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TRUTH FILTERS IN DE MORGAN LATTICES

Milan Bozié

Abstract. In this paper Stone-type theorems on existence of truth filters in De Morgan
lattices are obtained. It is shown that (*)---(a AT) N Tp = O is necessary and sufficient for
existence of a truth filter containing a, where 7o and 7% are sets of zeroes and units. Also, it is
proved that the filter F' is contained in a truth filter iff for each member a of F holds (*). Some
other related results are proved, too.

DEr 1. (L,<,7)is a De Morgan lattice iff
(DL) (L, <) is a distributive lattice

(Cy) VzeL)z==x

(C2) (Vo,y € L) (x<y=y <)

It is easy to prove that

LEMMA 1. (DeM)zVy=ZAy, x ANy =2V g holds, where the least upper
bound and the greatest lower bound in (L, <) are denoted by V and A respectively.

Separate study has been given to the structures defined above. These have
been called De Morgan lattices in Monteiro [1960], distributive ivolution lattices
(i-lattices) in Kalman [1958], and quasi-Boolean algebras in Bialnicki-Birula and
Rasiowa [1957]. Most commonly used term in recent years in the first one. We
shall use it in this paper. The term quasi-Boolean algebra is generally used for De
Morgan lattices with least and greatest elements. It is obvious that the difference
is immaterial.

De Morgan lattices were investigated in standard algebraical and topological
manner (see, for example, Rasiowa [1974]). The rise of interest in them can be
dated in the sixties when it was shown that various logical systems have appropriate
interpretation in these lattices if they are equipped with some special kind of filters.

DEF 2. A filter F of a De Morgan lattice L is
(i) consistent iff ~(dx € L)(x € FAT € F)

(ii) completeiff (Ve € L)(x € FVZ € F)

(iii) truth filter iff it is consistent and complete.
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It is obvious that a filter F' is a fruth filter iff

VeeL)ze F&T¢F)

The definition above naturally leads to a question of a necessary and sufficient
condition for a De Morgan lattice to have a truth filter, and it turns out that a
quite simple condition works, namely that ~ has no fixed points, i.e. the following
holds:

THEOREM (Belnap and Spencer [1966])

There exist a truth filter in a De Morgan lattice L iff
(C3) (Vz € L)T # x.

We shall call De Morgan lattice satisfying (C3) regular.

It is easy to prove that each truth filter is prime but the converse does not
hold. Concerning the maximal filters, they are neither always truth filters nor truth
filters are always maximal.

Widely known Stone’s theorem about distributive lattices states that for each
nontrivial filter there exists a prime filter containing it. Also, as a consequence,
for each a, b such that —a < b there exists a prime filter containing a and not
containing b.

Similar questions arise about truth filters in De Morgan lattices. It is our
aim to give appropriate answers. To begin with, we are developing some necessary
notions and appropriate algebraic apparatus.

DEF 3

I(A) ={zeL|(3a,...,an €Az < a1 V---Vay}
FA)={x€L|(3a1,...,ap € A)x > a1 N---Nay}

TOZ{.’L'EL|.’E:£E/\IE}, IOZI(To)
T1:{$EL|£L’:1'V£L_’}, Fle(Tl)
A={zeL|xe A} aNA={anz]|xec A}

AANB={zAy|z€AyeBY}, [a,bj={z€L|a<z<b}

I(A) and F(A) will be called ideal and filter generated by the set A. Ty and
T, are sets of zeroes and units respectively.

The following lemma states some basic properties of notions introduced above.

LEMMA 2. Let z,y € L then:
WHWeeTyer<rzeTandy<z=y€eTp
ieeTher>zeThandy>c=>yeT
(i) t AT €Ty, x VT €Ty
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iv) To =T, Ty = Ty

v) F is a filter iff Fis an ideal.
vi) I(4) = F(A). F(A) = I(A)

vii) Iy = Fy, Fy =1

viii) L is regular iff Ty N7y =

ix) Filter F is consistent iff FNTy =0
x) If F'is a truth filter, then F' is prime.

xi) If F is a truth filter, then F D Fy and F NIy = 0.
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PROOF:

(1), (i), (iii) and (iv) are simple applications of definitions and axioms of De
Morgan lattice.

(v) follows from the fact that ~ is an isomorphism from De Morgan lattice
(L, <, 7) to De Morgan lattice (L, >, 7).
(vi) Because of the equivalence x < a; V-V a, & > a A---a,z belongs
to I(A) iff Z belongs to F(A). The second equality is dual to the first.
(vii) is a consequence of (vi), if we take A = Tp using (iv).
(viii) ToNTy =0 & =3z € L) (x € Top and x € T1)
because of (i), (ii) © -3z € L) (z <z and x > 7)
Sa(Fzel)z=x
& L is regular.
(ix) FNTy=0 & -=(3z€l)(z€TyandzeF)
because of (i): & ~(Fzx € L) (r <Zand z € F)
S (Arel) (x<Tand T € Fandz € F)
& F' is consistent.

(x) Suppose not. Then there exists a truth filter F' and z,y € L such that
zAy € Fandx € F and y € F. As a truth filter, F is also complete, so Z € F' and
g € F. Because F is a filter, we have ZAg € F; but TAg=2Vy,soxzVy € F
which contradicts the consistency of F'.

(xi) Let p € T;. By the definition of 77, p = pVp. Because of the completeness
of the truth filter F', we have p € Fror p € F. As F'is a filter we have pVp € F, so
p € F. Consequently 77 C F. Because F'is a filter, it contains a filter generated by
Ty, so Fy C F. Also, F is consistent, so F1 N F = ). From (vii) we have F} = Ip;
hence Iy N F = .

DEF 4 Let p € Ty, define f,: L — L as

folz) =pA(pVa), for z € L.

By the above definition, a class of mapping is introduced in L. Next lemma
describes some usefull properties of these mappings.



28

M. Bozié

LemMA 3. Let p,q € Ty and x € L, then:

) f(z) =PV (pA2)
ii) fp is a homomorphism from L to L.

iii) fp(L) = [P, p]

IV) fp—fp
V)fp—fq:>p—q
vil) x € To = fp(z) € To; x € Th = fp(zx) € Ty

vili) z € In = fp(x) € Ip; x € F1 = fp(z) € Fy

ix) fo(pAz) = fpz), V) =p
oV ) = fp(), fr(PAz)=p.

PRrROOF:

(i
(
(
(
) fp ffp(q)
(vi
(vi
(
(i

(i) Becauseof pe Th © p=pVp < p=pAp we have:
fol@)=pA(PVz)=(@PAD)V(PAzZ)=pV (pPAz).

(il) fp(zVy) =pA(BVzVy)=pA(PVzVpVy)
=@ABEV)VEPADVY)=fl@)V )
(@) =pABVE)=pA(PAz)=pV(pAz)=fHz)
folw ANy) = fo(@Vy) = fo(@) V fo(y) = fo(@) A fo(y)
(iii) p<pV(pAz)=pA(PVz)<p=>p< f(z) <p---(1)
zeppl=pLz<p=>pVr=z=>pAPHVz)=pAz=u.

So, for z € (p,p] we have f,(x) = z; together with (1) it implies (iii)

() fp(fp(@)) = folpA(PV ) =PV (PAPA(PVT)))
=pVAP@PABVZ)=DBVP)ADBVDVI)
=pA(pVe)=fp(z)

(V) Fr,p (@) = fol@) V (fp(a) Az) = f(@) V (fp(a) A)
=@A@EADBVD) VDV (PAG) AT
=@AP)VADV(DAT)V(PAGAT)

EA@AR)V(PADV (PAgAT)

=pV AV (PAgAT)
=pV(PA(@V(gAT))

= fp(@V (g A 2)) = fp(fq(2))
= fpo fo()
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V) fp=fo= frlpVa) = fi(pVa)
=>pADVPVe =qA(@VpVaq)
=pAPVe=qr(pVa
=p=q

(vi)zeTo=>z=2AT

= fp(x) = fp(z) A fp(x) (fp is an homomorphism)

= fp(z) € Tp.
Similarily, z € Ty = fp(z) € Th
(vii)z € lp=>z<q V---Vq, for some q,...,q, €T

= fp(@) < fpla) V-V fplgn)-
Last inequality holds because f, is an homomorphism. Using (vii) we have f,(g;) €
To, hence fp(x) € Ip. Second implication in (viii) is dual to the first.

(ix) is a simple consequence of the definition of f, and (i).

Now, we are ready to prove:

THEOREM 1. Let F C L be a filter in L. F is contained in some truth filter
TinLiff (FATy) CTy=0.

PROOF:

(=)

Suppose not. Then (F'ATy) N Ty # 0 and there exists a truth filter T'(D F')
in L. Because the intersection of sets above is non-empty we have:

(1) (Fa e F)(3p e Th)aAp e Tp.

But, because of (xi) Lemma 2, T as a truth filter contains T3, so p € T. Hence,
pAa € T which implies T N Ty # () which contradicts (xi) Lemma 2.

(<)

Suppose (F ATy)NTy = (. We will prove the existence of a truth filter
containing F' in a several steps.

1° The filter Fy = F(F UTy) is consistent

_ Suppose the opposite — i.e. F} is inconsistent. That means that there exists
b,b € Fy, so, for some b,bA b € Fy. As F] is a filter generated by F U T} we have,
for some ay,... ,ar € F and p1,... ,pm € Th:

(2) ar A ANag ApLA - Apm <DAD.

Fisafilter,soa=ai A---Aay € F and bA b € Ty, therefore

(3) aApL A Apy € Tp.
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Applying the f,,, onto (3) and using the fact that fp, is a homomorphism
which preserves Ty, we obtain:

(4) fom (@) A fpn(P1 A= APt Api) € To.
Because of f,(p A z) = f,(x) ((ix) Lemma 3) (4) becomes:

(5) Jom (@) A fp (P1) A== A [, (Pm—1) € To.
As f, preserves Ty ((vii) Lemma 3) (5) becomes

(6) fom (@) ADYA -~ Apy,_y €Ty, pj €Ty

Finally, we have that the number of units in the (3) is decreased by one in
(6). Repeating the procedure above m — 1 times we will obtain:

(7) Jop g1+ (s (@) --) € T

Because of (v) and (vii) from Lemma 3, a composition of f, mappings is one
fp mapping so, for some p € 71,

(8) fp(a) € Tp.
Because of pAa <PV (pAa) = fp(a), (8) implies
pAa€Ty

wich condraticts (F ATy) N Ty = 0.
2° The set of all consistent filters containing Fy has a mazimal element.
Let Gp, = {G D F; | G is a consistent filter in L}.
Because of 1°, F} is consistent, so F} € Gp,, hence G, # 0.
Let £ be chain in Gp,, and let C' = UL. As a union of filter, C' is a filter. C

is also consistent, because xz,Z € C implies t AZ € C, so for some G € L,z AT € G
which contradicts a consistency of G.

As Gr, is non-empty and closed over the unions of chains it fulfills the con-
ditions for the application of Zorn’s Lemma. Hence, Gp, has a maximal elements.
Let us denote one of them by T.

3° T is a truth filter and contains F'

As T belongs to G, it is consistent and contains F'. To complete the proof
it suffices to prove that T is complete.

Suppose not. Then, there exists a,a € L such that a € T', a ¢ T. Because of
that, the filters F(T'U {a}) and F(T U {a}) are different from 7" and greater than
T. Hence, as T is a maximal consistent filter containing Fj, these filters must be
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inconsistent - i.e. because of (ix) Lemma 2, some zeroes belongs to them. So, we
have:

(9) (3q1,92 € To)(q1 € F(T'U{a}) and ¢2 € F(T U {a}))

Using the definition of the notion “filter generated by...” (9) becomes:

(10) (qu,qQ S To)(atl,tg S T)(t1 ANa<gq and ta Aa < q2).

From (10) we infer that for some ¢1,¢2 € Tp and t1,t2 € T

(11) tl/\tg/\agql and tl/\tg/\C_lSQ2.

From (11) follows:
(12) tl/\tg/\(ava)gq1Vq2.

aVaeTy CF CT,soaVaéeT. Hence, the left side of inequality (12)
belongs to T and, consequently, right side belongs to 7. That is, ¢t Vg € T. T
is consistent filter; so, 1 Vg2 = 1 ANG € T. But, q1,Go € Ty C F; C T and
G1 N\ @2 € T. Contradiction.

Some other related statements on truth filters follows easilly from Theorem 1.

COROLLARY 1. 1. Let a € L. There there exists a truth filter T such that
a€Tiff anNTy)NTy =0.

PrOOF: There exists a truth filter containing a if and only if there exists a
truth filter containing a filter generated by {a}. But F, = F({a}) ={z € L |z >
a}. So, (aAT1)NTp = 0 is equivalent to (F, AT1) NTy = 0. The last is, according
to Theorem 1, equivalent to the existence of fruth filter containing F; and a.

COROLLARY 1.2. Let a,b € L such that ma < b. There exists a truth filter
containing a and not containing b iff (a AbATY)NTy = .

PROOF: Because of completeness of any truth filter, the filter with desired
property fulfills a € T and b € T. As T is a filter a Ab € T holds. So, there exists a
truth filter containing a and not containing b iff there exists a truth filter containing
a A b. The last is, according to Corollary 1.1 equivalent to

(aADAT, NTy = 0.

LEMMA 4. Letp € Ty and x € L, then:

pAzeT iff f,(x) € Tp.
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PROOF: pAz €Ty = fplpAz)= fp(xz) € Tp (Lemma 3 (vvii), (ix))

folx) €eTo =pV (pAz) €To=>pAx €T

COROLLARY 1.3. There exists a truth filter T in a De Morgan lattice L iff
L is regular.
PROOF:

(=) If there exists a truth filter in a De Morgan lattice L, then (Vz € L)(z €
T <z ¢T) sox and T must be defferent, i.e. L is regular.

(<) Let L be a regular De Morgan lattice and let p € Ty. If (pATy)NTy # 0
then p A g € Ty for some g € Ty. According to Lemma 4, the last is equivalent to
fp(q) € To. But, because of Lemma 3 (vii) f,(¢) € T1 also holds. So, To N Ty # 0
which, because of Lemma 2 (viii) contradicts the regularity of L. Hence, (p AT1) N
To # 0 — i.e. there exists a truth filter containing p.

So, the Belnap and Spenser theorem mentioned at the begining of this paper
is proved as a corollary to the Theorem 1.

THEOREM 2. a € Iy = (a ATy)NTy # 0.

PrOOF: Because of Lemma 2 (xi) TN Iy # O for any truth filter 7. So,
there is not a truth filter containing a € Iy. According to Corallary 1.1 the last is
equivalent to (a A T1) NTy # 0.

Therefore, we have proved Theorem 2 as a corollary to theorem 1. But, the
proof of theorem 1 uses a Zorn’s Lemma which is not necessary for the proof of
Theorem 2. We are giving a straightforvard proof:

Let a € Iy — i.e. there are qq, ... ,q, € Tgo such that
(1) a<q V- Van.

Applying f;z, onto (1) we will (as in the step 1° of the proof of Theorem 1 -
which does not uses a Zorn’s Lemma) obtain:

(2) fo.(a) < fa. (@) V-V fg, (qn-1).

(3) for (- (fpa (@) ---) < fola),

where p,p1,... ,p, € T1 and ¢ € Tp. The composition of the f, mappings is one f,
mappings and f,(q) belongs to Ty so (3) becomes:

(4) fr(a) € Ty, for some r € Ty.

The last is equivalent to
(aATl)ﬂTo 75@
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The theorem above leads to a natural question:
Does the converse holds? —i.e. Is a € Iy equivalent to
(a ANTy) NTy # 0?7 It is obvious that this equivalence
will simplify the criteria for existence of a truth filter
containing a. But, the answer is negative — i.e. the
implication in Theorem 2 is “proper”. We will prove
this with a following example:

Let My be a following regular De Morgan lat-
tice:

My has some important properties (see, for ex-
ample, Anderson and Belnap [1975]), but, anyway
Mg is a regular De Morgan lattice as a direct prod-

-3 uct of w regular De Morgan lattices. Let L be a com-
= —a plete sublattice of M, generated by e; = (2,1,1,...),
e2 = (2,2,1,...), e3 = (1,1,2,...),... ie. e is a
sequence of 1 exept that 2 is on the k-th place.

(0,0,0,...) € L because of (0,0,0,...) = Agecwer- So, (—0,—0,—0,...) € L.
(-0,-0,—-0,...) A ey, = —e, which means that (-0, —0,—0,...) fulfills condition
((—0, -0,-0, .. ) A T1) NTy # 0; but (—0, -0,-0, .. ) g Io.

Let us mention that a € Iy and (a ATy)NTy # 0 are equivalent in any finitely
generated De Morgan lattice.
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