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TRUTH FILTERS IN DE MORGAN LATTICES

Milan Bo�zi�c

Abstract. In this paper Stone-type theorems on existence of truth �lters in De Morgan
lattices are obtained. It is shown that (�) � � � (a ^ T ) \ T0 = ; is necessary and suÆcient for
existence of a truth �lter containing a, where T0 and T1 are sets of zeroes and units. Also, it is
proved that the �lter F is contained in a truth �lter i� for each member a of F holds (�). Some
other related results are proved, too.

Def 1. (L;�; �) is a De Morgan lattice i�

(DL) (L;�) is a distributive lattice

(C1) (8x 2 L)��x = x

(C2) (8x; y 2 L) (x � y ) �y � �x).

It is easy to prove that

Lemma 1. (DeM) x _ y = �x^ �y, x ^ y = �x _ �y holds, where the least upper
bound and the greatest lower bound in (L;�) are denoted by _ and ^ respectively.

Separate study has been given to the structures de�ned above. These have
been called De Morgan lattices in Monteiro [1960], distributive ivolution lattices
(i-lattices) in Kalman [1958], and quasi-Boolean algebras in Bialnicki-Birula and
Rasiowa [1957]. Most commonly used term in recent years in the �rst one. We
shall use it in this paper. The term quasi-Boolean algebra is generally used for De
Morgan lattices with least and greatest elements. It is obvious that the di�erence
is immaterial.

De Morgan lattices were investigated in standard algebraical and topological
manner (see, for example, Rasiowa [1974]). The rise of interest in them can be
dated in the sixties when it was shown that various logical systems have appropriate
interpretation in these lattices if they are equipped with some special kind of �lters.

Def 2. A �lter F of a De Morgan lattice L is

(i) consistent i� :(9x 2 L)(x 2 F ^ �x 2 F )

(ii) complete i� (8x 2 L)(x 2 F _ �x 2 F )

(iii) truth �lter i� it is consistent and complete.
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It is obvious that a �lter F is a fruth �lter i�

(8x 2 L)(x 2 F , �x 62 F )

The de�nition above naturally leads to a question of a necessary and suÆcient
condition for a De Morgan lattice to have a truth �lter, and it turns out that a
quite simple condition works, namely that � has no �xed points, i.e. the following
holds:

Theorem (Belnap and Spencer [1966])

There exist a truth �lter in a De Morgan lattice L i�

(C3) (8x 2 L)�x 6= x.

We shall call De Morgan lattice satisfying (C3) regular.

It is easy to prove that each truth �lter is prime but the converse does not
hold. Concerning the maximal �lters, they are neither always truth �lters nor truth
�lters are always maximal.

Widely known Stone's theorem about distributive lattices states that for each
nontrivial �lter there exists a prime �lter containing it. Also, as a consequence,
for each a, b such that :a � b there exists a prime �lter containing a and not
containing b.

Similar questions arise about truth �lters in De Morgan lattices. It is our
aim to give appropriate answers. To begin with, we are developing some necessary
notions and appropriate algebraic apparatus.

Def 3

I(A) = fx 2 L j (9a1; . . . ; an 2 A)x � a1 _ � � � _ ang

F (A) = fx 2 L j (9a1; . . . ; an 2 A)x � a1 ^ � � � ^ ang

T0 = fx 2 L j x = x ^ �xg; I0 = I(T0)

T1 = fx 2 L j x = x _ �xg; F1 = F (T1)

�A = f�x 2 L j x 2 Ag; a ^ A = fa ^ x j x 2 Ag

A ^B = fx ^ y j x 2 A; y 2 Bg; [a; b] = fx 2 L j a � x � bg:

I(A) and F (A) will be called ideal and �lter generated by the set A. T0 and
T1 are sets of zeroes and units respectively.

The following lemma states some basic properties of notions introduced above.

Lemma 2. Let x; y 2 L then:

(i) x 2 T0 , x � �x; x 2 T0 and y � x) y 2 T0

(ii) x 2 T1 , x � �x; x 2 T1 and y � x) y 2 T1

(iii) x ^ �x 2 T0, x _ �x 2 T1
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(iv) �T0 = T1, �T1 = T0

(v) F is a �lter i� �F is an ideal.

(vi) I(A) = F (A). F (A) = I(A)

(vii) �I0 = F1, �F1 = I0

(viii) L is regular i� T0 \ T1 = ;

(ix) Filter F is consistent i� F \ T0 = ;

(x) If F is a truth �lter, then F is prime.

(xi) If F is a truth �lter, then F � F1 and F \ I0 = ;.

Proof:

(i), (ii), (iii) and (iv) are simple applications of de�nitions and axioms of De
Morgan lattice.

(v) follows from the fact that � is an isomorphism from De Morgan lattice
(L;�; �) to De Morgan lattice (L;�; �).

(vi) Because of the equivalence x � a1 _ � � � _ an , �x � �a1 ^ � � � �anx belongs
to I(A) i� �x belongs to F ( �A). The second equality is dual to the �rst.

(vii) is a consequence of (vi), if we take A = T0 using (iv).

(viii) T0 \ T1 = ; , :(9x 2 L) (x 2 T0 and x 2 T1)

because of (i), (ii) , :(9x 2 L) (x � �x and x � �x)

, :(9x 2 L)�x = x

, L is regular.

(ix) F \ T0 = ; , :(9x 2 L) (x 2 T0 and x 2 F )

because of (i): , :(9x 2 L) (x � �x and x 2 F )

, :(9x 2 L) (x � �x and �x 2 F and x 2 F )

, F is consistent.

(x) Suppose not. Then there exists a truth �lter F and x; y 2 L such that
x^ y 2 F and x 62 F and y 62 F . As a truth �lter, F is also complete, so �x 2 F and
�y 2 F . Because F is a �lter, we have �x ^ �y 2 F ; but �x ^ �y = x _ y, so x _ y 2 F

which contradicts the consistency of F .

(xi) Let p 2 T1. By the de�nition of T1, p = p_�p. Because of the completeness
of the truth �lter F , we have p 2 F or �p 2 F . As F is a �lter we have p_ �p 2 F , so
p 2 F . Consequently T1 � F . Because F is a �lter, it contains a �lter generated by
T1, so F1 � F . Also, F is consistent, so �F1 \ F = ;. From (vii) we have �F1 = I0;
hence I0 \ F = ;.

Def 4 Let p 2 T1, de�ne fp:L! L as

fp(x) = p ^ (�p _ x); for x 2 L:

By the above de�nition, a class of mapping is introduced in L. Next lemma
describes some usefull properties of these mappings.
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Lemma 3. Let p; q 2 T1 and x 2 L, then:

(i) fp(x) = �p _ (p ^ x)

(ii) fp is a homomorphism from L to L.

(iii) fp(L) = [�p; p]

(iv) fp Æ fp = fp

(v) fp Æ fq = ffp(q)

(vi) fp = fq ) p = q

(vii) x 2 T0 ) fp(x) 2 T0; x 2 T1 ) fp(x) 2 T1

(viii) x 2 I0 ) fp(x) 2 I0; x 2 F1 ) fp(x) 2 F1

(ix) fp(p ^ x) = fp(x), fp(p _ x) = p

fp(�p _ x) = fp(x), fp(�p ^ x) = �p.

Proof:

(i) Because of p 2 T1 , p = p _ �p, �p = �p ^ p we have:

fp(x) = p ^ (�p _ x) = (p ^ �p) _ (p ^ x) = �p _ (p ^ x):

(ii) fp(x _ y) = p ^ (�p _ x _ y) = p ^ (�p _ x _ �p _ y)

= (p ^ (�p _ x)) _ (p ^ (�p _ y)) = fp(x) _ fp(y)

fp(�x) = p ^ (�p _ �x) = p ^ (p ^ x) = �p _ (p ^ x) = fp(x)

fp(x ^ y) = fp(�x _ �y) = fp(x) _ fp(y) = fp(x) ^ fp(y)

(iii) �p � �p _ (p ^ x) = p ^ (�p _ x) � p) �p � fp(x) � p � � � (1)

x 2 [�p; p]) �p � x � p) �p _ x = x) p ^ (�p _ x) = p ^ x = x.

So, for x 2 (�p; p] we have fp(x) = x; together with (1) it implies (iii)

(iv) fp(fp(x)) = fp(p ^ (�p _ x)) = �p _ (p ^ (p ^ (�p _ x)))

= �p _ (p ^ (p ^ (�p _ x)) = (�p _ p) ^ (�p _ �p _ x)

= p ^ (�p _ x) = fp(x)

(v) Ffp(q) (x) = fp(q) _ (fp(q) ^ x) = fp(�q) _ (fp(q) ^ x)

= (p ^ (p ^ (�p _ �q)) _ ((�p _ (p ^ q)) ^ x)

= (p ^ �p) _ (p ^ �q) _ (�p ^ x) _ (p ^ q ^ x)

= (�p ^ (�p ^ x)) _ (p ^ �q) _ (p ^ q ^ x)

= �p _ (p ^ �q) _ (p ^ q ^ x)

= �p _ (p ^ (�q _ (q ^ x)))

= fp(�q _ (q ^ x)) = fp(fq(x))

= fp Æ fq(x)



Truth �lters in De Morgan lattices 29

(vi) fp = fq ) fp(p _ q) = fq(p _ q)

) p ^ (�p _ p _ q) = q ^ (�q _ p _ q)

) p ^ (p _ q) = q ^ (p _ q)

) p = q

(vii) x 2 T0 ) x = x ^ �x

) fp(x) = fp(x) ^ fp(x) (fp is an homomorphism)

) fp(x) 2 T0.

Similarily, x 2 T1 ) fp(x) 2 T1

(viii) x 2 I0 ) x � q1 _ � � � _ qn, for some q1; . . . ; qn 2 T0

) fp(x) � fp(q1) _ � � � _ fp(qn).

Last inequality holds because fp is an homomorphism. Using (vii) we have fp(qi) 2
T0, hence fp(x) 2 I0. Second implication in (viii) is dual to the �rst.

(ix) is a simple consequence of the de�nition of fp and (i).

Now, we are ready to prove:

Theorem 1. Let F � L be a �lter in L. F is contained in some truth �lter
T in L i� (F ^ T1) � T0 = ;.

Proof:

())

Suppose not. Then (F ^ T1) \ T0 6= ; and there exists a truth �lter T (� F )
in L. Because the intersection of sets above is non-empty we have:

(1) (9a 2 F )(9p 2 T1)a ^ p 2 T0:

But, because of (xi) Lemma 2, T as a truth �lter contains T1, so p 2 T . Hence,
p ^ a 2 T which implies T \ T0 6= ; which contradicts (xi) Lemma 2.

(()

Suppose (F ^ T1) \ T0 = ;. We will prove the existence of a truth �lter
containing F in a several steps.

1Æ The �lter F1 = F (F [ T1) is consistent

Suppose the opposite { i.e. F1 is inconsistent. That means that there exists
b;�b 2 F1, so, for some b; b ^ �b 2 F1. As F1 is a �lter generated by F [ T1 we have,
for some a1; . . . ; ak 2 F and p1; . . . ; pm 2 T1:

(2) a1 ^ � � � ^ ak ^ p1 ^ � � � ^ pm � b ^ �b:

F is a �lter, so a = a1 ^ � � � ^ ak 2 F and b ^ �b 2 T0, therefore

(3) a ^ p1 ^ � � � ^ pm 2 T0:



30 M. Bo�zi�c

Applying the fpm onto (3) and using the fact that fpm is a homomorphism
which preserves T0, we obtain:

(4) fpm(a) ^ fpm(p1 ^ � � � ^ pm�1 ^ pm) 2 T0:

Because of fp(p ^ x) = fp(x) ((ix) Lemma 3) (4) becomes:

(5) fpm(a) ^ fpm(p1) ^ � � � ^ fpm(pm�1) 2 T0:

As fp preserves T1 ((vii) Lemma 3) (5) becomes

(6) fpm(a) ^ p11 ^ � � � ^ p1m�1 2 T0; p1i 2 T1:

Finally, we have that the number of units in the (3) is decreased by one in
(6). Repeating the procedure above m� 1 times we will obtain:

(7) fpm1 (fpm�1
2

� � � (fp1
m
(a)) � � � ) 2 T0:

Because of (v) and (vii) from Lemma 3, a composition of fp mappings is one
fp mapping so, for some p 2 T1,

(8) fp(a) 2 T0:

Because of p ^ a � �p _ (p ^ a) = fp(a), (8) implies

p ^ a 2 T0

wich condraticts (F ^ T1) \ T0 = ;.

2Æ The set of all consistent �lters containing F1 has a maximal element.

Let GF1 = fG � F1 j G is a consistent �lter in Lg.

Because of 1Æ, F1 is consistent, so F1 2 GF1 , hence GF1 6= ;.

Let L be chain in GF1 , and let C = [L. As a union of �lter, C is a �lter. C
is also consistent, because x; �x 2 C implies x^ �x 2 C, so for some G 2 L; x^ �x 2 G

which contradicts a consistency of G.

As GF1 is non-empty and closed over the unions of chains it ful�lls the con-
ditions for the application of Zorn's Lemma. Hence, GF1 has a maximal elements.
Let us denote one of them by T .

3Æ T is a truth �lter and contains F

As T belongs to GF1 , it is consistent and contains F . To complete the proof
it suÆces to prove that T is complete.

Suppose not. Then, there exists a; �a 2 L such that a 62 T , �a 62 T . Because of
that, the �lters F (T [ fag) and F (T [ f�ag) are di�erent from T and greater than
T . Hence, as T is a maximal consistent �lter containing F1, these �lters must be
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inconsistent - i.e. because of (ix) Lemma 2, some zeroes belongs to them. So, we
have:

(9) (9q1; q2 2 T0)(q1 2 F (T [ fag) and q2 2 F (T [ f�ag))

Using the de�nition of the notion \�lter generated by. . . " (9) becomes:

(10) (9q1; q2 2 T0)(9t1; t2 2 T )(t1 ^ a � q1 and t2 ^ �a � q2):

From (10) we infer that for some q1; q2 2 T0 and t1; t2 2 T :

(11) t1 ^ t2 ^ a � q1 and t1 ^ t2 ^ �a � q2:

From (11) follows:

(12) t1 ^ t2 ^ (a _ �a) � q1 _ q2:

a _ �a 2 T1 � F1 � T , so a _ �a 2 T . Hence, the left side of inequality (12)
belongs to T and, consequently, right side belongs to T . That is, q1 _ q2 2 T . T
is consistent �lter; so, q1 _ q2 = �q1 ^ �q2 62 T . But, �q1; �q2 2 T1 � F1 � T and
�q1 ^ �q2 2 T . Contradiction.

Some other related statements on truth �lters follows easilly from Theorem 1.

Corollary 1. 1. Let a 2 L. There there exists a truth �lter T such that
a 2 T i� (a ^ T1) \ T0 = ;.

Proof: There exists a truth �lter containing a if and only if there exists a
truth �lter containing a �lter generated by fag. But Fa = F (fag) = fx 2 L j x �
ag. So, (a^ T1)\ T0 = ; is equivalent to (Fa ^ T1) \ T0 = ;. The last is, according
to Theorem 1, equivalent to the existence of fruth �lter containing Fa and a.

Corollary 1.2. Let a; b 2 L such that :a � b. There exists a truth �lter
containing a and not containing b i� (a ^ �b ^ T1) \ T0 = ;.

Proof: Because of completeness of any truth �lter, the �lter with desired
property ful�lls a 2 T and �b 2 T . As T is a �lter a^�b 2 T holds. So, there exists a
truth �lter containing a and not containing b i� there exists a truth �lter containing
a ^ �b. The last is, according to Corollary 1.1 equivalent to

(a ^ �b ^ T1 \ T0 = ;:

Lemma 4. Let p 2 T1 and x 2 L, then:

p ^ x 2 T i� fp(x) 2 T0:
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Proof: p ^ x 2 T0 ) fp(p ^ x) = fp(x) 2 T0 (Lemma 3 (vvii), (ix))

fp(x) 2 T0 ) �p _ (p ^ x) 2 T0 ) p ^ x 2 T0:

Corollary 1.3. There exists a truth �lter T in a De Morgan lattice L i�
L is regular.

Proof:

()) If there exists a truth �lter in a De Morgan lattice L, then (8x 2 L)(x 2
T , �x 62 T ) so x and �x must be de�erent, i.e. L is regular.

(() Let L be a regular De Morgan lattice and let p 2 T1. If (p^T1)\T0 6= ;
then p ^ q 2 T0 for some q 2 T1. According to Lemma 4, the last is equivalent to
fp(q) 2 T0. But, because of Lemma 3 (vii) fp(q) 2 T1 also holds. So, T0 \ T1 6= ;
which, because of Lemma 2 (viii) contradicts the regularity of L. Hence, (p^T1)\
T0 6= ; { i.e. there exists a truth �lter containing p.

So, the Belnap and Spenser theorem mentioned at the begining of this paper
is proved as a corollary to the Theorem 1.

Theorem 2. a 2 I0 ) (a ^ T1) \ T0 6= ;.

Proof: Because of Lemma 2 (xi) T \ I0 6= ; for any truth �lter T . So,
there is not a truth �lter containing a 2 I0. According to Corallary 1.1 the last is
equivalent to (a ^ T1) \ T0 6= ;.

Therefore, we have proved Theorem 2 as a corollary to theorem 1. But, the
proof of theorem 1 uses a Zorn's Lemma which is not necessary for the proof of
Theorem 2. We are giving a straightforvard proof:

Let a 2 I0 { i.e. there are q1; . . . ; qn 2 T0 such that

(1) a � q1 _ � � � _ qn:

Applying f�qn onto (1) we will (as in the step 1Æ of the proof of Theorem 1 {
which does not uses a Zorn's Lemma) obtain:

(2) f�qn(a) � f�qn(q1) _ � � � _ f�qn(qn�1):

(3) fp1(� � � (fpn(a)) � � � ) � fp(q);

where p; p1; . . . ; pn 2 T1 and q 2 T0. The composition of the fp mappings is one fp
mappings and fp(q) belongs to T0 so (3) becomes:

(4) fr(a) 2 T0; for some r 2 T1:

The last is equivalent to
(a ^ T1) \ T0 6= ;:
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The theorem above leads to a natural question:
Does the converse holds? { i.e. Is a 2 I0 equivalent to
(a ^ T1) \ T0 6= ;? It is obvious that this equivalence
will simplify the criteria for existence of a truth �lter
containing a. But, the answer is negative { i.e. the
implication in Theorem 2 is \proper". We will prove
this with a following example:

Let M0 be a following regular De Morgan lat-
tice:

M0 has some important properties (see, for ex-
ample, Anderson and Belnap [1975]), but, anyway
M!

0 is a regular De Morgan lattice as a direct prod-
uct of ! regular De Morgan lattices. Let L be a com-
plete sublattice of M0 generated by e1 = (2; 1; 1; . . . ),
e2 = (2; 2; 1; . . . ), e3 = (1; 1; 2; . . . ); . . . i.e. ek is a

sequence of 1 exept that 2 is on the k-th place.

(0; 0; 0; . . . ) 2 L because of (0; 0; 0; . . . ) = ^k2!ek. So, (�0;�0;�0; . . . ) 2 L.

(�0;�0;�0; . . . ) ^ ek = �ek which means that (�0;�0;�0; . . . ) ful�lls condition
((�0;�0;�0; . . . ) ^ T1) \ T0 6= ;; but (�0;�0;�0; . . . ) 62 I0.

Let us mention that a 2 I0 and (a^T1)\T0 6= ; are equivalent in any �nitely
generated De Morgan lattice.
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