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CHARACTERISTIC OPERATOR FUNCTIONS ON WACHS SPACES
T Ofgas'ev Aleksandar

Abstract. — In this note, the notions of operator knots on Wachs
spaces (quaternionic Hilbert spaces) and the corresponding characteristic operator
functions are considered. We obtained the generalizations of some basic pro-
perties of these notions in Hilbzrt spaces, following the first chapter of the
M. S. Brodskii’s monography [6] (pp. 7—102).

We do not quote many other results concerning invariant subspaces and
characteristic operator functions, because they are in results and proofs direct:
translations from complex Hilbert spaces. ’

1. Operator knots in Wachs spaces.
Let H, G be two separable Wachs spaces, i.e. quaternionic Hilbert spaces,,
A€ L(H), KEL(G, H), JEL(G),
be bounded linear operators on these spaces such that
JE= —J, JP= L.

Let next H*, G° be simplectic images of spaces H, G, and let B® denote the
simplectic image of an arbitrary bounded linear operator on H or G. Then

BS =SB (—S)=B°

where S=jI (i, j, k-are quaternionic units).

If it holds :
KJIK* =Im (4) = —:12— A4-4%
then
AKJ
#* 90—
*) (")
is an operator knot, and
A5 K5
05 =
(" ¢)

* Izradu ovog rada je finansirala republitka zajednica za nauéni rad SR Srbije.



288 v Torgalev A.

where J= —iJ°, is its simplectic image, thus an operator knot in complex Hilbert
spaces.

We only emphasize that B
= —J (in G¥).
‘Then:
H — is the exterior space,
G — interior space,
A — basic operator,
K — canal operator,

J — directional operator of the knot .

As in the complex Hilbert spaces, every operator A& L (H) can be ,,embedded‘
into a operator knot 0, whose basic operator is 4.

Theorem 1. — Let A be a bounded linear operator on a separable
Wachs space H, and E by any closed subspace containing the range R(Im A)
Then there is an operator knot O whose basic operator is A.

Proof Since the subspace EDR(Im 4), its simplectic image E* in H*
contains the complex subspace

S __ Ask
R (%) — iR (Im 4%) =R (Im 4°).

Besides, it is easily check that the spectrum of A;=1Im(A4%) is symmetric with
respect to 0, since it is selfadjoint and

A;=(—1ITm A% = — 4,.

Let us denote: ASO)=A,|R—@7) and Ef(t) — the spectral function of the operator
AP in R(4,). Then:
A= [ 1@ty (a=0).

~ Since next:

AP = — AP = — [ B ()= [ td(I-E*(=1)

and Fs(t)=I—Es(—t) (—a<t<a) is an orthogonal decomposition of unit on
Hs, it follows:

(1.1) Es()=I-E(-t) (—a<t<a).
If we put

K= [ [t|"2dEs(t),

Jo= [ sgntdE(1),

—a
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then
J:)Z'Ioa J%=1,
K,J,Ko=A  (in R(4))
(6], p. 12).
In view of (1.1), it is then easily seen that

K= [V[1dE@= [V[t]|dU-E(=1)=

= [V[tldE(t)=K,,

and J,= —J,.

The rest of the proof is then very - similar to the correspondlng proof of
Theorem 1.1 ([6], p. 12).

Hence there is a Wachs space G, an K'&L(G, H) (K= K), and a
selfadjoint operator JSE€L (G*) such that (JS)2 I, J’'= —J and
— As*
2i

KsJs Ks* —

Now defining

: Kx=K*x, Jx=il x (xEG6Y),
we get a desired operator knot.[]

— A Wachs space operator knot 0 is said to be szmple, if the linear
hull of sets A"R(K) (n=0, 1, 2,...) is dense in H. -

Since A*R (K) are subspaces of the space H, we see that § is a 51mp1e
knot, if and only if its simplectic image 6° is a complex s1mple knot.

2. Characteristic operator function.

If 9=(A K J) is an operator knot, we put:
H G

WeM=We()  (A&p(4)),

and, as usually, we call W,(2) the characteristic operator function related to
the knot 0.

It is defined and holomorphic on the resolvent set p(A) of the operator
A, which is symmetric about the real axis: p (4)=p(4)*.

Thus
Wo()=I—-2iK*Rs () KJ=I— 21KS*(AS AD-IET  (AEp(4))

defines a familly of bounded linear operators on the space G°.
Together with the usual properties of W, (), we immediatelly get

2.1 WeM=We() (A Ep(4)).

19 L’institute mathematique
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Indeed, for an arbitrary A&p (4),

Wo()=S[—2iK* (4> =AD)~ K*J]S =
=I+2iK* (4"~ A)=' K*J=
T 2iK* (A=A K T =
=W, ().00

If next K=K°, J°= —J, and Z};éA‘ then it is interesting to see which occurs
if (2.1) holds true.

Then obviously Im (4)EL (H), so that
Im (4%) = - Im (4£5).

Theorem?2. — Let 05 be a simple knot with basic operator Ase L (HY),
let o (A4%) be symmetric about the real axis, and

We W=We ) (\Ep(49)
Then operators A° and A° must be unitarily equivalent in G°. Morever, it hods:
A x=Ax (xem,
Ly=U,£U'y  (YERE)Y,
for an unitaf operator U, in the subspace R (K*)'.

Proof. In view of Theorem:3.2. ([6], p. 26), there is an unitar ope-
rator U* on H* such that

A=Us 45 (U)', K =U K"

Then Ufx=x (x&R(K®)), and implicitely, restriction U, of U on the subspace
R(K®) is an unitar operator .on this subspace. Therefrom we get statement.[]

Remark. It is easy to see that if K°=K*, J= —J, then W, (}) is the
characteristic operator function of the knot

es__: A_SKS J )-D
. (HX GS
Next, let us put:
T = We J W N-J (0-a knot).
Then T()\) is deflned and holomorphlc ‘operator function on the set p(4) with

values in L (G¥). Since 7\69(/1) 1mphes AEp (4); in view of relation 3.12 ([6],
p- 29) we get: :

(2.2 W) ' =IWeMJ  (ACp(4)).
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Next it holds true:

(2.3) TM>0  (ImA>0, AEp(4)),
(24) TM<O0  (Imr<0, A&p(4)),
2.5 TM=-TO)  (AEp(4))
If now:

Ve () =K* (Re (£) ?% D™'K  (ACp(Re(4))),

then ¥, (\) is defined and holomorphic opérat’or function on p(Re 4) with
values in L(G%) such that ; _

(2.6) ImV,(0)>0  (ImA>0, kEp‘V(Re A),

Q@7 ImV,(W)<0  (ImA<0, ACp(ReA)),
¢X) Vo=V, ®  (Ep(Re4)
hold true.

We emphasize that (2.7) is a consequence of (2.6) and (2.8). Besides, as it is
known: S '
Vo) =W (W) + D)~ (W, (3) - D)iJ,

- WM =U+Vo Wiy U=V, ()id)
(e (@Ne(Re ). \ , ,
Lemma 1. An operator function V(\)EL(G®) can be put into -the form

b
) )= f "%’) aeCc\[a B]),

where F(t)=F(1) (a<<t<b) is a non negatve non decreasing operator. ; function
on G*, iff it holds:
© (19 V() holomorphis in C\ [a, bl;

(2°) ¥ (0)=0;

(3 ImV()>=0 (Im 2> 0);

@) mV()=0  (&R\[a, b))

) VM=F®)  (eC\la, b).

Proof. Relations (1°) — (5°) easily follows from the decomposition (*).
Conversely, by the Theorem 4.9 ([6], p. 41), using (1°) — (40); it follows

b
)= f %F_%)« aeC\ g B).

in view of relation (5°), we have
b b
de(t)_ [ dF(1)
-2 J t—n

a a

(L, b))

19*
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We can suppose that
F(@)=F(a—0)=0, F(b+0)=F(b).

Since F (t) is non negative and non decreasmg operator function (a<{t<b)
such that

F@)-F@=0-0, F6+0)~F®)
from the_uniqueness theorem we haye that ‘
FO)=F()+C  (a<t<b)
thus C=F(a)— F(a)=0. Conse_queﬁtely,

FO=F(@) (a<t<b).0

3. The class ©,(0).

"Let an operator JGL (G kbe such that J*=J=J-! and J= ~J.

We recall that an operator function W(A\)EL(G®) belongs to the class Q=
=Q,(C) iff:

@ W()\) is holomorphlc in a nelghbourhood Gy of z=
@ [[we-I[—-0 (A—>0);
Ay (W)+I)-1 exists for every AEGW, and
V=W +D(WQ=D ) =(WH) - 1)(W(l)+l)‘1 (IJ)
can be analytically extended in a region G, = C\ [, b] (—~ <a<b< + oo)
awv)y ImvV»)=0 (Im A>0);
(V) Imy=0 (AER\[a, b])

(6], p. 42).
We define:

Q,(Q) is the class of all W()EQ;(€) such-that G,=(G,)*, and
oD wWR=WEH (06
holds true.[J

Proposition 1. Characteristic operator function W, (X) of an arbitrary knot

6 (AKJ)
‘ H ¢

belongs to the class Q;(0).[]
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Theorem 3. If an operator function W.(\)EQ, (Q), then there is--a. knot
o O with directional operator J, such that for an 1>0

WeM=w)  (A=D

" Proof. By virtue of Lemma 1, proof of the theorem is quite analogous
to the corresponding proof of Theorem 5 1 (6], p. 43). We only emphasize that
the generalized Naimark’s theorem holds true in Wachs spaces also.[]

Theorem 3a. If an operator function 'I;T’/(?\)E'QJ(Q) then there ‘is a
simple operator knot 6 whose directional operator is J, such that for an [>0

Wem=w®  (1x=h.0

4. Finite dimensional knots.

An operator knot 6 is said to be finite dimensional, if 0° lS 50, thus
iff the spaces H and G are finite dimensional.

If next J*¥= —J, J2= —1I in a m-dimensional Wachs space G= G (mEN),
let Q,;(F; Q) be the class of all operator functions

WN)EQ,(F)=Q,(F; C) (=il
related to the spaces G3m, such that
WO=W(0), A*EDRN(D)* ([6], p- 83).

Then, every c. o. f. W, () of a finite dimensional knot 0 belongs to Q,(F; Q),
and conversely — every W (\)EQ,(F; Q) is the c. o. f. of some s1mple finite
dimensional knot 6.

Theorem 4. An operator function W (\)E€Q; (F Q) iff i holds

o

“4.1) W= Wo MW, AEDwmN(Dw)*),
where W, (\)EQ,(F).
Proof. (a) — If at first W, () €Q,(F) then by Theorem 11.2 ([6], p: 85)

W, ()= [‘[(1+ 2“”P J)

f
where X, ..., A,, are complex numbers, o;, ..., o,, are positive numbers
and P,, ..., P,, are one-dimensional projections in some G3,, such that

P.JFP,— Ima,

r=1,..., 2n).

o,

/() = E(H— % p J)

l’

Then
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but since 1_"1, RN ?2,, are one-dimensional projections too such that”

P,JP,= —P,JP,= Imk’F_ImA'“

r r
Gf

%,

it follows that operator function w,(NEQ J (F) also.. Consequentely,

W)= W, 0) W, @e Q,(F; 0)

becatise WR=WR) £, Ay ... Moy Ton).

(b) — It remains to' prove that factorisation (4.1) holds true for every
WMeQ,(F; Q).
At first we have that o

WO=W,0) |

4 K J ) §
H, G,
Exactly as in Lemma 11.1 ([6], p. 84), we prove that in- space H=H, there
is an orthonormal basis e, ..., e, such that

for a finitc dimensional bknot 0=(

(*) . Ae =G+ - +4q,, 4 er—1+)‘rer (r=1,..., n) }

where A, ..., A,&C and g¢,, are quaternions (r s—l ee s B PS).
If qu ars+brs] (arS’ brsec) then

, Ae —(ar131+b11/e1)+ (ar ret r—1+br r—1J¢ —1)“‘7‘ e
(r=1, ..., n), so that

A(]e,)= (i_b—rlye1+a_r]]'_51)+ T '*‘(*5; r—1 er~1+a—r,lr—’1jeb—1)+7\—r’jer-
Now put: . : AR :
Sforoi=e, fr,=je,  (r=1,..., n).
So:we obtain an.orthonormal basis f;, fo5 ..., f,, in the space Hj, such that .

f;’}=Jf2r—l' ("z L., ”)

Hence, in the basis f, ..., f,,, matrix of the operator A4° must be upper‘
triangular and — ' :

IR
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Let now H; be the linear hull of f;, ..., f, in the space H3, (r=1,..., 2n).
Then Hi, ..., H;, are invariant subspaces of A° and

. O=H CHICHC .- CHj3,
(dim H;=r). Further, put M,=H, O° H;_1, i.e. M,=L{f}. Then
' M,,=SM,._, (r=1,..., n),
and
‘ Ml @SM2®S'"@SMZn-—l@Mzn:H;n-
If P, is the orthogonal projection of H3, on M, (r=1,..., 2n), then

p,,_,=P,, (r=1,..., n).
Now if
0,=pr M, (0) r=1,..., 2n)
then easily,

20 ‘
W, N=I+—P,, (),
92r—1() )\_7\’ 2 1( )
and
' 20 26, — —
We, (W) =1+ L. P,,(i)=1+ P,,_, @),
92r() 7\—7\, 2 (J) )\_)\' 2 1( )
thus
Wezr ()\)EWez,._l ()\) (7\#)\,-: )\r)'
Since

2n n n " n n - ==
WO‘):H WerO\):H W92r—1 O\) I——I Wez,o\):n Wez,_l()‘) l—[ Wez,_l()‘)
r=1 r=1 r=1 r=1 r—1

(A#XA, A ... Ay, A,), We obtain that

' W)=W,0) W,
where obviously

Wy )= Wesr_i )EQ, (F).
r=1 :
This finishes the proof. [
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