , then $\mathcal{E}_{\Delta}(G)$ is a \mathcal{D} -distributive near-ring, where \mathcal{D} is the defect of $\mathcal{E}_{\Delta}(G)$. Let G be a nilpotent group and Δ its maximal subgroup. Then by Corollary 10.3.2 of [6] it follows that the near-ring $\mathcal{E}_{\Delta}(G)$ is \mathcal{D} -distributive, where \mathcal{D} is the defect of $\mathcal{E}_{\Delta}(G)$.

Let (R, S) be a near-ring with the defect D. For all $s \in S$ and $x \in R$ there is a map $f_s: x \to xs$ from R into R. These maps are D-endomorphisms. Let us denote by $\mathcal{E}_D(R)$ the near-ring of "right multiplications" of the near-ring R with the defect D. The defect of distributivity of $\mathcal{E}_D(R)$ is the set

$$\{f_d: (x)f_d = xd, x \in R, d \in D\}.$$

PROPOSITION 2.1. If Δ is a proper normal subgroup of the group (G, +), then $\mathcal{E}_{\Delta}(G) \subset M_0(G)$.

PROOF. Anyhow $\mathcal{E}_{\Delta}(G) \subseteq M_0(G)$. If $(0) \neq \Delta \neq G$ and $y \in G \setminus \Delta$, then the map $h \in M_0(G)$ can be defined as follows

$$x(h) = \begin{cases} y, & x \in \Delta, \ x \neq 0 \\ 0 & x = 0 \\ x, & x \notin \Delta \end{cases}$$

Since $(\Delta) \mathcal{E}_{\Delta}(G) \subseteq \Delta$, we have $h \notin \mathcal{E}\Delta(G)$.

If B is a fully invariant subgroup of the group (G, +), then B must not be invariant with respect to all Δ -endomorphisms of (G, +). For example, the subgroup $B = \{0, 2, 4\}$ of $(Z_6, +)$ is not invariant with respect to the Δ -endomorphism $f = \begin{pmatrix} 012345\\ 003003 \end{pmatrix}$, where $\Delta = \{0, 3\}$.

Let Δ be a proper normal subgroup of the group (G, +). There exist nontrivial Δ -endomorphisms for which are invariant all subgroups of (G, +). For instance, the mapping $f \in M_0(G)$ with (x)f = x for all $x = \Delta$, and (x)f = 0 for all $x \in G \setminus \Delta$ is such a Δ -endomorphism. Let us denote by $End_{\Delta}(G)$ the biggest subsemigroup of the semigroup $End_{\Delta}(G)$ for which are invariant all fully invariant subgroups of the group (G, +). If we denote by $E_{\Delta}(G)$ the additive group generated by $End_{\Delta}(G)$, then $E_{\Delta}(G)$ is a near-ring whose set of generators $End_{\Delta}(G)$ is contained in a set of generators $End_{\Delta}(G)$ of the near-ring $\mathcal{E}_{\Delta}(G)$. Every fully invariant subgroup of (G, +) which is invariant with respect to $End_{\Delta}(G)$, is invariant with respect to

64

 $E_{\Delta}(G)$ as well. For this reason we say that the subgroups of this kind are E_{Δ} -invariant.

EXAMPLE 1. The group $(Z_6, +)$ has 96 Δ -endomorphisms for which only the subgroup $\Delta = \{0, 3\}$ is invariant. However, the set $End_{\Delta}(Z_6) = \{f_0, f_1, \ldots, f_{23}\}$ contains all Δ -endomorphisms of $(Z_6, +)$ for which both subgroups Δ and $B = \{0, 2, 4\}$ are invariant (table 2). If we take for Δ the subgroup B, then there exist 486 Δ -endomorphisms. But by claiming that both subgroups of $(Z_6, +)$ are invariant this number will be reduced to 54.

If Δ is a fully invariant subgroup of (G, +), then a near-ring $E_{\Delta}(G)$ contains the endomorphism near-ring E(G). A several following propositions are related to the elementary proposities of E_{Δ} -invariant subgroup and they generalize the corresponding results of M. Jonson in [8].

PROPOSITION 2.2. Let Δ be a fully invariant subgroup of (G, +) and let $y \in G$, $(y \neq 0)$. If \mathcal{H} is a right $E_{\Delta}(G)$ -subgroup, then $(y)\mathcal{H}$ is E_{Δ} -invariant subgroup of (G, +).

The proof is quite analogous with that in ([8], Lemma 3.1).

COROLLARY. Let B be E_{Δ} -invariant subgroup of (G, +) and let $y \in B$, $(y \neq 0)$. If \mathcal{H} is a right $E_{\Delta}(G)$ -subgroup, then $(y)\mathcal{H}$ is E_{Δ} -invariant subgroup of (G, +).

DEFINITION. Let B be a subgroup of the group (G, +) and $\mathcal{H} \subseteq M_0(G)$. If B is an invariant subgroup with respect to \mathcal{H} , then we say that \mathcal{H} acts transitively on B if for all $x \in \mathbf{B}$, $(x \neq 0)$ we have $(x)\mathcal{H} = B$.

DEFINITION. The group (G, +) is called E_{Δ} -simple if and only if (G, +) has not proper E_{Δ} -invariant subgroups.

Using Corollary of Proposition 2.2 we obtain the following.

PROPOSITION 2.3. Let B be an E_{Δ} -invariant subgroup of the group (G, +). Then B is a minimal E_{Δ} -invariant subgroup of (G, +) if and only if $E_{\Delta}(G)$ acts transitively on B.

COROLLARY. Let Δ be a fully invariant subgroup of (G, +). $E_{\Delta}(G)$ acts transitively on G if and only if G is E_{Δ} -simple.

Let G be a group and $B \subset G$. Denote by $\mathcal{A}(B)$ a right annihilator of B in $E_{\Delta}(G)$, that is, $\mathcal{A}(B) = \{f \in E_{\Delta}(G): (b)f = 0 \text{ for all } b \in B\}.$

PROPOSITION 2.4. Let B_i $(i \in I)$ be a collection of minimal E_{Δ} -invariant subgroups of the group (G, +) and let \mathcal{N} be a right $E_{\Delta}(G)$ -subgroup of $E_{\Delta}(G)$ containing only nilpotent elements. Then $\mathcal{N} \subseteq \cap_i \mathcal{A}(B_i)$.

PROOF. Let $h \in \mathcal{N}$ and suppose that for some $b \in B_p$ $(p \in I)$, $(b)h \neq 0$. By Proposition 2.2 $(b)hE_{\Delta}(G)$ is E_{Δ} -invariant subgroup. Since B_p is a minimal E_{Δ} invariant subgroup of (G, +), there exists $f \in E_{\Delta}(G)$ such that (b)hf = b. Hence hf is not nilpotent. On the other hand, $hf \in \mathcal{N}$ and this contradiction establishes the proposition.

The next proposition is easily verified.

PROPOSITION 2.5. Let B_i $(i \in I)$ be a collection of E_{Δ} -invariant subgroups of the group (G, +). If $\Delta \subseteq \sum_i B_i$ then $\sum_i B_i$ is E_{Δ} -invariant subgroup.

3. The ideal structure of $E_{\Delta}(G)$

The results in this section refer to the ideal structures of the near-ring $E_{\Delta}(G)$. The results of M. Johnson ([8], Lemmas 6.1, 8.5, Thms 6.2, 6.11, 6.12, Propositions 8.9, 8.15) and ([9], Lemma 11, Thms 8 and 16) become a special case of these, when we take an endomorphism near-ring E(G) instead $E_{\Delta}(G)$.

If \mathcal{H} is a subset of $E_{\Delta}(G)$, we define

$$\Im(\mathcal{H}) = \{ (x)h \colon x \in G, \quad h \in \mathcal{H} \}.$$

Obvious, $\mathfrak{T}(\mathcal{D}) \subseteq \Delta$, where \mathcal{D} is the defect of the near-ring $E_{\Delta}(G)$.

PROPOSITION 3.1. Let B be an E_{Δ} -invariant subgroup of the group (G, +). If $\mathfrak{T}(\mathcal{D}_r) \subseteq B$, where \mathcal{D}_r is the relative defect of the subset $\mathcal{B} = \{f \in E_{\Delta}(G) \colon \mathfrak{T}(f) \subseteq B\}$ with respect to $E_{\Delta}(G)$, then \mathcal{B} is an ideal of $E_{\Delta}(G)$.

PROOF. It is easy to show that \mathcal{B} is a normal subgroup of $(E_{\Delta}(G), +)$ and $E_{\Delta}(G)$ -subgroup of $E_{\Delta}(G)$. If $\delta \in \mathcal{D}_r$ then $\delta \in \mathcal{B}$ because $\mathfrak{I}(\mathcal{D}_r) \subseteq B$. Hence \mathcal{B} contains the relative defect of the subset \mathcal{B} with respect to $E_{\Delta}(G)$. Therefore, by Lemma 1.1 it follows that \mathcal{B} is a right ideal of $E_{\Delta}(G)$. Also, \mathcal{B} is a lift $E_{\Delta}(G)$ -subgroup. Thus \mathcal{B} is an ideal of $E_{\Delta}(G)$.

PROPOSITION 3.2. Let $\Delta \neq G$ be a nonzero fully invariant subgroup of the group (G, +). Then $E_{\Delta}(G)$ is not a simple near-ring.

PROOF. Let \mathcal{D}_r be a relative defect of the subset

$$\mathcal{B} = \{ f \in E_{\Delta}(G) \colon \Im(f) \subseteq \Delta \}$$

with respect to $E_{\Delta}(G)$. Because $\mathcal{D}_r \subseteq \mathcal{D} \subseteq (G, \Delta)_0$, we have $\mathfrak{F}(\mathcal{D}_r) \subseteq \Delta$. By Proposition 3.1, \mathcal{D} is an ideal of $E_{\Delta}(G)$. Since $\Delta \neq G$ it follows that the identity map is not in \mathcal{B} , i.e. $\mathcal{B} \neq E_{\Delta}(G)$. Let us define the map $h \in (G, \Delta)_0$ as follows

$$(x)h = \begin{cases} x, & x \in \Delta \\ 0, & x \notin \Delta \end{cases}$$

This map is a nonzero Δ -endomorphism and $\Im(h) \subseteq \Delta$, i.e. $h \in \mathcal{B}$. Hence, \mathcal{B} is a proper ideal of $E_{\Delta}(G)$.

PROPOSITION 3.3. Let Δ be a fully invariant subgroup of the group $(G, +) \cdot E_{\Delta}(G)$ is simple if and only if G is E_{Δ} -simple.

PROOF. If G is a nonzero E_{Δ} -simple group it must be either $\Delta = (0)$ or $\Delta = G$. For $\Delta = (0)$ the results follows from ([8], Th. 6.12) and for $\Delta = G$ it follows from ([2], Lemma 4).

Conversely, let now $E_{\Delta}(G)$ be a simple near-ring. If $\Delta = (0)$ the result follows from ([8], Th. 6.12). If $\Delta \neq (0)$ then it is not a proper subgroup of G. Namely, if $\Delta \neq G$ then by Proposition 3.2 $E_{\Delta}(G)$ is not a simple near-ring. Thus, let $\Delta = G$, i.e. $E_{\Delta}(G) = H_0(G)$. If B is a proper subgroup of (G, +), then there always exists $f \in M_0(G)$ for that B is not invariant. Therefore, G is an E_{Δ} -simple group.

THEOREM 3.4. If B is a sum of all minimal nozero E_{Δ} -invariant subgroups of a finite group (G, +) and $\Delta \subseteq B$ is fully invariant subgroup of (G, +), then $\mathcal{B} = \{h \in E_{\Delta}(G) : \Im(h) \subseteq B\}$ is a proper nonzero ideal of $E_{\Delta}(G)$.

PROOF. By Proposition 2.5 it follows that B is E_{Δ} -invariant subgroup. If \mathcal{D}_r is a relative defect of the subset \mathcal{B} with respect to $E_{\Delta}(G)$, then $\mathcal{D}_r \subseteq \mathcal{D} \subseteq (G, \Delta)_0$. Since, $\Delta \subseteq B$ we have $\Im(\mathcal{D}_r) \subseteq B$. Thus, by Proposition 3.1 \mathcal{B} is an ideal of $E_{\Delta}(G)$. Clearly, $\mathcal{B} \neq E_{\Delta}(G)$. Let $\{x_1, \ldots, x_n\} = G$. By Proposition 2.2 $(x_p)E_{\Delta}(G)(p = 1, \ldots, n)$ is E_{Δ} -invariant subgroup of (G, +). Thus, $(x_p)E_{\Delta}(G) \cap B \neq (0)$ for all $p = 1, \ldots, n$. Now the proof is similar to the proof of the Theorem 6.2 in [8].

PROPOSITION 3.5. Let B be a sum of all minimal nonzero E_{Δ} -invariant subgroups of a finite group (G, +) and let $\Delta \subseteq B$ be a fully invariant subgroup of (G, +). If \mathcal{H} is a minimal right $E_{\Delta}(G)$ -subgroup of $E_{\Delta}(G)$ then $\mathfrak{I}(\mathcal{H}) \subseteq B$.

The proof is the same as that in ([9], Proposition 6.)

THEOREM 3.6. Let B a minimal nonzero E_{Δ} -invariant subgroup of the group (G, +). If $b \in B(b \neq 0)$, then $\mathcal{A}(b)$ is a maximal right ideal of $E_{\Delta}(G)$.

PROOF. If $\Delta = G$ then $E_{\Delta}(G) = M_0(G)$. In this case the result follows from ([10], Th. 3). If $\Delta = (0)$ then result follows by Lemma 8.5 of [8]. Let now $\Delta \neq (0)$ and $\Delta \neq G$. Since $e \notin \mathcal{A}(b)$ (e is the identity map), we have that $\mathcal{A}(b) \neq E_{\Delta}(G)$. Let us suppose that there is a right ideal \mathcal{P} of $E_{\Delta}(G)$ such that $\mathcal{A}(b)$ is a proper subset of \mathcal{P} . By Corollary of Proposition 2.2 it follows that $(b)\mathcal{P}$ is an E_{Δ} -invariant subgroup of (G, +). Thus, either $(b)\mathcal{P} = B$ or $(b)\mathcal{P} = (0)$, because B is a minimal E_{Δ} -invariant subgroup. Since $\mathcal{A}(b) \subset \mathcal{P}$ we have $(b)\mathcal{P} = B$. Consequently, there exists $f \in \mathcal{P}$ such that (b)f = b. Let h = -f + e, where e is the identity map of G itself. Clarly $h \in \mathcal{A}(b)$. Thus, $e = h + f \in \mathcal{P}$ and $\mathcal{P} = E_{\Delta}(G)$. Therefore, $\mathcal{A}(b)$ is a maximal ideal of $E_{\Delta}(G)$.

THEOREM 3.7. Let B be a minimal nonzero E_{Δ} -invariant subgroup of the group (G, +). Then $\mathcal{A}(B)$ is a maximal ideal of $E_{\Delta}(G)$.

The proof is similar to the proof of the Proposition 8.15 in [8].

EXAMPLE 2. Let $E_{\Delta}(Z_6)$ be a near-ring of Δ -endomorphisms of the group $(Z_6, +)$ (table 2). The subgroups $B_1 = \Delta = \{0, 3\}$ and $B_2 = \{0, 2, 4\}$ of $(Z_6, +)$

are minimal E_{Δ} -invariant subgroups. The annihilator ideals

 $\mathcal{A}(B_1) = \{f_0, f_2, f_4, f_6, f_7, f_9, f_{12}, f_{14}, f_{16}, f_{18}, f_{20}, f_{22}\}$

and

$$\mathcal{A}(B_2) = \{f_0, f_3, f_9, f_{11}, f_{12}, f_{13}, f_{14}, f_{21}\}$$

are maximal ideals of $E_{\Delta}(Z_6)$.

The following theorem gives another type of a maximal right ideal of $E_{\Delta}(G)$ and generalizes the Proposition 8.9 in [8].

THEOREM 3.8. Let B be a maximal E_{Δ} -invariant subgroup of a finite group (G, +) and let $\Delta \subseteq B$ be a fully invariant subgroup of (G, +). If $x \in G \setminus B$ then $\mathcal{B} = \{\beta \in E_{\Delta}(G) : (x)\beta \in B\}$ is a maximal right ideal of $E_{\Delta}(G)$.

PROOF. It is easy to show that \mathcal{B} is a normal $E_{\Delta}(G)$ -subgroup. Let \mathcal{D}_r be a relative defect of the subset \mathcal{B} with respect to $E_{\Delta}(G)$. Since $\mathcal{D}_r \subseteq \mathcal{D} \subseteq (G, \Delta)_0$ we have $\mathcal{D}_r \subseteq \mathcal{B}$. Thus, by Lemma 1.1 it follows that \mathcal{B} is a right ideal of $E_{\Delta}(G)$. Morover, $\mathcal{B} \neq E_{\Delta}(G)$, because \mathcal{B} contains no the identity map e of G into itself.

We will prove that \mathcal{B} is a maximal right ideal of $E_{\Delta}(G)$. Let \mathcal{P} be a right ideal of $E_{\Delta}(G)$ such that $\mathcal{B} \subset \mathcal{P}$. Assume that $\alpha \in \mathcal{P}$ and $\alpha \notin \mathcal{B}$ i.e. $(x)\alpha \notin B$. The normal subgroup $(x)\alpha E_{\Delta}(G) + B$ is E_{Δ} -invariant. Namely, for all $f \in E_{\Delta}(G)$ and $t \in End_{\Delta}(G)$ we have

$$((x)\alpha f + b) t = (x)\alpha f t + (b)t + \delta \in (x)\alpha E_{\Delta}(G) + B,$$

because $\delta \in \Delta \subseteq B$ and b, $(b)t \in B$. Since B is a maximal E_{Δ} -invariant subgroup of (G, +), then $(x)\alpha E_{\Delta}(G) + B = G$. Thus, there exist $f \in E_{\Delta}(G)$ and $b \in B$ such that $(x)\alpha f + b = x$. The map $h: G \to G$ with $h = -\alpha f + e$ belongs to $E_{\Delta}(G)$. Since $(x)h = -(x)\alpha f + x = b - x + x = b \in B$ we have $h \in \mathcal{B}$, i.e. $h \in \mathcal{P}$. Also, $\alpha f \in \mathcal{P}$. Hence $e = (\alpha f + h) \in \mathcal{P}$ and $\mathcal{P} = E_{\Delta}(G)$. Therefore, \mathcal{B} is a miximal right ideal of $E_{\Delta}(G)$.

EXAMPLE 3. Let $E_{\Delta}(Z_4)$ be a near-ring of Δ -endomorphisms of the group $(Z_4, +)$ (table 1). The subgroup $\Delta = \{0, 2\}$ is a maximal E_{Δ} -invariant subgroup of $(Z_4, +)$. For $x = 3 \notin \Delta$ the set

$$\mathcal{B} = \{ f \in E_{\Delta}(Z_4) : (3)f \in \Delta \} = \{ f_0, f_3, f_7, f_8, f_{12}, f_{13}, f_{14}, f_{15} \}$$

is a maximal right ideal of $E_{\Delta}(Z_4)$.

THEOREM 3.9 Let $B \neq G$ be a sum of all minimal monzero E_{Δ} -invariant subgroups of a finite group (G, +). If $\Delta \subseteq B$ is a fully invariant subgroup of (G, +) then the nil radical of $E_{\Delta}(G)$ is nonzero.

PROOF. Let B_i $(i \in I)$ be a collection of all minimal nonzero E_{Δ} -invariant subgroups of (G, +) and let $\mathcal{A}(B_i)$ be annihilator ideals of the subgroups B_i $(i \in I)$.

We prove first that $\cap_i \mathcal{A}(B_i)$ is nonzero. Suppose, if possible $\cap_i \mathcal{A}(B_i) = (0)$. By using the Proposition 2.4 it follows that $E_{\Delta}(G)$ contains no nonzero right $E_{\Delta}(G)$ subgroup consisting of nilpotent elements. Thus, by Theorem 3 of [3] $E_{\Delta}(G)$ is a direct sum of minimal nonzero $E_{\Delta}(G)$ -subgroups. Hence, by Proposition 3.5 we obtain $\Im(E_{\Delta}(G)) \subseteq B$. In particular, for identitety map $e \in E_{\Delta}(G)$ we have $G = (G)e \subseteq B$, i.e. G = B. But this contradictory to the supposition that $G \neq B$. Therefore $\cap_i \mathcal{A}(B_i) \neq (0)$. Since the nil radical is the sum of all nil ideals and $\cap_i \mathcal{A}(B_i)$ is nonzero nil ideal, it follows that the nil radical of $E_{\Delta}(G)$ is nonzero.

PROPOSITION 3.10. Let Δ be a minimal fully invariant subgroup of a finite group (G, +) and let \mathcal{N} be any nilpotent $E_{\Delta}(G)$ -subgroup of $E_{\Delta}(G)$. If the normal subgroup \mathcal{W} of the group $(E_{\Delta}(G), +)$, generated by the set $E_{\Delta}(G)\mathcal{N}$, contains the relative defect of the subset $E_{\Delta}(G)\mathcal{N}$ with respect to $E_{\Delta}(G)$, then \mathcal{W} is a nilpotent ideal of $E_{\Delta}(G)$.

PROOF. By Proposition 1.2 \mathcal{W} is an ideal of $E_{\Delta}(G)$. Since \mathcal{N} is a right $E_{\Delta}(G)$ -subgroup of $E_{\Delta}(G)$ and $E_{\Delta}(G)$ has identity, the elements of \mathcal{W} have the form $w = \sum_{i} (f_i \pm h_i n_i - f_i)$, $(f_i, h_i \in E_{\Delta}(G), n_i \in \mathcal{N})$. If $x \in G, x \neq 0$, and $n \in \mathcal{N}$, then E_{Δ} -invariant subgroup of (G, +) generated by (x)n is properly contained in the E_{Δ} -invariant subgroup generated by x. Indeed, let X be E_{Δ} -invariant subgroup generated by x and let Y be E_{Δ} -invariant subgroup generated by (x)n. Clearly $Y \subseteq X$. Let us suppose that Y = X. Then there exists $f \in E_{\Delta}(G)$ such that (x)nf = x and, we have a contradiction, because $nf \in \mathcal{N}$ and \mathcal{N} is a nilpotent $E_{\Delta}(G)$ -subgroup. Thus $Y \subset X$.

Let $B = \sum_{k} B_{k}$ be a sum of all minimal E_{Δ} -invariant subgroups of (G, +)and let $w = \sum_{i} (f_{i} \pm h_{i}n_{i} - f_{i}) \in \mathcal{W}$, $(f_{i}, h_{i} \in E_{\Delta}(G), n_{i} \in \mathcal{N})$. Then there exists a positive integer p such that $(x)w^{p} \in B$, because every fully invariant subgroup generated by $(x)h_{i}n_{i}$ is properly contained in the fully invariant subgroup generated by $(x)h_{i}$. Thus,

$$(x)w^{p+1} = ((x)w^p)w = \left(\sum_k b_k\right)w$$
$$= \sum_i \left[\left(\sum_k b_k\right)f_i \pm \left(\sum_k b_k\right)h_in_i - \left(\sum_k b_k\right)f_i\right].$$
Proposition 2.5 *B* is *E*-einvariant subgroup, i.e.

By Proposition 2.5 *B* is E_{Δ} -invariant subgroup, i.e.

$$\left(\sum_{k} b_{k}\right) h_{i} n_{i} = \left(\sum_{k} b_{k}'\right) n_{i}, \quad (b_{k}, b_{k}' \in B_{k}).$$

Let $n_i = \sum_j (\pm t_{ij}), \ (t_{ij} \in End_{\Delta}(G)),$ then

$$\left(\sum_{k} b_{k}\right) h_{i} n_{i} = \left(\sum_{k} b_{k}'\right) n_{i} = \left(\sum_{k} b_{k}'\right) \sum_{j} (\pm t_{ij}) =$$
$$= \sum_{j} \pm \left(\sum_{k} b_{k}'\right) t_{ij} = \sum_{j} \pm \left(\sum_{k} (b_{k}') t_{ij}\right) + \delta, \quad (\delta \in \Delta)$$

The elements of different minimal E_{Δ} -invariant subgroups B_k commute elementwise. Thus

$$\left(\sum_{k} b_{k}\right) h_{i} n_{i} = \sum_{k} \left[(b_{k}') \sum_{j} (\pm t_{ij}) \right] + \delta = \sum_{k} (b_{k}') n_{i} + \delta.$$

Therefore

$$(x)w^{p+1} = \sum_{i} \left[\left(\sum_{k} b_{k}\right) f_{i} \pm \left(\sum_{k} (b_{k}')n_{i} + \delta\right) - \left(\sum_{k} b_{k}\right) f_{i} \right].$$

By Proposition 2.4, $n_i \in \mathcal{A}(B_k)$ for all k and hence $(x)w^{p+1} \in \Delta$. Thus, there exist $\delta', \delta'' \in \Delta$ such that

$$(x)w^{p+2} = ((x)w^{p+1})w = (\delta')w = (\delta')\sum_{i}(f_i \pm h_i n_i - f_i) =$$

= $\sum_{i}[(\delta')f_i \pm (\delta')h_i n_i - (\delta')f_i] =$
= $\sum_{i}[(\delta')f_i \pm (\delta'')n_i - (\delta')f_i] = 0.$

Thus, every element $w \in \mathcal{W}$ is nilpotent. Because G is finite it follows that \mathcal{W} is nilpotent.

THEOREM 3.11. Let Δ be a minimal fully invariant subgroup of a finite group (G, +) and let \mathcal{N} be any nilpotent $E_{\Delta}(G)$ -subgroup of $E_{\Delta}(G)$. If the normal subgroup ω of the group $(E_{\Delta}(G), +)$ generated by the set $E_{\Delta}(G)\mathcal{N}$ contains the relative defect of the subset $E_{\Delta}(G)\mathcal{N}$ with respect to $E_{\Delta}(G)$, then the nil radical $\eta(E_{\Delta}(G))$ coincides with the radical $J_2(E_{\Delta}(G))$.

PROOF. By Proposition 3.10 $\mathcal{N} \subseteq \eta(E_{\Delta}(G))$, because the nil radical $\eta(E_{\Delta}(G))$ is the sum of all nil ideals. Thus, $E_{\Delta}(G)/\eta(E_{\Delta}(G))$ contains no nonzero nilpotent right $E_{\Delta}(G)$ -subgroups. By using two theorems of Blackett ([3], Thms 1 and 2) it follows that every minimal right ideal of $E_{\Delta}(G)/\eta(E_{\Delta}(G))$ contains an idempotent element. By Beidleman [1], a proper ideal B of a near-ring R is called a strong radical-ideal of R if and only if every nonzero right ideal R/B contains a minimal right ideal which contains an idempotent element. Hence, $\eta(E_{\Delta}(G))$ is a strong radical-ideal of $E_{\Delta}(G)$. The following step in the proof is the same as that of ([1], Th. 8).

If the group (G, +) is equal to the sum of its minimal fully invariant subgroups, then as an immediate consequence of Proposition 3 of [1], $J_2(E(G)) = (0)$, where E(G) is an endomorphism near-ring. However, this is not true for near-ring $E_{\Delta}(G)$ if (G, +) is equal to the sum its minimal E_{Δ} -invariant subgroups, where Δ is a proper minimal E_{Δ} -invariant subgroup of (G, +). For example, the group $(Z_6, +)$

70

is a direct sum of a minimal E_{Δ} -invariant subgroups $B_1 = \Delta = \{0, 3\}$ and $B_2 = \{0, 2, 4\}$, but the radical

$$J_2(E_{\Delta}(Z_6)) = \mathcal{D} = \{f_0, f_9, F_{12}, f_{14}\} \neq (0),$$

where \mathcal{D} is the defect of the near-ring $E_{\Delta}(Z_6)$ (table 2). In general, let (G, +) be a direct sum of minimal E_{Δ} -invariant subgroups, where Δ is a proper E_{Δ} -invariant subgroup and let \mathcal{D} be the defect of the near-ring $E_{\Delta}(G)$. Is it $J_2(E_{\Delta}(G)) = \mathcal{D}$? The answer is connected to the possibility that every Δ -endomorphism f of (G, +) can be uniquely expressed in the form $f = h + \delta$, where $h \in E(G)$ and $\delta \in \mathcal{D}$.

4. Embeddings of near-ring with defect into some $E_{\Delta}(G)$

The problem of embedding the near-rings with the defect of distributivity is not easy. The following results refer to the particular case and generalize corresponding results for distributively generated near-ring (see [7]).

By using the technique of "right multiplicator" we have.

PROPOSITION 4.1. Let (R, S) be a near-ring with the defect D. If A(R) = (0), then R embeds in $E_D(R)$.

PROPOSITION 4.2. Let R be a near-ring such that $R = A(R) \oplus B$, where B is an ideal of R. Let $D \neq R$ be the defect of distributivity of R. Then D is the defect of the near-ring B.

PROOF. Since $B \simeq R/A(R)$ it follows that B is a near-ring with the defect D'. On the other hand $A(R) = \{a \in R : ra = 0, \text{ for all } r \in R\}$, i.e. A(R) is a near-ring with the defect D'' = (0). By Proposition 1.3 R is a near-ring with the defect $D = D' \oplus D'' = D'$.

THEOREM 4.3. Let (R, S) be a near-ring with the defect $D \neq R$ and let R be a direct sum of ideals which include A(R), where A(R) is finite. Then there exist the group (G, +) and its normal subgroup Δ such that R embeds in $E_{\Delta}(G)$.

PROOF. Let $R = A(R) \oplus B$. By Proposition 3 of [7], A(R) embeds in some $E(G_1)$. Bu Lemma 2 of [7], A(B) = (0). Since D is a defect of B (Proposition 4.2), it follows that B embeds in $E_D(B)$ (Proposition 4.1). Thus, R embeds in $\mathcal{R} = E(G_1) \oplus E_D(B)$, whereby multiplication on \mathcal{R} is componentwise. Let \mathcal{D} be a defect of the near-ring $E_D(B)$. Then, by Proposition 1.3 it follows that \mathcal{R} is a near-ring with defect $\mathcal{D} \neq \mathcal{R}$, because the defect of $E(G_1)$ is zero. The nearring \mathcal{R} contains identity $e = (e_1, e_2)$, where $e_1 \in E(G_1)$ and $e_2 \in E_D(B)$ are identity mappings, thus $A(\mathcal{R}) = (0)$. Hence by Proposition 4.1 \mathcal{R} embeds in $E_D(\mathcal{R})$. Consequently, there exist the group (G, +) and its normal subgroup Δ such that R embeds in $E_{\Delta}(G)$.

DEFINITION. Let (R, +) be a direct sum of the subgroups (A, +) and (B, +). Let (A, +, .) and (B, +, .) be two subnear-rings of the nearring TABLE 1.

The Δ -endomorphisms of $(Z_4, +)$ for $\Delta = \{0, 2\}$.

The group $(E_{\Delta}(Z_4), +)$ and the semigroup $(E_{\Delta}(Z_4), \circ)$. Δ -endomorphisms

0123	+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$f_0 = 0000$	0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$f_1 = 0123$	1	1	3	0	2	7	12	13	9	11	14	8	15	6	5	4	10
$f_2 = 0321$	2	2	0	3	1	14	13	12	4	10	7	15	8	5	6	9	11
$f_3 = 0202$	3	3	2	1	0	9	6	5	14	15	4	11	10	13	12	7	8
$f_4 = 0103$	4	4	7	14	9	3	8	.15	2.	6	0	12	13	11	10	1	5
$f_5 = 0121$	5	5	12	13	6	8	3	0	11	9	13	7	14	2	1	10	4
$f_6 = 0323$	6	-6	13	12	5	15	0	3	10	4	8	14	7	1	2	11	9
$f_7 = 0222$	7	7	9	4	14	2	11	10	0	13	1	6	5	15	8	3	12
$f_8 = 0220$	8	8	11	10	15	6	9	4	13	0	5	2	1	14	7	12	3
$f_9 = 0301$	9	9	14	7	4	0	15	8	1	5	-3	13	12	10	11	2	6
$f_{10} = 0101$	10	10	8	15	11	12	7	14	6	2	13	3	0	9	4	5	1
$f_{11} = 0303$	11	11	15	8	10	13	14	7	5	1	12	0	3	4	9	6	2
$f_{12} = 0200$	12	12	6	5	13	11	2	-1	15	14	10	9	4	0	3	8	7
$f_{13} = 0002$	13	13	5	6	12	10	1	2	8	7	11	4	9	3	0	15	14
$f_{14} = 0020$	14	14	4	9	7	1	10	11	3	12	2	5	6	8	15	0	13
$f_{15} = 0022$	15	15	10	11	8	5	4	.9	12	3	6	1	2	7	14	13	0

0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0.	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	0	2	1	3	9	5	6	. 7	15	4	10	11	13	12	14	8
3	.0	3	3	0	0	3	3	3	3	0	0	0	0	0	3	3
4	0	4	9	3	4	10	11	3	12	9	10	11	12	13	0	13
5	0	5	6	3	10	5	6	7	7	11	10	11	3	0	14	14
6	0.	6	5	3	11	5	6	7	14	10	10	11	0	3	14	7
7	0	7	7	0	0	7	7	7	7	0	0	0	0	0	7	7
8	0	8	8	0	0	8	8	8	8	0	0	0	0	0	8	8
9	0	9	4	3	9	10	11	3	13	4	10	11	13	12	0	12
10	0	10	11	3	10	10	11	3	3	11	10	11	3	0	0	0
11	0	11	10	3	11	10	11	3	0	10	10	11	0	3	0	3
12	0	12	12	0	0	12	12	12	12	0	0	0	0	0	12	12
13	0	13	13	0	0	13	13	13	13	0	0	0	0	0	13	13
14	0	14	14	0	0	14	14	14	14	0	0	0	0	0	14	14
15	0	15	15	0	0	15	15	15	15	0	0	0	0	0	15	15

The near-ring $E_{\Delta}(Z_4)$ has the defect $\mathfrak{D} = \{f_0, f_3, f_{12}, f_{13}\}.$

Δ-end	T.	he ∠ Misn	∆-end 1s	omor	phism	s of (Z,	$\frac{1}{B_1} = \frac{1}{2}$	r whic \ = {0,	sh the 3} a	subg	group $z = \{0, \dots, n\}$	₹ 7	are	invar	iant.	The 1	group	$(E_{\Delta}$	(Z)	+).			
1	0	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	1	8	6	20	21 2	3	ŝ
	0	1	7	ę	4	5	9	7	~	6	10	11	12	13	14	15	16	17	81	19	50	21 2	3	1 22
	٦	6	e	4	S	0	10	11	7	8	6	9	15	16	17	18	19	50	21	14	13	22		2
	5	ŝ	4	S	0	÷	6	9	11	7	8	10	18	19	20	21	14	13	52	17	16	23 1	2	Ś
	ŝ	4	ŝ	0	1	7	8	10	9	11	7	6	21	14	13	22	17	16	23	20	19	12 1	5 1	8
	4	S	0	1	4	m	7	6	10	9	11	8	22	17	16	23	50	61	12	13	14	15 1	∞	5
	ŝ	0	-	1	ŝ	4	11	8	6	10	9	7	23	50	19	12	13	14	15	16	17	18 2		2
	9	10	6	80	٢	11	2	0	S	4	e.	1	16	15	22	19	18	23	4	51	12	17 2	0	e.
	٢	11	6	10	6	œ	0	4	æ	7	1	5	50	23	18	13	12	21	9	15	22	1 61	4	5
	~	٢	11	9	10	6	5	e	7	1	0	4	17	52	15	50	53	18	.	12	21	16 1	9	4
	ه	œ	L :	11	6	10	4	7	1	0	ŝ	ŝ	14	21	12	17	22	15	2	53	18	13 1	6 1	6
0	10	6	8	7	11	9	æ	1	0	S	4	7	19	18	23	14	21	12	5	52	15	20 1		9
1	11	9	10	9	×	7	1	ŝ	4	e	7	0	13	12	21	16	15	22	6	81	53	14 1	7 2	0
3	12	15	18	21	22	23	16	20	17	14	19	13	0	11	6	-	5	~	~	01	2	4	ŝ	
e	13	16	19	14	17	20	15	23	22	21	18	12	11	0	3	9	, ,	+	0	2	5	8	~	
4	14	17	50	13	16	19	22	18	15	12	23	21	6	m	0	~	4		-	5	2	11 6	-	0
s	15	18	21	22	23	12	19	13	20	17	14	16	1	9	8	6		2	~	•	11	4 S	0	-
9	16	19	14	17	20	13	18	12	23	22	21	15	9	1	4	10	~	5	~	~		5 7	1	
7	17	20	13	16	19	14	23	21	18	15	12	22	×		1	2	5	-	=	0	~	5	٥ و	
8	18	21	52	23	12	15	14	16	13	20	17	29	3	10	7	с. С	•	11 4	-	~	\0	0	T	
6	10	14	17	20	13	16	21	15	12	23	22	18	10	8	S	6	~	8	~	-	_	1	1 6	
0	29	13	16	19	14	17	12	22	21	18	15	23	-	2	5	11	0	~ ~	-	ч _	+	6 0	00	
1	21	22	23	12	15	18	17	19	16	13	20	14	с. С	•	11	4	~	¥1		-	0	1	0	
2	22	23	12	15	18	21	20	14	19	16	13	17	4	~	9	vo	-	0	-	11 9	•	5	m	
ŝ	23	12	15	18	21	22	13	17	14	19	16	20	` vo	2	10	0	Ξ	-	Ű		~	ŝ	4	

	23	0	23	4	ŝ	7	17	20	22	10	6	~	11	12	13	14	23	20	10	22	17	4	21	ы	80
	22	0	22	3	0	4	20	22	20	4	0	6	0	0	0	0	4	4	22	5	19	20	0	52	20
	21	0	21	0	æ	0	13	14	12	11	6	П	11	12	13	14	21	14	11	12	13	0	21	0	11
	20	0	20	4	0	ы	22	20	22	7	0	4	0	0	0	0	20	20	7	22	22	4	ọ	7	4
	19	0	19	4	÷	7	15	18	16	10	6	×	11	12	13	14	10	3	19	4	8	16	21	18	15
	18	0	18	4	0	7	16	18	16	7	0	4	0	0	0	0	7	7	18	4	4	16	0	18	16
	17	0	17	7	ŝ	4	23	22	20	8	6	10	11	12	13	14	18	4	17	18	10	20	21	22	23
	16	0	16	3	0	4	18	16	18	4	0	7	0	0	0	0	16	16	4	18	18	7	0	4	7
	15	0	15	7	ŝ	4	19	16	18	8	6	10	11	12	13	14	15	16	80	18	19	6	21	4	10
	14	0	14	0	0	0	12	14	12	0	0	0	0	0	0	0	14	14	0	12	12	0	0	0	0
	13	0	13	0	ы	0	21	12	14	11	6	11	11	12	13	14	11	0	13	0	11	14	21	12	21
<u></u>	12	0	12	0	0	0	14	0	14	0	0	0	0	0	0	0	0	0	12	0	0	14	0	12	14
, f ₁₂ ,	11	0	11	0	e	0	11	0	0	11	6	11	11	12	13	14	11	0	11	0	11	0	21	0	11
{{, f	5	0	10	4	3	6	8	5	4	10	6	8	11	12	13	14	10	ы	10	4	8	4	21	3	8
9	6	0	6	0	0	0	6	6	6	0	0	0	0	0	0	0	14	14	12	12	12	14	0	12	14
	~	0	80	5	e	4	10	4	7	8	6	10	11	12	13	14	8	4	80	7	10	5	21	4	10
	7	0	7	4	0	5	9	7	9	7	0	4	0	12	0	0	20	20	18	22	22	16	0	18	16
	9	0	9	7	0	4	7	9	7	4	0	7	0	0	0	0	16	16	22	18	18	20	0	22	50
	5	0	5	4	3	7	1	7	9	10	6	8	11	12	13	14	23	20	19	22	17	16	21	18	15
	4	0	4	7	0	4	5	4	7	4	0	2	0	0	0	0	4	4	4	8	2	0	0	4	6
		0	ŝ	0	ŝ	0		6	6	11	6	11	11	0	13	14	ŝ	14	13	12	13	14	21	12	51
	8	0	2	4	0	6	4	8	4	2	0	4	0	0	0	0	2	2	6	4	4	4	0	2	4
		Õ			~	4	5	10		 	•	10	=	12	13	4	15	9	17		6]	50	21	52	53
			0	<u> </u>	0	`	~	0	Č	~	0	~	~	<u> </u>	0	~	~	_	~	~	~	~	~	~	~
			_	<u> </u>							_					<u> </u>				_	_		_	_	
	•	0	1	6	ñ	4	ŝ	9	٢	×	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23

The semigroup $(E_{\Delta}(Z_6), \circ)$. The near-ring $E_{\Delta}(Z_6)$ has the defect

74

Vučić Dašić

(R, +, .) with the defect D. A multiplication on R is D-componentwise if for all $a, a' \in A$ and $b, b' \in B$ there exists $d \in D$ such that (a+b)(a'+b') = aa'+bb+d. We say that R is a D-direct sum of the subnear-rings A and B.

Let $E_{\Delta}(G)$ be a Δ -endomorphism near-ring with the defect \mathcal{D} . For some idempotent $e \in E_{\Delta}(G)$ let \mathcal{A} be the subgroup of $(E_{\Delta}(G), +)$ generated by $\{s - es: s \in End_{\Delta}(G)\}$ and \mathcal{M} be the subgroup of $(E_{\Delta}(G), +)$ generated by $\{es: s \in End_{\Delta}(G)\}$.

THEOREM 4.4. Let $G = B \oplus C$ be a direct sum of E_{Δ} -invariant subgroups B and C, where B is summand and Δ is a subset of one of the summands. If e is the projection map $e: G \to B$ and $\mathcal{AM} \subseteq \mathcal{D}$, then $E_{\Delta}(G)$ is the \mathcal{D} -direct sum of the subnear-rings \mathcal{A} and \mathcal{M} , where \mathcal{D} is the defect of $E_{\Delta}(G)$.

PROOF. The projection map $e: G \to B$ is an endomorphism of (G, +). The idempotent $e \in End(G)$ is a right identity for \mathcal{M} . Hence, \mathcal{M} is a subnear-ring of $E_{\Delta}(G)$. Also, by Corollary 2.3 of [11] it follows that \mathcal{A} is an ideal of $E_{\Delta}(G)$. Because B and C commute elementwise and B is E_{Δ} -invariant abelian summand, it follows that the decomposition $E_{\Delta}(G) = \mathcal{A} + \mathcal{M}$ has \mathcal{M} in the additive center of $E_{\Delta}(G)$, i.e. semidirect sum $\mathcal{A} + \mathcal{M}$ is direct.

We shall now prove that the multiplication on $E_{\Delta}(G)$ is \mathcal{D} -componentwise. Let $a, a' \in \mathcal{A}$ and $m, m' \in \mathcal{M}$, where a' = s' - es', m = et, $m' = et'(s', t, t' \in End_{\Delta}(G))$. Then

$$\begin{aligned} (a+m)(a'+m') &= (a+m)(s'-es') + (a+m)et' \\ &= (a+m)s' - (a+m)es' + (a+m)et' = \\ &= as' + ms' + \delta_1 - (aes' + mes' + \delta_2) + aet' + met' + \delta_3 = \\ &= as' - aes' + aet' + ms' - mes' + met' + \delta = \\ &= aa' + am' + ma' + mm' + \delta \\ &= aa' + mm' + \delta', \ (\delta_1, \delta_2, \delta_3, \delta, \delta' \in \mathcal{D}) \end{aligned}$$

because ma' = et(s' - es') = ets' - etes' = 0 and $\mathcal{AM} \subseteq \mathcal{D}$.

For example, if for an idempotent of the near-ring $E_{\Delta}(Z_6)$ with the defect $\mathcal{D} = \{f_0, f_9, f_{12}, f_{14}\}$ (table 2) we take the map $e = f_3: G \to B = \{0, 3\}$ then, $E_{\Delta}(Z_6)$ is a \mathcal{D} -direct sum of the subnear-rings

$$\mathcal{A} = \{f_0, f_2, f_4, f_6, f_7, f_9, f_{11}, f_{12}, f_{13}, f_{14}, f_{16}, f_{18}, f_{20}, f_{22}\}$$

and $\mathcal{M} = \{f_0, f_3\}$

REFERENCES

- J.C. Beidleman, On the theory of radicals of distributively generated near-rings II. The nil-radical, Math. Annalen 173 (1967), 200-218.
- [2] G. Berman, R. Silverman, Simplicity of near-rings of transformations, Proc. Amer. Math. Soc. 10 (1959) No. 3, 456-459.

Vučić Dašić

- [3] D. Blackett, Simple and semi-simple near-rings, Proc. Amer. Math. Soc. 4 (1953), 772-785.
- [4] V. Dašić, The defect of distributivity of the near-rings, Math. Balkanica (to apper).
- [5] V. Dašić, On the radicals of near-rings with defect of distributivity, Publ. de l'Institut mathématique, 28 (42) 1980.
- [6] M. Hall, The theory of groups, New York, 1959.
- [7] H.E. Heatherly, J.J. Malone, Some near-ring embedding II, Quart. J. Math. Oxford (2), 24 (1973), 63-70.
- [8] M. Johnson, Ideal and submodule structure of transformation near-rings, Doctoral Diss., University of Iowa, 1970.
- M. Johnson, Radicals of endomorphism near-rings, Rocky Mountain J. of Math. 3 (1973), No. 1, 1-7.
- [10] M. Johnson, Maximal right ideals of transformations, J. Austral. Math. Soc. 19 (Series A) (1975), 410-412.
- [11] C. Lyons, On decompositions of E(G), Rocky Mountain J. of Math. 3 (1973), No. 4, 575–582.
- [12] G. Pilz, Near-rings. The theory and its applications, Nort-Holland Publ. Comp. Amsterdam-New York-Oxford, 1977.

Mathematical institute University of Titograd, Yugoslavia