VERY STRONGLY RIGID BOOLEAN ALGEBRAS

Stevo Todorčević

(Received October 19, 1979)

0. Introduction and definitions

The present work is a continuation of our work [T]. Namely, it happened that on the problematics of rigid Boolean algebras worked independently at the same time other mathematicians as well. As a good review of what has been recently done in connection with fundamental set-theoretic problems concerning Boolean algebras one has [vDMR]. In some recent papers appeared problems which explicitly or implicitly are resolved in our paper [T] (see [Bo 1, Problems 3,4 and 7], [Bo 3; Problème 3], [vDMR; (4), (14) and Question 16], [Lo; Problem 6.17], [LR; p 347]). Therefore the aim of the present paper is to show it with more details. Besides new results are added also.

Boolean algebra (BA) is called *rigid* if it has no non-trivial automorphisms. For arbitrary BA's one can consider various strengthenings of the notion of rigidity (see, e. g., [vDMR], [Bo 2], [Lo]):

- B is mono-rigid if every one-to-one endomorphism is the identity.
- B is onto-rigid if every onto endomorphism is the identity.
- B is bi-rigid if it is both mono and onto-rigid.
- B is very strongly rigid if for every BA B', every one-to-one homomorphism F from B into B' and every homomorphism G from B onto B' we have F=G.

It is easy to see that every very strongly rigid BA is bi-rigid, that every bi-rigid BA is mono — and onto-rigid and that every mono — or onto-rigid BA is rigid.

A majority of BA's we shall construct in this paper are Boolean algebras with ordered bases. A BA with an ordered base can be realised as the set of all finite unions of intervals, of a linearly ordered set; and conversely. So that we shall refer to algebras with ordered bases as interval algebras and use the following notation. If L is a linearly ordered set then by B(L) we shall mean the set of all finite unions of intervals of L of the form [x, y), $x, y \in L \cup \{\pm \infty\}$. Call B(L) the interval algebra on L.

Call a BA B retractive if for every onto homomorphism $G: B \to B'$ there exists a one-to-one homomorphism $F: B' \to B$ such that GF is the identity on the BA B' (i. e. $GF = id_{B'}$).

Proposition 0.1. If B is mono-rigid subalgebra of an interval algebra, then B is very strongly rigid.

Proof. Assume there are homomorphisms $F: B \to B'$ and $G: B \to B'$ such that F is one-to-one and G is onto. Since every subalgebra of an interval algebra is retractive (see [R] and [Ro; Theorem 1.5]) there is a one-to-one homomorphism $H: B' \to B$ such that $GH = id_{B'}$. Now HF is the identity on B since it is a one-to-one endomorphism of B, a mono rigid BA. So H is onto and hence G is one-to-one. Now $G^{-1}F$ is the identity on B. So, F = G.

If λ is a limit ordinal, then $C \subseteq \lambda$ is closed and unbounded in λ (club in λ) if $\sup C = \lambda$ and $\sup (C \cap \alpha) \in C$ or $C \cap \alpha = \emptyset$ for all $\alpha < \lambda$. S is stationary in λ if $S \cap C \neq \emptyset$ for all club C in λ . Let $D(\lambda)$ be the BA $P(\lambda)/I(\lambda)$, where $P(\lambda)$ is the power set of λ and $I(\lambda)$ is the ideal of all subsets of λ that are disjoint from some club subset of λ . The following well-known fact will be very useful.

Proposition 0.2. (i) Let \varkappa be an uncountable regular cardinal, and suppose S is stationary in \varkappa . If $f: S \to \varkappa$ is an arbitrary mapping, then there exists either stationary $S' \subseteq S$ and $\beta < \varkappa$, so that $f''(S') = \{\beta\}$, or there exists stationary $S'' \subseteq S$, such that $f \upharpoonright S''$ is strictly increasing. (ii) Let λ be an ordinal such that $cf(\lambda) > \omega$, and let $\alpha < cf(\lambda)$. If $S = \bigcup \{S_\beta \mid \beta < \alpha\}$ is stationary in λ , then some S_β is stationary in λ .

The following well-known fact will be also useful.

Proposition 0.3. If \varkappa is an infinite cardinal, then there is a family X_{α} , $\alpha < 2^{\varkappa}$ of subsets of \varkappa , such that $\bigcup \{X_{\alpha} \mid \alpha \in U\} - \bigcup \{X_{\alpha} \mid \alpha \in V\}$ has cardinality \varkappa , for every disjoint non-empty finite U, $V \subseteq 2^{\varkappa}$.

If I is a linear ordering and for every $i \in I$, L_i is a linear ordering, let $\Sigma \{L_i | i \in I\}$ denote the sum of the L_i 's over I.

1. Some technical lemmas

Let $On(\omega) = \{\alpha \in On \mid \lim \alpha \& cf(\alpha) = \omega\}$, i. e. $On(\omega)$ is the class of all ordinals cofinal with ω . In advance, let for every $\alpha \in On(\omega)$ fix a continuous strictly increasing mapping $f_{\alpha} : \omega + 1 \to On$, such that $f_{\alpha}(\omega) = \alpha$.

For any nonempty set $S \subseteq On(\omega)$ let L(S) denote the set $\{f_{\alpha} \mid \alpha \in S\}$, wich we always consider to be ordered lexicographically: f < g iff f(n) < g(n), where $n = \min\{m \mid f(m) \neq g(m)\}$. Let us agree till § 5 when working with any set of ordinals S we mean that $S \subseteq On(\omega)$ and $S \neq \emptyset$.

Lemma 1.1. Let \varkappa be an uncountable regular cardinal, and let S be a subset of \varkappa . Let $S' = \{\alpha \in S \mid \text{ there exists } n_{\alpha} < \omega \text{ such that } \{\beta \in S \mid f_{\alpha} < f_{\beta} \text{ and } f_{\alpha} \mid n \in f_{\beta} \}$ is non-stationary}. Then S' is non-stationary in \varkappa .

Proof: Assume the contrary, i.e. that S' is stationary. In virtue of Prop. 0.2. we can assume $n_{\alpha} = n$, for every $\alpha \in S'$. But then by iterating Prop. 0.2. we obtain a stationary $S'' \subseteq S$, such that $f_{\alpha} \upharpoonright n = f_{\beta} \upharpoonright n$, for every $\alpha, \beta \in S''$.

Since L(S'') has no uncountable anti-well < - ordered subset and since S'' is not the union of countably many non-stationary sets, there is $\alpha \in S''$, such that $\{\beta \in S'' \mid f_{\alpha} < f_{\beta}\}$ is stationary in α . But this contradicts the definition of S'.

Corollary 1.2. Let κ be an uncountable regular cardinal, and suppose S is stationary in κ . Then L(S) is not the union of fewer than κ well ordered subsets.

Lemma 1.3. Let κ be an uncountable regular cardinal, and let S, $S' \subseteq \kappa$. If L(S) is order-isomorphic to a subset of L(S'), then S-S' is non-stationary in κ .

Proof: Assume the contrary, i. e. that $S_0 = S - S'$ is stationary in \varkappa . Let $H:L(S) \to L(S')$ be a given isomorphism. The mapping $h:S_0 \to \varkappa$ is defined by $H(f_\alpha) = f_{h(\alpha)}$. Since h is one-to-one we infer by Prop. 0.2. that there is a stationary $S_1 \subseteq S_0$ such that $h \upharpoonright S_1$ is strictly increasing. The set $h''(S_1)$ is non-stationary because $h^{-1} \upharpoonright h''(S_1)$ is one-to-one and regressive. Therefore there is a club C such that $C \cap h''(S_1) = \varnothing$. Let $(c_\beta \mid \beta < \varkappa)$ be the normal enumeration of C (suppose $c_0 = 0$). To any $\alpha \in S_1$ corresponds $\beta(\alpha)$ such that $c_{\beta(\alpha)} < h(\alpha) < c_{\beta(\alpha)+1}$. By the Prop. 0.2. there is a stationary $S_2 \subseteq S_1$, such that $\beta(\alpha) \neq \beta(\alpha')$, for $\alpha, \alpha' \in S_2$, $\alpha \neq \alpha'$. Let $\alpha \in S_2$ be arbitrary and let us put

$$n(\alpha) = \min \{ n \mid H(f_{\alpha})(m) > c_{\beta(\alpha)} \}.$$

There exist a stationary $S_3 \subseteq S_2$ and $n < \omega$, such that $n_{\alpha} = n$, for every $\alpha \in S_3$. It is easy to see that $F(f_{\alpha}) = H(f_{\alpha}) \upharpoonright n + 1$ is an isomorphism from $L(S_3)$ into $(n_{\alpha}, <)$, what contradicts Cor. 1.2, because $(n_{\alpha}, <)$ is well ordered.

Lemma 1.4. Let S be a set of ordinals (from $On(\omega)$) such that $S \cap \lambda$ is non-stationary in λ for every λ . Then L(S) is the union of countably many well-ordered subsets.

Proof: By induction on λ we shall prove that $L(S \cap \lambda)$ is the union of countably many well-ordered subsets, for every λ . Let $\lambda \in On$ and let $L(S \cap \lambda')$ be the union of $\leq \aleph_0$ well-ordered subsets, for every $\lambda' < \lambda$. Obviously, we may suppose that $cf(\lambda) > \omega$. Let then C be club in λ , so that $C \cap S = \emptyset$. Let $(c_\beta \mid \beta < cf(\lambda))$ be the normal enumeration of C (suppose $c_0 = 0$). By induction hypothesis, for each $\delta < \lambda$ there is a mapping $F_\delta : L(S \cap \delta) \to \omega$ such that for all n, $\{f \in L(S \cap \delta) \mid F_\delta(f) = n\}$ is well-ordered by <. For every $\alpha \in S$ there exists a unique $\beta(\alpha)$ such that $c_{\beta(\alpha)} < \alpha < c_{\beta(\alpha)+1}$. Now we define a mapping G which associates to each $f_\alpha \in L(S \cap \lambda)$ a pair $(n, m) \in \omega \times \omega$, where

$$n = \min \{k \mid f_{\alpha}(k) > c_{\beta(\alpha)}\}$$
 and $m = Fc_{\beta(\alpha)+1}(f_{\alpha})$.

It is easy to see that $\{f \in L(S \cap \lambda) \mid G(f) = (n, m)\}\$ is well-ordered by \langle , for every $(n, m) \in \omega \times \omega$.

Remark. Observe that the Lemmas 1.1 — 1.4 do not depend on how at the beginning we associate to every $\alpha \in On(\omega)$ the mapping $f_{\alpha}: \omega + 1 \to On$.

If \varkappa is an uncountable regular cardinal, and if S is stationary in \varkappa , then by lemma 1.1 there is $S' \subseteq S$, such that S - S' is non-stationary and that L(S') has the property that $\{\alpha \in S' \mid f < f_{\alpha} < g\}$ is stationary in \varkappa for every $f, g \in EL(S'), f < g$. This fact shall be expressed with the wording that in L(S') every interval is stationary.

If $S \subseteq On(\omega)$ is stationary in some λ , then $tp(L(S), \prec)$ belongs to a class of ordered types that was studied in [B].

2. Very strongly rigid BA's exist in every regular cardinal $> \aleph_0$

Let $S \subseteq On(\omega)$, $S \neq \emptyset$. Then by B(S) we denote the BA of all finite unions of intervals from L(S) of the form [x, y), $x, y \in L(S) \cup \{\pm \infty\}$, i.e. B(S) is the interval algebra on L(S). So, |B(S)| = |S| for infinite S.

Lemma 2.1. Let κ be an uncountable regular cardinal and let $S, S' \subseteq \kappa$. If there exists a strictly increasing mapping H from B(S) into B(S'), then S-S' in non-stationary in κ .

Proof: Assume the contrary, i.e. that $S_0 = S - S'$ is stationary in α . For every $\alpha \in S_0$ we put $b_{\alpha} = (\cdot, f_{\alpha}) (\in B(S))$. So, $H(b_{\alpha}) \subset H(b_{\beta})$, for every $\alpha, \beta \in S_0$, $f_{\alpha} < f_{\beta}$. Let $\alpha \in S_0$. Since $H(b_{\alpha}) \in B(S')$, there exists unique decomposition

(1)
$$H(b_{\alpha}) = \bigcup \{ [x_{\alpha}^{i}, y_{\alpha}^{i}) \mid i < n(\alpha) \},$$

where $n(\alpha) < \omega$, x_{α}^{i} , $y_{\alpha}^{i} \in L(S') \cup \{\pm \infty\}$, for every $i < n(\alpha)$ and $x_{\alpha}^{i} < y_{\alpha}^{i} < \langle x_{\alpha}^{i+1} < y_{\alpha}^{i+1} \rangle$, for every $i < n(\alpha) - 1$. Since S_{0} is stationary, let us assume that for some $n < \omega$, $n(\alpha) = n$, for every $\alpha \in S_{0}$.

Let us define $h: S_0 \to \kappa$ in the following way. Let $\alpha \in S_0$, then there exists a $\beta \in S'$, such that $x_\alpha^0 = f_\beta$ or $x_\alpha^0 = -\infty$. In the first case let us set $h(\alpha) = \beta$ and in the second case $h(\alpha) = 0$.

In virtue of Prop. 0.2 we know that either there is a stationary $S_1 \subseteq S_0$ and $\beta_1 < \varkappa$, satisfying $h''(S_1) = \{\beta_1\}$ or there exists a stationary $S_1' \subseteq S_0$ such that $h \upharpoonright S_1'$ is one-to one. We claim that the second case does not hold.

Suppose, on the contrary that such an S_1 ' exists. Let α , $\beta \in S_1$ ' and $f_{\alpha} < f_{\beta}$. Since $H(b_{\alpha}) \subset H(b_{\beta})$, we infer from (1) that $x_{\alpha}{}^0 > x_{\beta}{}^0$. Since $h(\alpha) \neq h(\beta)$, we have $x_{\alpha}{}^0 = f_{h(\alpha)} \neq f_{h(\beta)} = x_{\beta}{}^0$ (suppose $0 \in h''(S_1')$). Thus necessarily $f_{h(\alpha)} > f_{h(\beta)}$. This proves that $L(S_1')$ is anti-isomorphic to the subset of L(S'). But this is not possible because $L(S_1')$ contains an uncountable well-ordered set, while L(S') does not contain uncountable anti-well-ordered subset.

Thus, there exist a stationary $S_1 \subseteq S_0$ and $\beta_1 < \varkappa$, so that $h''(S_1) = \{\beta_1\}$, i.e. $x_{\alpha}^0 = x_{\beta}^0$, for every α , $\beta \in S_1$.

Let us now define $l: S_1 \to \kappa$ in this way. Let $\alpha \in S_1$, then there is a $\beta \in S'$, such that $y_{\alpha}^0 = f_{\beta}$ or $y_{\alpha}^0 = +\infty$. In the first case let us put $l(\alpha) = \beta$ and $l(\alpha) = 0$ in the second case.

By Prop 0.2. we know that either there is a stationary $S_2 \subseteq S_1$ and $\beta_2 < \kappa$, such that $l''(S_2) = \{\beta_2\}$ or there is a stationary $S_2' \subseteq S_1$, such that $l \upharpoonright S_2'$ is strictly increasing. We claim that the second case does not hold.

Suppose, on the contrary, that such an S_2' exists. Let α , $\beta \in S_2'$ and $f_{\alpha} < f_{\beta}$. Since $H(b_{\alpha}) \subset H(b_{\beta})$ and $S_2' \subseteq S_1$, we infer from (1) that $y_{\alpha}^{\ 0} \leqslant y_{\beta}^{\ 0}$. Since $I(\alpha) \neq I(\beta)$, we have $y^0 = f_{I(\alpha)} \neq f_{I(\beta)} = y_{\beta}^{\ 0}$ hence $f_{I(\alpha)} < f_{I(\beta)}$. This proves that $L(S_2')$ is isomorphic to a subset of L(S'), what is imposible by Lemma 1.3.

Thus there exists an $S_2 \subseteq S_1$ and $\beta_2 < \varkappa$, such that $l''(S_2) = \{\beta_2\}$, i.e. $y_{\alpha}^0 = y_{\beta}^0$, for every α , $\beta \in S_2$.

Repeating this procedure 2n times we get a stationary set $S_{2n} \subseteq S_{2n-1} \subseteq \dots \subseteq S_1 \subseteq S$, such that $x_{\alpha}^i = x_{\beta}^i$ and $y_{\alpha}^i = y_{\beta}^i$, for every i < n and every α , $\beta \in S_{2n}$. This means that $H(b_{\alpha}) = H(b_{\beta})$, for every α , $\beta \in S_{2n}$ in contradiction with the assumption that H is strictly increasing. This finishes the proof.

Lemma 2.2. Let κ be an uncountable regular cardinal and let $S, S' \subseteq \kappa$. If there exists a homomorphism H from B(S) onto B(S'), then S'-S is non-stationary in κ .

Proof: Since B(S) is interval algebra it is by Theorem 1.5 from [Ro] retractive, what means that there exists a one-to-one homomorphism $G: B(S') \rightarrow B(S)$ so that $HG = id_{B(S')}$. By Lemma 2.1 we infer that S' - S is non-statitionary in κ .

Lemma 2.3. Let κ be an uncountable regular coordinal and let $S \subseteq \kappa$ be a stationary in κ , such that every interval of L(S) be stationary. Then there is no non-trivial strictly increasing mapping from B(S) into B(S).

Proof: Assume the contrary, i.e. that there exists a non-trivial strictly increasing mapping $H:B(S)\to B(S)$. Thus, there exists a $b\in B(S)$, such that $c=H(b)\neq b$. Two cases are to be considered: $b-c\neq\varnothing$ and $b\in c$. Consider the first case $b-c\neq\varnothing$. Let $S'=\{\gamma\in S\,|\,f_\gamma\in b-c\}$ and $S''=\{\gamma\in S\,|\,f_\gamma\in c\}$. By hypothesis S' and S'' are disjoint stationary sets in x, $B(S')\cong B(S)\upharpoonright b-c$ and $B(S'')\cong B(S)\upharpoonright c$ in contradiction to the Lemma 2.1, because $H\upharpoonright (B(S)\upharpoonright b-c)$ is a strictly increasing mapping from $B(S)\upharpoonright b-c$ into $B(S)\upharpoonright c$. Analogously one proves that the second case does not occur.

Following theorem follows directly from Prop. 0.1, Lemma 1.1 and 2.3.

Theorem 2.4. Let \varkappa be an uncountable regular cardinal, and suppose S is stationary in \varkappa . Then there exists $S' \subseteq S$ such that S - S' is non-stationary and such that B(S') is very strongly rigid BA of power \varkappa .

Let $\varkappa > \aleph_0$ be a regular cardinal. Let R_α , $\alpha < \varkappa$ be a partition of $\{\alpha < < \varkappa \mid cf(\alpha) = \omega\}$ into stationary subsets. By Prop. 0.3. there exists a family X_α , $\alpha < 2^\varkappa$ of subsets of \varkappa no one of which is included in any other. Let $S_\alpha = \bigcup \{R_\beta \mid \beta \in X_\alpha\}$, for $\alpha < 2^\varkappa$. The family S_α , $\alpha < 2^\varkappa$ has the property that $S_\alpha - S_\beta$ is stationary for every α , $\beta < 2^\varkappa$, $\alpha \neq \beta$. Without depraying this property we can assume, omitting non-stationary subset of S_α , that every interval in $L(S_\alpha)$ is stationary, for every $\alpha < 2^\varkappa$. According to Lemmas 2.1 — 2.3 and Theorem 2.4 we have the following.

Theorem 2.5. Let κ be an uncountable regular cardinal. Then the family $B(S_{\alpha})$, $\alpha < 2^{\kappa}$ of BA's we have just constructed has the following properties:

- (i) $B(S_{\alpha})$ is very strongly rigid BA of power x, for every $\alpha < 2^{x}$.
- (ii) If $H: B(S_{\alpha}) \to B(S_{\beta})$ is either strictly increasing or homomorphism onto, then $\alpha = \beta$ and $H = id_{B(S_{\alpha})}$.

2. Some more properties of BA's of the form B(S)

(1) Let \varkappa be an uncountable regular cardinal and let I be a well ordered set. Let S and S_i , $i \in I$ be non-empty subsets of \varkappa . Let $L = \Sigma\{L(S_i) \mid i \in I\}$ be the sum of lineary ordered sets $L(S_i)$ over I and let B(L) be the interval algebra on L. The proof of Lemma 2.1 is easy transferrable to prove the following.

Lemma 3.1. Let κ , S and S_i , $i \in I$ be as above. If there exists a strictly increasing or strictly decreasing mapping from B(S) into B(L), then $S - \bigcup \bigcup \{S_i | i \in I\}$ is non-stationary in κ .

(2) Let $S \subseteq On(\omega)$ be any set. Then there is λ such that $S \cap \lambda$ is stationary in λ iff there is $S' \subseteq S$, such that B(S') is very strongly rigid BA.

Let $S \cap \lambda$ be stationary in some λ . Obviously $\varkappa = cf(\lambda) > \omega$; thus the existence of $S' \subseteq S \cap \lambda$ for which B(S') is very stronly rigid follows from Theorem 2.4. Suppose now that $S \cap \lambda$ is non-stationary in λ for every λ . In virtue of Lemma 1.4 we know that L(S) is the union of countably many well-ordered subsets. Let $S' \subseteq S$ be arbitrary. It is clear that we may assume that S' be uncountable. In virtue of the main result in [L] we know that there exists a sequencee (x_n, y_n) , $n < \omega$ of nonempty disjoint intervals from L(S') such that there is a one-to-one order-preserving function from (x_n, y_n) into (x_{n+1}, y_{n+1}) , for every $o < \omega$. W. 1. o. g. we may assume $y_n \leqslant x_{n+1}$, for every $n < \omega$. Let $a_n = [x_n, y_n)$ $n < \omega$ and let $b = L(S') - \{a_n \mid n < \omega\}$. Let $B_n = B(S') \upharpoonright a_n \cong$ interval algebra on a_n , $n < \omega$ and let B = B(b) = interval algebra on b. Let $A = \{p \in B \times X \cap \{B_n \mid l \leqslant n < \omega\} \mid \text{support of } p \text{ is finite} \}$. Then it is easy to find $F, G: B(S') \to A$, F is one-to-one and G is onto homomorphism such that $F \neq G$. So, B(S') is not very strongly rigid BA.

(3) Let $\varkappa > \aleph_0$ be a regular cardinal, and let S be stationary in \varkappa such that every interval in L(S) be stationary. According to Lemma 2.3 we infer that B(S) is very strongly rigid BA. For every $a \in B(S)$ we put $S_\alpha = \{\alpha \mid f_\alpha \in a\}$. Then $H(a) = [S_\alpha]$ is embedding of the BA B(S) into the BA $D(\varkappa) \upharpoonright [S]$, where $[S] = \{S' \subseteq \varkappa \mid S \triangle S' \in I(\varkappa)\}$.

On the other side, from Lemmas 2.1 and 2.2 we inter that the algebras of the from B(S), $S \subseteq \{\alpha < \alpha \mid cf(\alpha) = \omega\}$ with respect to the relations ,,is embeddable in and ,,is homomorphic image of behave like corresponding members of the algebra $D(\alpha)$ wrt its ordering.

(4) Let $\varkappa > \aleph_0$ be a regular cardinal, and let S be stationary in \varkappa such that every interval in L(S) be stationary. Let $\overline{L}(S)$ be the Stone space of the BA B(S). Let $\exp \overline{L}(S)$ be the set of all closed subsets of $\overline{L}(S)$ in Vietoris topology and let $\exp B(S)$ be the BA of all clopen subsets of $\exp \overline{L}(S)$. Then $\exp B(S)$ is BA of power \varkappa . Using the ideas of the proof of Lemma 2.1 we can prove that $\exp B(S)$ is mono-rigid BA. On the other side, using main theorem from [Tr] we may prove that $\exp B(S)$ is not embeddable in an interval algebra.

4. Very strongly rigid BA's in singular cardinalities

In § 2 we showed that very strongly rigid BA's exist in every regular cardinal $> \aleph_0$. In the present section we shall consider the problem of the existence of such algebras of singular power.

Theorem 4.1. Let \varkappa be a singular cardinal and let $2^{\lambda} \gg \varkappa$, for some $\lambda < \varkappa$. Then there exists a family B_{α} , $\alpha < 2^{\varkappa}$ of BA's such that:

(i) B_{α} is very strongly rigid BA of power κ , for every $\alpha < 2^{\kappa}$.

(ii) If $H: B_{\alpha} \to B_{\beta}$ is either strictly increasing or homomorphism onto, then

$$\alpha = \beta$$
 and $H = id_{B\alpha}$.

Proof: Let $\lambda > \omega$ be a regular cardinal such that $2^{\lambda} > \infty$. Let R_{α} , $\alpha < \lambda$ be a family of pairwise disjoint stationary subsets of $\{\delta < \lambda \mid cf(\delta) = \omega\}$. At the beginning of § 2 we associate to every $\delta < \lambda$, $cf(\delta) = \omega$ a strictly increasing continuous mapping $f_{\delta}: \omega + 1 \to \lambda$, $f_{\delta}(\omega) = \delta$. Assume (only in this proof) that $\{\delta \in R_{\alpha} \mid f_{\delta} \supset g\}$ be stationary in λ , for every $\alpha < \lambda$ and every $g \in \omega \lambda$.

Let X_{α} , $\alpha < 2^{\lambda}$ be a family of subsets of λ such that $X_{\alpha} - \bigcup \{X_{\beta} \mid \beta \in U\} \neq \emptyset$, for every $\alpha < 2^{\lambda}$ and every finite set $U \subseteq 2^{\lambda}$, $U \ni \alpha$ (see Prop. 0.3). Put.

 $S_{\alpha} = \bigcup \{R_{\beta} \mid \beta \in X_{\alpha}\}, \text{ for every } \alpha < 2^{\lambda}.$

Let $Z \subseteq \varkappa$ be an arbitrary set of power \varkappa and let $L_Z = \Sigma \{L(S_\alpha) \mid \alpha \in Z\}$ be the sum of linearly ordered sets $L(S_\alpha)$ over Z (with well-ordering induced from \varkappa). Let $B(L_Z)$ be the interval algebra determined by L_Z .

Let I_Z be the ideal in $B(L_Z)$ which is generated by the set $\{[x, y) \mid \text{ there is } \alpha \in \mathbb{Z} \text{ such that } x, y \in L(S_\alpha)\}$. Put $B_Z = I_Z \cup -I_Z$. Then it is obvious that B_Z is a subalgebra of $B(L_Z)$ of power x.

Let K be a family of power 2^{κ} of subsets of κ of power κ no one which is included in any other. Let us prove that the family B_Z , $Z \in K$ satisfies the conclusion of the theorem. According to Prop. 0.1 it is sufficient to prove the following:

If $H: B_Y \to B_Z$ is strictly increasing, then Y = Z and $H = id_{BY}$.

Let $Y, Z \subset K$ and let $H: B_Y \to B_Z$ is an one-to-one homomorphism. Let us prove Y = Z (the proof of $H = id_{BY}$ is similar; therefore we omit it).

Assume the contrary, i.e. that some $\alpha \in Y-Z$ exists. Let $a \in I_Y$ and $a \subseteq L(S_\alpha)$ be non-empty. Suppose $H(a) \in I_Z$. This means that a finite set $U \subseteq Z$ exists, such that $H(a) \subseteq \bigcup \{L(S_\beta) \mid \beta \in U\}$. Let $S_a = \{\delta < \lambda \mid f_\delta \in a\}$. Then in basis of the above construction we know that $S_a - \bigcup \{S_\beta \mid \beta \in U\}$ is stationary in λ . But $H \upharpoonright (B_Y \upharpoonright a)$ could be meant as strictly increasing mapping from $B(S_a)$ into $B(\Sigma \setminus L(S_\beta) \mid \beta \in U)$ what contradicts Lemma 3.1.

Let us suppose now that $H(a) \subset -I_Z$, for every non-empty $a \subseteq L(S_a)$, $a \in I_Y$. Let $\varnothing \neq a \subseteq L(S_\alpha)$, $a \in I_Y$ be such that $S_b = \{\delta \in S_\alpha \mid f_\delta \notin a\}$ is stationary in λ , i. e. such that $b = L(S_\alpha) - a$ contains a nonempty interval. Then $-H(a) \in E_Z$ what means that there is a finite $V \subseteq Z$ such that $-H(a) \subseteq U \setminus L(S_\beta) \mid \beta \in E_Z \setminus E_$

Let now \varkappa be a fixed singular cardinal and let λ_{α} , $\alpha < cf(\varkappa)$ be a fixed strictly increasing sequence of cardinals with supremum \varkappa , such that $\lambda_{\alpha} > cf(\varkappa)$ for every $\alpha < cf(\varkappa)$.

Lemma 4.2. Let S, $S' \subseteq \kappa$ be such that $S \cap \beta$ and $S' \cap \beta$ be non-stationary in β , for every $\beta \in \{\lambda_{\alpha} + | \alpha < cf(\kappa)\}$. If there exists a strictly increasing mapping $H: B(S) \to B(S')$ then $(S - S') \cap \lambda_{\alpha}^+$ is non-stationary in λ_{α}^+ , for every $\alpha < cf(\kappa)$.

Proof: Assume the contrary, i. e. that for some $\alpha < cf(x)$ the set $S_0 = (S - S') \cap \lambda_{\alpha}^+$ be stationary in λ_{α}^+ . For every $\delta \in S_0$ we put $b_{\delta} = (\cdot, f_{\delta})$

 $(\in B(S))$. So, $H(b_{\delta}) \subset H(b_{\gamma})$, for every δ , $\gamma \in S_0$, $f_{\delta} < f_{\gamma}$. Let $\delta \in S_0$. Since $H(b_{\delta}) \in B(S')$, there exists a unique decomposition

$$(2) H(b_{\delta}) = \bigcup \{ [x_{\delta}^{i}, y_{\delta}^{i}) \mid i < n(\delta) \},$$

where $n(\delta) < \omega$, x_{δ}^{i} , $y_{\delta}^{i} \in L(S') \cup \{\pm \infty\}$, for every $i < n(\delta)$ and $x_{\delta}^{i} < y_{\delta}^{i} < x_{\delta}^{i+1} < y_{\delta}^{i+1}$, for every $i < n(\delta) - 1$. Since S_{0} is stationary, let us assume that for some $n < \omega$, $n(\delta) = n$, for every $\delta \in S_{0}$.

Let us define $h: S_0 \to \mathbb{X}$ in the following way. Let $\delta \in S_0$. Then either there exists a $\gamma \in S'$, such that $x_\delta^0 = f_\gamma$ or $x_\gamma^0 = -\infty$. In the first case let us put $h(\delta) = \gamma$ and in the second $h(\delta) = 0$.

In virtue of Prop. 0.2. (really a small extension of it) we know that either there exists a stationary $S_1 \subseteq S_0$ and $\gamma_1 < \kappa$, such that $h''(S_1) = \{\gamma_1\}$ or there exists a stationary $S_1' \subseteq S_0$ such that $h \upharpoonright S_1'$ is one-to-one. As in the proof of Lemma 2.1 one proves that the second case is not possible.

Consequently, there exists a stationary $S_1 \subseteq S_0$, such that $x_{\delta}^0 = x_{\gamma}^0$, for every δ , $\gamma \in S$.

Let us now define $l: S_1 \to \kappa$. Let $\delta \subset S_1$. Then either there is a $\gamma \subset S'$ such that $y_\delta^0 = f_\gamma$ or $y_\delta^0 = +\infty$. Let $l(\delta) = \gamma$ in the first case and $l(\delta) = 0$ in the second case. As above we know that either there exists a stationary $S_2 \subset S_1$ and $\gamma_2 < \kappa$, a such that $l''(S_2) = \{\gamma_2\}$ or there exists a stationary (in λ_δ^+) $S_2' \subseteq S_1$, such that $l \upharpoonright S_2'$ is one-to-one. We claim that the last case is not possible.

Suppose the contrary, i.e. that such an S_2' exists. Let δ , $\gamma \in S_2'$ and $f_\delta < f_\gamma$. Since $H(b_\delta) \subset H(b_\gamma)$ and $S_2' \subseteq S_1$, we infer from (2) that $y_\delta^0 < y_\gamma^0$. Since $I(\delta) \neq I(\gamma)$ one has $y_\delta^0 = f_{I(\delta)} \neq f_{I(\gamma)} = y_\gamma^0$ thus $f_{I(\delta)} < f_{I(\gamma)}$, what proves that $L(S_2')$ is similar to a subset of L(S'). By Lemma 1.3 $\{\delta \in S_2' \mid I(\delta) < \lambda_\alpha^+\}$ is non-stationary in λ_α^+ . But even the set $\{\delta \in S_2' \mid I(\delta) > \delta_\alpha^+\}$ cannot be stationary in λ_α^+ , lectuse $\{f_\delta \mid \delta \in S_2' \& I(\delta) > \lambda_\alpha^+\}$ is similar to $\{f_{I(\delta)} \mid \delta \in S_2' \& I(\delta) > \lambda_\alpha^+\}$ and because $I''(S_2') \cap \beta$ is non-stationary in β for every $\beta > \lambda_\alpha^+$ (see Cor. 1.2 and Lemma 1.4).

Consequently there exists a stationary $S_2 \subseteq S_1$, such that $y_{\delta}^0 = y_{\gamma}^0$, for every δ . $\gamma \in S_2$.

Repeating this procedure 2n times we get a stationary (in λ_{α}^+) $S_{2n} \subseteq S_{2n-1} \subseteq \cdots \subseteq S_1 \subseteq S_0$, such that $x_{\delta}^i = x_{\gamma}^i$ and $y_{\delta}^i = y_{\gamma}^i$, for every i < n and δ , $\gamma \in S_{2n}$. This means that $H(b_{\delta}) = H(b_{\gamma})$, for every δ , $\gamma \in S_{2n}$ what contradicts the assumption that H is strictly increasing.

Next lemmas follow from the Lemma 4.2 in a similar way as we deduced Lemmas 2.2. and 2.3. from Lemma 2.1.

Lemma 4.3. Let κ , λ_{α} , $\alpha < cf(\kappa)$ and S, $S' \subseteq \kappa$ be as in Lemma 4.2. If there exists homomorphism H from B(S) onto B(S'), then $(S'-S) \cap \lambda_{\alpha}^+$ is non-stationary in λ_{α}^+ , for every $\alpha < cf(\kappa)$.

Lemma 4.4. Let κ and λ_{α} , $\alpha < cf(\kappa)$ as above. Let $S \subseteq \kappa$ has the property that for every non-empty $a \in B(S)$ there exists an $\alpha < cf(\kappa)$, such that $\{\delta \in S \mid f_{\delta} \in a\} \cap \lambda_{\alpha}^+$ is stationary in λ_{α}^+ . Then there is no non-trivial strictly increasing mapping from B(S) into B(S).

Let $\lambda > \aleph_0$ be a regular cardinal. Let $E(\lambda)$ denote the following statement: There is an $S \subseteq \{\lambda < \delta \mid cf(\delta) = \omega\}$ stationary in λ such that $S \cap \alpha$ is not stationary in α , for every $\alpha < \lambda$.

Since \square_{λ} implies $E(\lambda^{+})$ (see, e. g. [KM]), in virtue of [J] p. 286, we infer that $E(\lambda^{+})$ holds if λ^{+} is not Mahlo in L.

Theorem 4.5. Assume $E(\lambda^+)$ for every λ . Let κ be an arbitrary cardinal $> \aleph_0$. Then there exists a family B_{α} , $\alpha < 2^{\kappa}$ of interval BA's such that:

- (i) B_{α} is very strongly rigid BA of power κ , for every $\alpha < 2^{\kappa}$.
- (ii) If $H: B_{\alpha} \to \beta_{\beta}$ is either strictly increasing or homomorphism onto, then $\alpha = \beta$ and $H = id_{B_{\alpha}}$.

Proof: Let $\varkappa > \aleph_0$. In virtue of Theorem 2.5 we may assume that \varkappa is singular. Fix a strictly increasing sequence λ_α , $\alpha < cf(\varkappa)$ of cardinals with supremum \varkappa , such that $\lambda_\alpha > cf(\varkappa)$, for every $\alpha < cf(\varkappa)$.

By assumption, for every $\alpha < cf(\varkappa)$, we can find a sequence $S_{\alpha\beta}$, $\beta < 2^{\lambda_{\alpha}^{+}}$ of stationary in λ_{α}^{+} subset of $\{\delta \mid \lambda_{\alpha} < \delta < \lambda_{\alpha}^{+} \& cf(\delta) = \omega\}$, such that $S_{\alpha\beta} \cap \gamma$ is non-stationary in γ , for every $\gamma < \lambda_{\alpha}^{+}$ and so that $S_{\alpha\beta} - S_{\alpha\beta'}$ is stationary in λ_{α}^{+} for every β , $\beta' < 2^{\lambda_{\alpha}^{+}}$, $\beta \neq \beta'$. Assume that $L(S_{\alpha\beta})$ has no end-points and that in $L(S_{\alpha\beta})$ every interval is stationary, for every $\alpha < cf(\varkappa)$ and $\beta < 2^{\lambda_{\alpha}^{+}}$.

Let
$$p \in \Pi \{2^{\lambda_{\alpha}^+} | \alpha < cf(\alpha)\}$$
. Then we set $S_p = \bigcup \{S_{\alpha p(\alpha)} | \alpha < cf(\alpha)\}$.

Then $B(S_p)$, $p \in \Pi\{2^{\lambda_{\alpha}^+} | \alpha < cf(\alpha)\}$ is a requested family of BA's as follows from Lemmas 4.2—4.4 and Prop. 0.1.

5. Ontorigid BA's exist in every uncountable cardinality

Let $\kappa > \lambda$ be regular cardinals. For every $\delta < \kappa$, $cf(\delta) = \lambda$ let us fix a strictly increasing continuous mapping $f_{\delta}: \lambda + 1 \to \kappa$, such that $f_{\delta}(\lambda) = \delta$. To every non-empty set $S \subseteq \{\delta < \kappa \mid cf(\delta) = \lambda\}$ we associate the set $L(S) = \{f_{\delta} \mid \delta \in S\}$ ordered lexicographically as well as the BA B(S) of all finite union of intervals from L(S) of the form [x, y).

We shall always assume that the above mapping $\delta \rightarrow f_{\delta}$ has the following property:

(*)
$$|\{f_{\delta} \upharpoonright \alpha \mid \alpha \leq \lambda, f_{\delta}(\alpha) < \beta, \delta < \kappa \text{ and } cf(\delta) = \lambda\}| < \kappa,$$
 for every $\beta < \kappa$.

Proofs of next two lemmas are almost identical to the proofs of Lemmas 1.2 and 1.3, respectively.

Let m ma 5.1. Let $\kappa > \lambda$ be regular cardinals and let $S \subseteq \{\delta < \kappa \mid cf(\delta) = \omega\}$. Let $S' = \{\delta \in S \mid \text{ there exists } \alpha < \lambda \text{ such that } \{\gamma \in S \mid f_{\delta} < f_{\gamma} \text{ and } f_{\delta} \upharpoonright \alpha \subset f_{\gamma}\} \text{ is non-stationary in } \kappa\}$. Then S' is non-stationary in κ .

Lemma 5.2. Let $n > \lambda$ be regular cardinals and let $S, S' \subseteq \{\delta < \kappa \mid cf(\delta) = \lambda\}$. If L(S) is order-isomorphic to a subset of L(S'), then S - S' is non-stationary in κ .

Proofs of next two lemmas are almost identical to the proofs of Lemmas 2.1 and 2.3, respectively.

Lemma 5.3. Let $n > \lambda$ be regular cardinals and let S, $S' \subseteq \{\delta < n \mid cf(\delta) = \lambda\}$. If there exists a strictly increasing mapping from B(S) into $\overline{B}(S')$, then S - S' is non-stationary in n.

Lemma 5.4. Let $x > \lambda$ be regular cardinals and let $S \subseteq \{\delta < x \mid cf(\delta) = \lambda\}$ be a stationary in x, such that every interval of L(S) be stationary. Then there is no non-trivial strictly increasing mapping from B(S) into B(S).

Now we are ready for the proof of the main theorem of this section.

Theorem 5.5. For every uncountable cardinal κ , there exists a family B_{α} , $\alpha < 2^{\kappa}$ such that:

- (i) B_{α} is onto-rigid BA of power κ , for every $\alpha < 2^{\kappa}$.
- (ii) If $H: B_{\alpha} \to \beta_{\beta}$ is onto homomorphism, then $\alpha = \beta$ and $H = id_{B_{\alpha}}$.

Proof: Let $\kappa > \aleph_0$. In virtue of the Theorems 2.5 and 4.1 we may assume that κ is a strongly limit singular cardinal. Therefore we can consider strictly increasing sequences κ_{α} , $\alpha < cf(\kappa)$ and λ_{α} , $\alpha < cf(\kappa)$ of regular cardinals with supremum κ , so that $(2^{\lambda \alpha})^+ = \kappa_{\alpha} < \lambda_{\beta}$, for every $\alpha < \beta < cf(\kappa)$.

Let us fix $\alpha < cf(\varkappa)$. Let $R_{\alpha\xi}$, $\xi < \varkappa_{\alpha}$ be a sequence of disjoint stationary in \varkappa_{α} subsets of $\{\delta < \varkappa_{\alpha} \mid cf(\delta) = \lambda_{\alpha}\}$. To every δ , $\varkappa_{\alpha}^{-} < \delta < \varkappa_{\alpha}$, $cf(\delta) = \lambda_{\alpha}$ we associate a strictly increasing continuous mapping $f_{\delta}: \lambda_{\alpha} + 1 \to \varkappa_{\alpha}$, such that $f_{\delta}(\lambda_{\alpha}) = \delta$. In virtue of the relation between λ_{α} and \varkappa_{α} it is obvious that we can assume that $\{\delta \in R_{\alpha\xi} \mid f_{\delta} \supset g\}$ is stationary in \varkappa_{α} for every strictly increasing and continuous $g: \beta \to \varkappa_{\alpha}$, $\beta < \lambda_{\alpha}$ and for every $\xi < \varkappa_{\alpha}$. Let us notify that the condition (*) is satisfied also.

Let $X_{\alpha} \subseteq \aleph_{\alpha}$ and $X_{\alpha} \neq \emptyset$ and let $S_{\alpha} = \bigcup \{R_{\alpha\xi} \mid \xi \in X_{\alpha}\}$. The Stone space $\overline{L}(S_{\alpha})$ of the BA $B(S_{\alpha})$ is obtained from the Dedekind's completion of the linearly ordered set $L(S_{\alpha})$ by doubling every nonend-point from $L(S_{\alpha})$.

Let $x\in \overline{L}(S_{\alpha})$; then the left $\chi^{-}(x,\overline{L}(S_{\alpha}))$ and the right $\chi^{+}(x,\overline{L}(S_{\alpha}))$ character of x in $\overline{L}(S_{\alpha})$ are defined as usually. A simple consideration of the lexicographical ordering of $L(S_{\alpha})$ shows that if some point $x\in \overline{L}(S_{\alpha})$ has left (right) character $<\lambda_{\alpha}$ then its right (left) character necessarily equals either λ_{α} or κ_{α} . Also, one checks easily that the set of all points $x\in \overline{L}(S_{\alpha})$ for which $0<\chi^{-}(x,\overline{L}(S_{\alpha}))<\chi^{+}(x,\overline{L}(S_{\alpha}))$ or $0<\chi^{+}(x,\overline{L}(S_{\alpha}))<\chi^{-}(x,\overline{L}(S_{\alpha}))$ is den.e in $\overline{L}(S_{\alpha})$.

Let $L = \sum \{L(S_{\alpha}) \mid \alpha < cf(\varkappa)\}$ be the sum of $L(S_{\alpha})$'s over $cf(\varkappa)$ and B(L) be the interval algebra on L. Then B(L) is BA of power \varkappa ; its Stone space \overline{L} is obtained from the Dedekind's completion of L by doubling every nonend-point of L. We shall consider $L(S_{\alpha})$ as a convex subset of \overline{L} , for every $\alpha < cf(\varkappa)$.

Let us prove that B(L) is onto-rigid BA; the remainder of the theorem is proved as in other cases in this paper.

Assume the contrary, i.e. that there exists a nontrivial homomorphism H from B(L) onto B(L). Since by Lemma 5.4 $B(S_{\alpha})$, $\alpha < cf(\alpha)$ are onto-rigid BA's we infer easily that there are $\beta < \alpha < cf(\alpha)$ and non void $a, b \in B(L)$, $a \subseteq \overline{L}(S_{\alpha})$, $b \subseteq \overline{L}(S_{\beta})$, such that $H(\alpha) = b$ (there we identify B(L) with BA of all clopen subsets of \overline{L}). Let $\overline{H}: L \to \overline{L}$ be one-to-one continuous function which

is dual to H. Let $x \in b$ and let $0 < \chi^-(x, \overline{L}) < \chi^+(x, \overline{L})$. Let $\overline{H}(x) = y \in a$. Since \overline{H} is one-to-one and continuous one checks easily that $\{\chi^-(x, \overline{L}), \chi^+(x, \overline{L})\} = \{\chi^-(y, \overline{L}), \chi^+(y, \overline{L})\}$ hence $\chi^-(y, \overline{L}), \chi^+(y, \overline{L}) \in x_\beta < \lambda_\alpha$. But this contradicts the quoted property of the Stone space $\overline{L}(S_\alpha)$. This finishes the proof.

Let A be a σ -complete BA. A is said to be σ -hyper-rigid (see [Bo 3]) whenever for every σ -complete algebra B, every σ -complete homomorphisms F and G from A into B, such that F is one-to-one and G is onto we have A = G.

Let $\varkappa > \aleph_1$ be a regular cardinal such that $\lambda^{\aleph_0} < \varkappa$, for every $\lambda < \varkappa$. For every $\delta < \varkappa$, $cf(\delta) = \omega_1$ we select again $f_\delta : \omega_1 + 1 \to \varkappa$ in the above way. Let $S \subseteq \{\delta < \varkappa \mid cf(\delta) = \omega_1\}$ be stationary set in \varkappa such that every interval in L(S) is stationary (observe that (*) holds). Let $B^{\sigma}(S)$ be the σ -completion of the BA B(S) and let $L^{\sigma}(S)$ be the σ -completion of L(S). The algebra $B^{\sigma}(S)$ has a nice representation as a subalgebra of the algebra of all regular open subsets of $L^{\sigma}(S)$ (see [Bo 3]). Using the analog of the Lemma 5.3 for algebras of the form $B^{\sigma}(S)$ we can prove that $B^{\sigma}(S)$ is σ -hyper-rigid BA of power \varkappa .

REFERENCES

[B] Baumgartner, J. E. A new class of order types, Ann. Math. Logic, 9 (1976), 187—222.

[Bo 1] Bonnet, R. Super-rigid Boolean algebras, narrow Boolean algebras, Submitted to Israel J. Math.

[Bo 2] Bonnet, R. Very strongly rigid Boolean algebra, continuum discrete set condition, countable antichain condition. Submitted to Alg. Univ.

[Bo 3] Bonnet, R. Algebres m-completes, m-super-rigids; algebres completes et ∞ -super-rigides,

[vDMR] van Douwen, E. K., Monk, J. D. and Rubin M. Some questions about Boolean algebras, Submitted to Alg. Univ.

[J] Jensen, B. R. The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229-308.

[KM] Kanamori, A. and Magidor, M. The evolution of large cardinal axioms in set theory, Lecture Notes, No. 669, Springer Verlag, (1978), 99—275.

[L] Laver, R. On Fraissé's order type conjecture, Ann. of Math. 93 (1971), 89—111.
[Lo] Loats, J. On endomorphism of Boolean algebras and other problems. Ph. D. the-

[Lo] Loats, J. On endomorphism of Boolean algebras and other problems, Ph. D. thesis, Univ. of Colorado, Boulder, 1977.

[LR] Loats, J. and Rubin, M. Boolean algebras without nontrivial onto endomorphisms exists in every uncountable cardinality. Proc. Amer. Math. Soc. 72 (1978), 346-351.

[Ro] Rotman, B. Boolean algebras with ordered bases, Fund. Math. 75 (1972), 187-197.

[R] Rubin, M. A Boolean algebra with few subalgebras, interval algebras and retractiveness, Submitted to Trans. Amer. Math. Soc.

[T] Todorčević, S. Rigid Boolean algebras, Publ. Inst. Math. 25 (39) (1979), 219—224.

[Tr] Treybig, L. B. Concerning continuous images of compact ordered spaces, Proc. Amer. Math. Soc. 15 (1964), pp. 866—871.

Matematički institut 11000 Beograd Knez Mihailova 35 Jugoslavija