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1. Introduction

Since Tarski’s clasic result for increasing functions on lattices (see [12)),
a number of papers giving fixed point theotems for increasing or decreasing
functions on partially ordered sets have appeared in the last two decades.
Some of them treat only increasing functions, for example, [4], [14], some
only decreasing, for example, [1], [2], [3], [5], [8], and some increasing and
decreasing, for example [13]. In [6] are considered so called “partly decrea-
sing functions. Several papers treat fixed points of multifunctions (71, 91—
[11]).

In the following (P, <) is a non-empty set with a partial order <. A
subset C of P is called a chain in case it is totally ordered. A multifunction
F:X—Y is a point to set correspondence on X into Y with F(x)# 2 for
all x€X, where @ denotes the empty set. We shall denote a multifunction
by upper case latter, F, G ect. and a single — valued function (or simply
function) by a lower case latter.

If f:P—P is a function, a fixed point of f is a point x&P such that
f(x)=x, and if F is a multifunction, then x is a fixed point if x&F(x).

2. Decreasing multifunctions

Recall that a single — valued function F:P-—»P’, P and P’ are partially
ordered sets, is decreasing if x,<x,, x,, x,€P, implies f(x,)=f(x,). There
are many ways to generalize the notion of decreasing function to a notion
of decreasing muitifuction. (Add that a decreasing function is also called anti-
tone function.) For example, in [7], the following definition is given.

Let P be a partially ordered set. Then a multifunction F:P—P is
decreasing if x<(y implies

1. For all zEF(x), Lz)NF()# 2.
2. For all z&F(y), MEONF(x)# @.
L@ ={u|u<z}, M(@)={u|u=z})
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The following two kinds of decreasing functions in complete lattices and
conditionally complete partially ordered sets are considered in [2], [3], [5],
18] and [15].

Let L be a complete lattice and f:L— L a function. If, for any o #ACL,

f(sup A)=inff(A4), where f(4)={f(a)|ac A},
then we say that f is a join antimorphism.
A meet antimorphism is defined in a similar way, namely, for @ #ACL,

f(@inf A)=sup f(A4).
It is easily seen that join antimorphisms and meet antimorphisms are
decreasing functions.
In a complete lattice we introduce here the following types of decreasing
multifunctions for complete lattices.

Inf — decreasing multifunctions. Let L be a complete lattice and F:L-—>L
a multifunction. We say that F is inf-decreasing if (and only if), for any
a, becl,

) a<b = inf F(b)<inf F(a)

Let us consider the following two conditions:
) for every xCL, inf (F (inf F(x))>x;
3) for every x& L, inf F(x)E F(x).

Definition 2.1. Let L be a complete lattice and let F:L—~L be a
multifunction. We say that F is a join d-multimorphism if (and only if), for
any ACL (A# @)

4) inf F(A)&E F (sup A),
where F(A4)=U{F(a)|aEA4}.

A multifunction F:L—L is a meet d-multimorpism if @ #ACL implies
CY) sup F(A)& F (inf A4).

Proposition 2.1. Let L be a complete lattice and let F:L—~L be a
Join d-multimorpism, then F is inf-decreasing on L.

Proof. Suppose a, &L and a<b. Let m=inf(F(a) JF(b)). Then
F(sup{a, b})=F(b) and

1° n=inf F(B)S F(b) (by (4) for A={b})

2° m& F(b).

Since F(b)C F(a)iUF (b), it follows
*) m<n

But, by 2°, ‘
(**) n<m

(*) and (**) imply m=n. Hence inf F(a@)>=m, or inf F(a)=inf F(b).
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We see that every join d-multimorphism satisfies (1) and (3).

Since every constant single — valued mapping satisfies (4), we conclude
that the condition (2) is not implied by (4) (see [2]). On the other hand, the
following proposition is valid.

Proposition 2.2. Let L bn a complete lattice and let F:L—L be a
multifunction satisfying the conditiovs (1) — (3). Then F is a join d-multimorphism.
Proof. Let o #A4ACL and s=sup 4. Then, by (1), inf F(x)=inf F(s)
for every x& A, that is inf F(s) is a lower bound for F(4). Let m=inf F(A).
Evidently
(0) mzinf F(s5)

From inf F(x)>m, it follows, by (1), that inf F(inf F(x))<inf F(m), or,
by (2), x<Cinf F(m). We conclude that inf F(m) is an upper bound for 4.
Then inf F(m)>s, which implies inf F(inf F(m))<inf F(s), or, again by (2),

; m<inf F (s).

(o) and ([) imply E
{ inf F(A4)=inf F(sup A)

But by (3), inf F(s)& F(s), which proves the assertion.

The following example will show that a multifunction F:L—L may
satisfy (1) and (2) without satisfying (4), or, without being a join d-multimor-
phism.

Example 2.1. Let L be the lattice on the Figure 1 and let F:L—>L
be defined by: F(0)={1}, F(a)=F(b)={0}, F(1)={a, b, 1}. It is easy to
verify that F satisfies (1) and (2), but not (3).

On the other hand one¢ can easily construct a single — valued mapping
of L into itself, which satisfies (1) and (3) but not (2) and which is not a
single — valued join antimorphism.

Also, the identity mapping of L satisfies (2) and (3) but not (1).

Let us note that we shall write aV b (resp. a\b) instead of sup{a, b}
(resp. inf{a, b}).

By an antichain of partically ordered set P we mean a subset 4 of P
such that no two elements of 4 are combarable.

Our first fixed point theorem concerns complete lattices satisfying the
following condition.

Condition («). There is an antichain ACL
(where L is a complete lattice) such that every xCL is

1

either a join or a meet of elements of A. ‘ 5
Theorem 2.3. Let L be a complete lattice sati- J
sfying the condition (x) (with the antichain A) and let Figure 1

F:L—L be an inf-increasing multifunction such that:
(i) Inf F(x)EF(x), for every xcL;
(i) x<inf F(inf F(x)), for every xCL;
(iii) for every aS A, inf F(a) is comparabie to a;
(iv) {acA|a<inf F(a)}# @
Then F has a fixed point.
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Proof. Let us denote by P.(L) the family of all subsets B of L such
that sup B<inf F (sup B). By the condition (iv), P.(L) is noe-empty.

Lemma 2.4. Let L be a complete lattice aad let F:L-»L be a join
d-multimorpism, then Pr(L) has a maximal element.

Proof of the lemma. Let (B,|i€I) be a chain P(L). We shall
show that By= (J{B,|iE€ I} belongs to P,(L). Given any i, JE1. We may assume
B,CB;, hence sup B;<<sup B;. Put sup B;=b;, sup B;=b;, inf F(b)=m,, inf
F(b))=m;. We have

b;<b;<m;<m; (since sup B, <inf F(sup B;) and so for B)
It follows that sup {bi[iel}gmj, for every j&I and so
(.1 sup {b; | ic I}<inf{m;|jc I}
Remark that sup{b;|jcI}=sup B,. By (1.1) we have
sup B, =sup {b;|icI}<inf{m;|jE I} =inf F(B'), where B ={blicl}.

Let us prove the last equality.
Put m=inf{m,|jE1}, n=inf F({b;|jCI}).

b,CB’ implies F(b,)CF(B),
and so inf F(b)>inf F(B’), or m;z=n for jE I, hence

¢ m=n
Let x& F(B’). Then XCF(b;) for some j<I. Hence x>m>m or
(1/) n>m

() and (") prove the desired equality.

But sup B'=b,, hence sup B,<inf F(B')=inf F (by) =inf F(sup B,), since
F satisfies the relation (I) from the proof of the Proposition 2.2, and b,=sup B,.

The assertion of the lemma follows now from Zorn’s lemma.

Proof of the theorem. By the proposition 2.2, F is a join d-multi-
morphism, so we may apply the lemma 2.4. Let B, be a maximal element of
Pp(L) and by=sup B,. Then inf F(b,)>b,. Suppose inf F (bg)>b,. Since L
satisfies («), there exists a& A, noncomparable to by, such that inf F(by)>a.

Case 1°
(1.2) inf F(a)>a

From inf F(b,)>a it follows that inf F(inf F (b,))<inf F(a) since F is
inf-decreasing). By the condition (ii) of the theorem,

(1.3) b, <inf F(a)

From (1.2) and (1.3) we obtain inf F(a)=b,V a. Since inf F(b))=b,V a
and inf F(a)>b,V a, we have

inf F(by) A inf F(a)=>b,V a.
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But inf F(by) Ainf F(a)=inf (F(b,)\JF (a)). Hence inf F ({a, byp)=aV b,
and so inf F(B,U{a})>inf F(b,V a)>b,V a, contradicting maximality of B,.

Case 2°
inf F(a)<a

Then from inf F(b))>b,V a, since F is inf-decreasing and because of
(ii), it follows :
by<inf F(inf F(b,))<inf F (b, V a).

But by (I)

inf {F (b)) UF (a)}=inf F(b,V a),
and so
bo<inf {F (b,) U F (@)} =inf F (b)) Ainf F(a)<a,

contradicting non-comparability of b, and a.

So in both cases inf F(b,)=b,. But inf F(b,)ESF (b,), i.. b,EF(b,).

Theorem is proved.

Corollary 2.5. Let L be a complete lattice satisfying the condition (x)
and let f:L—L be a decreasing function such that:

() f2(x)=x, for every xEL (where f2=fof);

(ii) for every ac A, f(a) is comparable to a;

(ii}) {aCA|a<f(@)}+2..

Then f has a fixed point.

A complete latt ce L is said to be atomic if every xCL, x#0, is a join

of atoms (elements of L that cover 0). Denote by A the set of atoms of an
atomic lattice L. Then we have the following corollary.

Corollary 2.6. Let L be a complete atomic lattice and let f:L—~L
be a decreasing function such that:

(i) For every x&L. f2(x)>=x;
(i) f(a) is comparable to a for every aC A.
Then f has a fixed point.

Corollary 2.5. is improved version of the following theorem due to
Shmuely.

Corollary 2.7. ([8], theorem 1) Let L be a complete atomic lattice
and let f:L— L be a decreasing function such that fP(x)=x, for every x< L.
If f(a)=a, for every atom a, then f has a fixed point.

Simple examples, similar to the examples [2] show that no one of the
conditions of theorem 2.3 can be omitted.

Sup-decreasing multifunctions. Let L be a complete lattice and let F:L— L
be a multifunct.on. We say that F is sup-decreasing if, for every a, b= L,

) a<h = sup F(b)<{sup F(a)



46 . R. Daci¢

Let us consider the following two conditions:
(2") For every x&L, sup F(sup F(x))<x
(3") For every x&L, sup F(x)EF(x)

The following two propositions are proved analogously as propositions
2.1 and 2.2 and their. proofs will be omitted.

Proposition 2.8. Let L be a complete lattice and let F:L—L be a
meet d-multimorphism. Then F is sup-decreasing.

Proposition 2.9. Let L be a complete lattice and let F:L—~L be a
multifunction satisfying the conditions (1) — (3'). Then F is a meet d-multi-
morphism.

An example analogous to the example 2.1 shows that a multlfunction
F:L—>L (where L is a complete lattice) may satisfy (1') and (2’) without
being a meet d-multimorphism.

Theorem 2.10. Let L be a complete lattice satisfying the Condition («)
and let F:L—L be a sup-decreasing multifunction such that:

(i) For every x&L, sup F(x)&EF(x);

(i) For every x&L, sup F(sup F(x))<x;

(iii) For every ac A, sup F(a) is comparable to a;
(iv) {acA|az=sup F(a)}+# @

Then F has a fixed point.

Proof of this theorem is analogous to the proof of theorem 2.3 and
will be omitted.

Corollary 2.11. Let L be a complete lattice satisfying (o) and let
f:L—L be a decreasing function such that:

(i) For every x&L, f2(x)<x;

(ii) For every a& A, f(a) is comparacle to a;

(iii) {aE4|a=>f(a)}# 2.

Then f has a fixed point.

A complete lattice L is coatomic provided that every x&L (x#1) is a
meet of coatoms (elements of L covered by 1). Denote by C the set of
coatoms of L.

Corollary 2.12. Let L be a complete coatomic lattice and let f.L—L
be a decreasing function such that:

() x=1?(x), for every xEL;

(ii) f(c) is comparable to c for every c&C.

Then f has a fixed point.
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3. Some increasing multifunctions

We recall that a single — valued function f:P— P (where P is a partially
ordered set) is increasing if x,<x,, x;, x,&P, then f(x)<f(x,). There are
many ways to generalize the notion of increasingness from single — valued
functions to multifunctions. For example, R. E. Smithson (see [9] — [11]) stated
the following.

Condition I If x,<x,, x,, x,&P, and y,&EF(x,), then there is a
¥,E F(x,) such that y,<y,. '

We give the following generalization of the notion of increasing function
on partially ordered sets.

Definition 3.1. We say that a multifunction F.P— P’, where P and
P’ are non-empty posets, is inf-increasing (resp. sup-increasing) if, for any xEP,
inf F(x) (resp. sup F(x)) exists and x<y implies inf F(x)<tinf F(y) (resp. sup
F(x)<sup F(y)).

It is evident that a single — valued function, considered as a multifunction,
satisfies the condition I as well as the conditions of the definition 3.1.

We shall first establish a connection between Condition I and definition 3.1. ‘

Proposition 3.1. Let P be a non-empty poset and let F.P—P be a
multifunction. Then the following two conditions are equivalent:

(2) F »atisfies the Condition I and, for any x<P, sup F(x)&F(x);
(b) F is sup-increasing and sup F(x)&F(x), for every x<P.

Proof. Let F satisfy (a) and let x,<x,, x;, x,&P. Then, since the
Condition 1 is fulfilled, for y,=sup F(x,), there exists a y,&F(x,) such that
¥ <),. But y,<sup F(x,), so sup F(x)<sup F(x,), i.e. F is sup-increasing.

Conversely, let F be sup-increasing, x,<x,, x;, x,&P, and y, & F(x).
Then y,<sup F(x,)<sup F(x,) and the role of y, in the Condition I has
sup F(x,). So the Condition I is satisfied and also sup F(x)& F(x) for any x P.

The proposition 3.1. has , at once, as a corollary a theorem of Sgithson.
To state that theorem, we need the definition of a selection. Let F:X-—Y be
a multifunction on X into Y. A selection for F is a (single — valued) function
f:X—Y, such that f(x)©F(x) for each x&EX. An isotone (increcsing) is a
selection which is isotone.

Corollary 3.2. ([9], theorem 1.7). Let P be a poset and let F;P->P
be a multifunction on P which satisfies Condition 1. If sup F(x)=F(x) for all
X EP, then there is an isotone selection for F.

In [9] R. E. Smithson gave another generalisation of incresing single —
valued function.

Condition II. If x,, x,&P, x;<x, and if y,EF(x,), then there is a
Y€ F(x)) such that y, <y,.

The following proposition is valid (we omit the proof).
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Proposition 3.3. Let P be a non-void poset and let F:P—P be a
multifunction. Then the following two conditions are equivalent:

(2) F satisfies Condition II and fo: any x€ P, inf F(x)& F(x);
(b) F is inf-increasing and inf F(x)& F(x) for each x<P.
Now we give a multifunction version of Tarski’s theorem.

Theorem 3.4. Let L be a complete lattice and let F:L—>L be an
inf-increasing multifunction, such that, for any xcL, inf F(x)EF(x). Then F
has a fixed point.

Proof. Let LF={x&L|x<inf F(x)} and s=sup Lf. By well known
procedure, by which Tarski’s theorem is proved, we find that s=inf F(s). But
inf F(s)E F(s), hence s& F(s).

Remark 3.1. An analogous theorem is valid for sup-increasing multi-
functions.

Remark 3.2. If F is a single — valued function, we have the theorem
of Tarski so the theorem 3.4 is a generalisation of Tarki’s theorem.

Remark 3.3. The following example will show that the condition
inf F(x)& F(x) cannot be omitted in the theorem 3.4. Let L be the lattice on
the Figure 1, and let F:L— L be defined by:

F(O)=F(b)=F(1)={a}, F(@)={b, 1}.

Evidently F is inf-increasing, L is a complete latt.ce, but no fixed point
of F exists,

4. Commuting famiiies of increasing multifunctions

Lep P be a partially ordered set and let ¥ be a family of multifunctions
on P into itself. We say that .7 is :. commuting family if, for any F, GE .7,
FoG=GoF, where (FoG) (x)= U{F@)|u¢c G(x)}. A family ;% is inf-commu-
ting if, for any xcP and anv F, G&, ¥, inf F(inf G (x))=inf G (inf F(x)),
provided the corresponding inf ma always exist. (In this section we assume
that inf F(x)< F(x) for any x€P and all F are inf-commuting and also inf-
-increasing mappings.)

Proposition 4.1. Let F and G be two inf-increasing multifunctions on
P into itself. If F and G are commuting and inf (FoG) (x) exists for any x<P,
then they are inf-commuting.

Proof. Put m=inf F(inf G(x)), n=inf G(inf F(x)). For any u&G(x)
we have inf G (x)<<u. It follows, since F is inf-increasing, that inf F( nf G (x))<
<inf F(u), or m<inf F(u). This inequality is valid for all u&G(x), h nce
m< nf {inf F(u) | u€ G (x)}. But inf{'nf F(u)luc G (x)}=infU{F@)|uEG(x)}=
=inf(FoG) (x), hence m<inf(FoG)(x). Since F and G contain ther inf ma,
inf F(inf G(x))=(FoG)(x), or m=inf(FoG)(x). It follows: m=inf(FoG)(x).
In a similar way it is proved that n=inf(GofF)(x). Since (FoG)(x)=(GoF)(x),
we have m=n. q.e.d.
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Theorem 4.2, Let P be a non-empty partially ordered set and let 5
be a non-empty inf-commuting family of inf-increasing multifunctions on P into
itself. If there exists an element ¢ of P such that c<inf F(c), for all FEF
and if each chain in P containing ¢ has a supremum in P, then there exists a
in P such that a&F(a), for all FE F .

Proof. Let % be the set of all chains in P which contain ¢ and satisfy:
If xeCe. ¥, then x<inf F(x), for all FE 5. By Zorn’s lemma there
exists a maximal chain L in . Since ¢&L, L is non-empty and a=suplL
exists in P. We shall show that acL. Let FE, ¥ and x&L. Then x<{a and
therefore x<{inf F(x)<{inf F(a). Hence, inf F (@) is an upper bound for L and
thus a<Cinf F(a). Suppose that a<inf F(a) for some FC . F and let GE .F .
Then a<Cinf G (@) and inf F(e)<inf F(inf G (a))=inf G (inf F(a)). It follows
that LU{inf F(a)}<&,% which contradicts the maximality of L. Hence inf F(a)=a
for all F= % . But inf F(a)& F(a), and the theorem is proved.

Applying proposition 4.1 and theorem 4.2 we obtain the following

Theorem 4.3. Let P be a partially ordered set and let 7 be a non-
-empty commuting family of inf-increasing multifunctions on P into itself, such
that, for any x&P, and any F, GE .5, inf (FoG) (x) exists. If there exists an
element ¢ of P such that c<inf F(c) for all F and if each chain in P containing
¢ has a supremum in P, then there exists a =P such that ac F(a) for all FE % .

As a corollary we obtain an extension of Tarski’s theorem ([12]).

Corollary 4.4. Let P be a complete lattice and let ¥ be commuting
Sfamily of inf-icreasing multifunctions such that inf F(x)& F(x) for each FE %
and for all xEP, then there exists a common fixed point for the members of F .

In an analogous way the following theorem is proved.

Theorem 4.5. Let P be a partially ordered set and let ¥ be a non-
-empty commuting family of sup-increasing wmultifunctions on P into itself, such
that, for all xP and any F, GEF sup (FoG)(x) exists. If there exists an
element ¢ of P such that c<sup F(c), for each FEF and if each chain in P
containing ¢ has a supremum in P, then there exists a=P such that acF (a)
for all FE 5.

Applying proposition 3.1 and theorem 4.5, we obtain the following theorem
of R. E. Smithson (see [11], theorem 2.3).

Corollary 4.6. Let cEP and suppose each chain containing ¢ has a
supremum in P, Let F ce a commuting collection of multifunctions on P
into itself, such that there exists yEF(c) with c¢<y for each FE ¥ . If each
Fc 5 satisfies Condition I, and if sup F(x)SF(x) for each FEF and for
all xEP, then there exists xEP such that x&F(x) for all FEF .
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