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0. Introduction and definitions

The present work is a continuation of our work [T]. Namely, it happened
that on the problematics of rigid Boolean algebras worked independently at the
same time other mathematicians as well. As a good review of what has been
recently done in connection with fundamental set-theoretic problems concerning
Boolean algebras one has [vDMR]. In some recent papers appeared problems
which explicitly or implicitly are resolved in our paper [T] (see [Bo 1, Problems
3,4 and 7], [Bo 3; Probléme 3], [vDMR; (4), (14) and Question 16], [Lo;
Problem 6.17], [LR; p 347]). Therefore the aim of the present paper is to show
it with more details. Besides new results are added also.

Boolean algebra (BA4) is called rigid if it has no non-trivial automorp-
hisms. For arbitrary BA’s one can consider various strengthenings of the notion
of rigidity (see, e. g., [vDMR], [Bo 2], [Lo]): '

B is mono-rigid if every one-to-one endomorphism is the identity.

B is onto-rigid if every onto endomorphism is the identity.

B is bi-rigid if it is both mono — and onto-rigid.

B is very strongly rigid if for every BA B', every one-to-one homomorp-
hism F from B into B’ and every homomorphism G from B onto B’ we have
F=G.

It is easy to see that every very strongly rigid BA is bi-rigid, that every
bi-rigid B4 is mono — and onto-rigid and that every mono — or onto-rigid
BA is rigid. ,

A majority of BA’s we shall construct in this paper are Boolean algebras
with ordered bases. A BA with an ordered base can be realised as the set of
all finite unions of intcrvals, of a linearly ordercd set; and conversely. So that
we shall refer to algebras with ordered bases as interval algebras and use the
following notation. If L is a linearly ordered set then by B(L) we shall mean
th: set of all finite unions of intervals of L of the form [x, ), x, yeLU{+ o}
Call B(L) the interval algebra on L.
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Call a BA B retractive if for every onto homomorphism G:B— B’ there
exists a one-to-one homomorphism F:B'—B such that GF is the identity on the
BA B (i. e. GF=1idp).

Proposition 0.1. If B is mono-rigid subalgebra of an interval algebra,
then B is very strongly rigid.

Proof. Assume there are homomorphisms F:B-> B’ and G:B— B’ such
that F is onc-to-one and G is onto. Since every subalgebra of an interval al-
gebra is retractive (see [R] and [Ro; Theorem 1.5]) there is a one-to-one homo-
morphism H:B —> B such that GH =ids. Now HF is the identity on B since
it is a one-to-one endomorphism of B, a mono rigid B4. So H is onto and
hence G is one-to-one. Now G~!F is the identity on B. So, F=G.

If A is a limit ordinal, then CCx is closed and unbounded in A (club
in 2) if supC=2 and sup(CN)EC or CNa= g for all a<h. S is stationary
in »if SMC=# @ for all club C in A. Let D()) be the BA P())/1(}), where
P(») is the power set of A and I(2) is the ideal of all subsets of A that are
disjoint from some club subset of A. The following well-known fact will be very
useful.

Proposition 0.2. (i) Let » be an uncountable regular cardinal, and sup-
pose S is stationary in w. If f:S-» is an arbitrary mapping, then there exists
either stationary S’ CS and B<x, so that f"' (S")={B}, or there exists stationary
S""CS, such that f1S" is strictly increasing. (ii) Let N be an ordinal such that
of W>w, and let a<cf (N). If S=\U{S|B<<a} is stationary in A, then some Sy
is stationary in A.

The following well-known fact will be also useful.

Proposition 0.3. If x is an infinite cardinal, then there is a family
X,, a<<2* of subsets of w, such that U{X,|acU}— U{X,|a &V} has cardina-
lity », for every disjoint non-empty finite U, V2%,

If I is a linear ordering and for every i<I, L, is a linear ordering, let
Z{L,|i€I} denote the sum.of the L/s over I

1. Some technical lemmas

Let On(w)={a€On|lim «&cf (x)=w}, i. e. On(w) is the class of all
ordinals cofinal with . In advance, let for every aOn(w) fix a continuous
strictly increasing mapping f, .+ 1 — On, such that f, (0)=a.

For any nonempty szt SC On(w) let L(S) denote the set {f, | a &S}, wich
we always consider to be ordered lexicographically: f<Cg iff f(n)< g (1), where
n=min{m|f(m)#g(m)}. Let us agree till § 5 when working with any set of
ordinals S we mean that SCOn(w) and S+ o.

Lemma 1.1. Let » be an uncountable regular cardinal, and let S be a
subset of . Let S'={aES| there exists n,<w such that {PCS|f,<f, and
f.hnCf.} is non-stationary}. Then S’ is non-stationary in x.

Proof: Assume the contrary, ie. that S’ is stationary. In virtue of
Prop. 0.2. we can assume n,=n, for every aCS’. But then by iterating Prop.
0.2. we obtain a stationary S”'CS, such that f,{n=f,'n, for every «, peS”.
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Since L (S”) has no uncountable anti-well < — ordered subset and since S’
is not the union of countably many non-stationary sets, there is «<S”, such
that {B&S”|f, < fs} is stationary in ». But this contradicts the definition of S".

Corollary 1.2. Let » be an uncountable regular cardinal, and suppose S
is stationary in . Then L (S) is not the union of fewer than w well ordered subsets.

Lemma 1.3. Let x be an uncountable regular cardinal, and let S, S’ Ca.
If L(S) is order-isomorphic to a subset of L(S"), then S—S' is non-stationary in x.

Proof: Assume the contrary, i. e. that S,=S—S’ is stationary in x. Let
H:L(S)y—>L(S’) be a given isomorphism. The mapping /:S,— x is defined by
H(f)=fnuy- Since h is one-to-one we infer by Prop. 0.2. that there is a sta-
tionary S;CS, such that APS, is strictly increasing. The set 4"’ (S,) is non-sta-
tionary because A~!PA(S)) is one-to-one and regressive. Therefore there is a
club C such that CNA” (S)= @. Let (c,|B<x) be the normal enumeration of
C (suppose ¢,=0). To any «&S, corresponds B (o) such that Cay <h () <Cgyyss-
By the Prop. 0.2. there is a stationary S,CS,, such that B(a)=£B (&), for
a, &' ©5,, aFa’. Let « &S, be arbitrary and let us put

n () =min{n | H(f) (m)>c;}-

There exist a stationary S;CS, and n<o, such that n,—n, for every ®ES;.
It is easy to see that F(f,)=H (f)Pn-+1 is an isomorphism from L (S,) into
("z, <), what contradicts Cor. 1.2, because (", <) is well ordered.

L'emm'a 1.4. Let S be a set of ordinals (from On (w)) such that SN is
non-stationary in A for every \. Then L(S) is the union of countably many well-
-ordered subsets.

Proof: By induction on X we shall prove that L(SNA) is the union of
countably many well-ordered subsets, for every A. Let A& On and let L{SNA)
be the union of <N, well-ordered subsets, for every A’ <. Obviously, we may
suppose that ¢f(A)>w. Let then C be club in A, so that- C\S= @. Let
(¢s| B<cf (1)) be the normal enumeration of C (suppose ¢,=0). By induction
hypothesis, for each §<A there is a mapping F,;:L(SMN8)— «» such that for
all n, {fCL(SNS)|F,(f)=n} is well-ordered by <. For every «<S there
exists a unique B(«) such that Co() <A <Ca(+;- Now we define a mapping G
which associates to each f,&L(SN2) a pair (1, m)Cw X w, where

n=min{k|f, (k)>cs,,} and m=Fc g . (f)

It is easy to see that {fCL(SN)|G(f)=(n, m)} is well-ordered by <, for
every (n, m)Em X .

Remark. Observe that the Lemmas 1.1 — 1.4 do not depend on how
at the begining we associate to every «¢On(w) the mapping f,:®+ 1 — On.

If » is an uncountable regular cardinal, and if S is stationary in x, then
by lemma 1.1 there is S'CS, such that S—S8’ is non-stationary and that LS
has the property that {«<S'|f<f,< g} is stationary in x for every 1, g€
€L(S’), f<g. This fact shall be expressed with the wording that in L(S)
every interval is stationary.

If SCOn(w) is stationary in some 2, then #p (L (S), <) belongs to a class
of ordered types that was studied in [B]. X
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2. Very strongly rigid BA’s exist in every regular cardinal >,

Let SCOn(w), S+ 2. Then by B(S) we denote the B4 of all finite uni-
ons of intervals from L(S) of the form [x, y), x, yEL(S)U{+ w0}, ie. B(S)
is the interval algebra on L(S). So, |B(S)|=|S]| for infinite S.

Lemma 2.1. Let » be an uncountable regular cardinal and let S, S Cx.
If there exists a strictly increasing mapping H from B(S) into B(S’), then S-S’
in non-stationary in x.

Proof: Assume the contrary, i.e. that S;=S5-S" is stationary in x. For
every oS, we put b,=(-, f)(EB(S)). So, H(b,)C H (bg), for every o, BES;,
f,<fe. Let «a€S,. Since H (b,)=B(S’), there exists unique decomposition

M H (b)) = U{[xs, v |i<n(@)},

where n(0)<o, x,), y,;EL(S)U{+ o}, for every i<n(x) and x/<{y/ <
< x it <y +1, for every i<n(a)— 1. Since S, is stationary, let us assume that
for some n<w, n(x)=mn, for every a&S,.

Let us define /.S, » in the following way. Let a&S,, then there exists
a B8, such that x, ~fB or x,= — o0. In the first case let us set A(x)=0
and in the second case h(oc)=0.

In virtue of Prop. 0.2 we know that either there is a stationary S,CS,
and B, <x, satisfying 4" (S;)={B,} or there exists a stationary S,"CS, such that
hS)" is one-to one. We claim that the second case does not hold.

Suppose, on the contrary that such an S|’ exists. Let o, PSS, and
[Tl Since H(b,)CH (by), we infer from (1) that x,°>x.°. Since A («)#h (8),
we have x= fh(oc);éfh(m—xB (suppose 06 A" (S,')). Thus necessarily fy > fice-
This proves that L(S,) is anti-isomorphic to the subset of L(S’). But this is
not possible because L (S,") contains an uncountable well-ordered set, while L (S"}
does not contain uncountable anti-well-ordered subset. :

Thus, there exist a stationary S;CS, and B,<x, so that A" (S;)={B)-
ie. x,%=x. for every «, BES,.

Let us now define /:S,— x in this way. Let «<S,, then there isa PES’,
such that y,0=f, or y,°= + co. In the first case let us put /(«)=8 and /(x)=0
in the second case.

By Prop 0.2. we know that either there is a stationary S,C S, and B,<<x,
such that I’ (S,)={B,} or there is a stationary S,’CS,, such that I}S," is-
strictly increasing. We claim that the second case does not hold.

Suppose, on the contrary, that such an S,” exists. Let «, BES," and f, <f,-
Since H (b)CH (b)) and S,’CS,, we infer from (1) that y,°<Cy° Since
I(@)#1(B), we have y°=fic)#fig)= s’ hence fu)~< fis- This proves that L(S,’)
is isomorphic to a subset of L(S’), what is imposible by Lemma 1.3.

- Thus there exists an $,CS; and 8, <<x, such that I’ (S,)={B,}, i.e. ».2=ys"
for every «, BES,.

Repeating this procedure 2n times we get a stationary set S,,CS,,—,C

- CS,CS, such that x,/=x,/ and yjf=y,, for every i<n and every
o, BESZ,, This means that H (b)=H (bg), for every «, BES,, in contradiction
with the assumption that H is strictly increasing. This finishes the proof.



Very strongly rigid Boolean algebras 271

Lemma 2.2. Let » be an uncountable regular cardinal and let S, S’ Cx.
If there exists a homomorphism H from B(S) onto B(S’), then S'—S is non-
-Stationary in x.

Proof: Since B(S) is interval algebra it is by Theorem 1.5 from [Ro]
retractive, what means that there exists a one-to-one homomorphism G : B(S’) —
—> B(S) so that HG=1idp (). By Lemma 2.1 we infer that $'—S is non-stati-
tionary in x. '

Lemma 2.3. Let x be an uncountable regular cordinal and let SCx be a
stationary in x, such that every interval of L(S) be stationary. Then there is no
non-trivial strictly increasing mapping from B(S) into B(S).

Proof: Assume the contrary, i.e. that there exists a non-trivial strictly
increasing mapping H:B(S)— B(S). Thus, there exists a bSB(S), such that
¢=H(b)7#b. Two cases are to be considered: b—c# & and b ¢. Consider the
first case b—cw @. Let S'={y&S|f,€b—c} and " ={yES|f,&c}. By hypo-
thesis S’ and S” are disjoint stationary sets in x, B(S)=~B(S)Mb—c and
B(S")=B(S)Ic in contradiction to the Lemma 2.1, because H [(B(S)Mb—c)
is a strictly increasing mapping from B(S)[b—c into B(S)'c. Analogously
one proves that the second case does not occur. : ‘

Following theorem follows directly from Prop. 0.1, Lemma 1.1 and 2.3.

Theorem 2.4. Let x be an uncountable regular cardinal, and suppose S is
stationary in . Then there exists S'CS such that S—S’ is non-stationary and
such that B(S') is very strongly rigid BA of power x. '

Let x>¥N, be a regular cardinal. Let R,, «<x be a partition of {a<
<#|¢f(x)=w} into stationary subsets. By Prop. 0.3. there exists a family
X,, a<2* of subsets of » no one of which is included in any other. Let
S,=U{Ry| B X,}, for a<2* The family S,, a<2* has the property that:
S,—Sg is stationary for every «, B<<2%, ap. Without depraving this property
we can assume, omitting non-stationary subset of S,, that every interval in
L(S,) is stationary, for every a<<2*. According to Lemmas 2.1 — 2.3 and The-
orem 2.4 we have the following.

Theorem 2.5. Let x be an uncountable regular cardinal. Then the family-
B(S,), a<<2* of BA’s we have just comstructed has the following properties:

(1) B(S,) is very strongly rigid BA of power x, for every a<<2*.

(i) If H:B(S,)— B(S,) is either strictly increasing or homomorphism onto,.
then =0 and H=idy Say

2. Some more properties of BA’s of the form B(S)

(1) Let % be an uncountable regular cardinal and let I be a well ordered.
set. Let S and §;, i</ be non-empty subsets of x. Let L=X{L(S)|icI} be
the sum of lineary ordered sets L(S,) over I and let B(L) be the interval al-
gebra on L. The proof of Lemma 2.1 is easy transferrable to prove the:
following. :
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Lemma 3.1. Let x, S and S;, i1 be as above. If there exists a strictly
increasing or strictly decreasing mapping from B(S) into B(L), then S—\J
J{S;|i&1I} is non-stationary in =x.

(2) Let SCOn(w) be any set. Then there is A such that SN is sta-
tionary in A iff there is §'C.S, such that B(S’) is very strongly rigid BA.

Let SMA be stationary in some A. Obviously »=cf (A)>w; thus the exi-
stence of S'CSNA for which B(S') is very stronly rigid follows from The-
orem 2.4. Suppose now that S is non-stationary in A for every A. In virtue
of Lemma 1.4 we know that L(S) is the union of countably many well-ordered
subsets. Let $"CS be arbitrary. It is clear that we may assume that S’ be
uncountable. In virtue of the main result in [L] we know that there exists a
sequencee (x,, ¥,), h<<o of nonempty disjoint intervals from L(S’) such that
there is a one-to-one order-preserving function from (x,, »,) into (X,+1 Yuty)s
for every o<w. W. 1. 0. g. we may assume y,<x,.,, for every n<w. Let
a,=[x,, y,) n<ow and let b=L(S)~{a,|n<o}. Let B,=B(S)la,~ interval
algebra on a,, n<w and let B=B(b)=interval algebra on b. Let 4={pCBx
xII{B,|I<n<w}|support of p is finite}. Then it is easy to find F, G:
1B(S)— A, F is one-to-one and G is onto homomorphism such that Fz=G.
S0, B(S") is not very strongly rigid BA.

(3) Let x>N, be a regular cardinal, and let S be stationary in » such
that every interval in L (S) be stationary. According to Lemma 2.3 we infer
that B(S) is very strongly rigid BA. For every ac=B(S) we put.S,={a|f,&a}.
Then H(a)=[S,] is embedding of the B4 B(S) into the BA D (x)][S], where
[S]={S"Cx|SAS EI(»)}. ,

On the other side, from Lemmas 2.1 and 2.2 we inter that the algebras
of the from B(S), SC{u<x|cf(x)=0w} with respect to the relations ,,is embe-
ddable in‘‘ and ,,is homomorphic image of*‘ behave like corresponding mem-
bers of the algebra D (x) wrt its ordering.

(4) Let »>¥§, be a regular cardinal, and let S be stationary in. % such
- that every interval in L(S) be stationary. Let L(S) be the Stone space of the
BA B(S). Let expL(S) be the set of all closed subsets of L(S) in Vietoris. to-

pology and let exp B(S) be the BA of all clopen subsets of exp L(S). Then
exp B(S) is B4 of power ». Using the ideas of the proof of Lemma 2.1 we
can.prove that exp B(S) is mono-rigid BA. On the other side, using main
theorem from [Tr] we may prove that exp B(S) is not embeddable in an in-
terval algebra.

4. Very strongly rigid BA’s in singular cardinalities

In § 2 we showed that very strongly rigid BA’s exist in every regular
cardinal >§;. In the present section we shall consider the problem of the
existence of such algebras of singular power.

Theorem 4.1. Let » be a singular cardinal and let 2*>x, for some A< x.
Then there exists a family B,, «<2* of BA’s such that:

(i) B, is very strongly rigid BA of power %, for every a<<2*.
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(i) If H:.B,— B, is either striétly increasing or homomorphism onto, then
«=8 and H=idy,.

Proof: Let A>w be a regular cardinal such that 2*>x». Let R,, a<<A
be a family of pairwise disjoint stationary subsets of {§<<A|c¢f(8)=w}. At the
beginning of § 2 we associate to every 3<X, ¢f ()= a strictly increasing
continuous mapping f5:w-+1—2, f;(w)=3. Assume (only in this proof) that
{8€R,|f; Dg} be stationary in 2, for every a<2 and every g& Ch.

Let X,, «<<2* be a family of subsets of A such that X, — U{X, | p€U}# o,
for every a<<2* and every finite set UC2*, U=Da (see Prop. 0.3). Put.

S, =U{R,|BEX,}, for every a<<2™

Let ZCx be an arbitrary set of power »x and let L,=2%{L(S,)|«EZ}
be the sum of linearly ordered sets L(S,) over Z (with well-ordering induced
from x). Let B(L,) be the interval algebra determined by L.

Let I, be the ideal in B(L,) which is generated by the set {[x, y)| there
is «&Z such that x, y&L(S,)}. Put B, =1, —I,. Then it is obvious that B,
is a subalgebra of B(L;) of power x.

Let K be a family of power 2* of subsets of x of power x no one which
is included in any other. Let us prove that the family B,, Z& K satisfies the
conclusion of the theorem. According to Prop. 0.1 it is sufficient to prove the
following: /

If H:By— B, is stricly increasing, then Y=2Z and H = idpy.

Let Y, ZEK and let H:B,— B, is an one-to-cne hcmcmorphism. Let
us prove Y=2Z (the proof of H=idp, is similer; therefore we omit it).

Assume the contrary, i.e. that some «&Y—Z exists. Let a&l, and
aCL(S,) be non-empty. Suppose H (a)&1,. This means that a f nite set UCZ
exists, such that H (a)C U{L(Se)|B€U}. Let S,={8<hr|f;E€a}. Then in tasis
of the above construction we know that S,— U{S |pE U} is stetionary in A
But HPM(Byla) could be meznt as strzctly increasing mepping from B(S,) into
B(Z{L (SB)IBEU}) what contredicts Lenma 3.1.

Let us suppose now that H(a)C —1I, for every non-empty al L(S,),
acly. Let @ #aCL(S,), acly te sich that S,={3€S, |fEa} is staticnery
in 2, i. e. such that b=L(S,)—a contains a nonempty intervel. Then — H (@) &
&1, what means that there is a finite ¥CZ such that —H(a)C U{L(SB)|E,E
&V} In virtue of the above conclusions we infer that S,— ' J{S,|BE&V} is ste-
tionary in A. The mapping F(c)= — H (alUc), ¢E By, ¢Cb could te considered
as strictly decreasing mapping from B(S,) into B(Z{L (SB)HBEV}) in contra-
diction with Lemma 3.1. This finishes the proof.

Let now » be a fixed singuler cardinal and let A,, a<<cf(x) be a fixed
strictly increasing sequence of carcinals with supremum x, such that A,>cf (%)
for every a<<cf (). v

Lemma 4.2. Let S, S"Cx be such that SN\P and S' (B be non-stationary
in B, for every BE{A,* la<cf (x)} If there exicts a strzctly increasing mapping
H:B(S)— B(S’) then (S—S"YN\A,* is non-staticnary in A*, for every a<<cf (x).

Proof: Assume the contrary, i. e. that for scme a<<cf () the set S,=
=(S—-S)Nr,* be stationary in A,+t. For every 8€S, we put by=(-, f3)

18 L’Institut mathématique
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(€B(S). So, H(b)C H(by), for every 3, y&S,, f;<f,. Let 3CS, Since
H (b)) B(S"), there exists a unique decomposition

() H (bs) = U{[xs, ¥5) | i<n(3)},

where n(38) <o, x5/, y, CL(S ) U{ + w0}, for every i <n(3) and x,/ < y,i< i 1< psi+1,
for every i<n(d)—1. Since' S, is stationary, let us assume that for some
n<w, n(d)=n, for every 3&5,. :

Let us define 4:S,—x in the following way. Let 3&S,. Then either
there exists a Y&S§', such that x0=f, or x%= — 0. In the first case let us
put 2(8)=v and in the second #(3)=0.

In virtue of Prop. 0.2. (really a small extension of it) we know that
either there exists a stationary S,CS, and vy, <x, such that A" (S)={y,} or
there exists a stationary S,"CS, such that APS,” is one-to-one. As in the proof
of Lemma 2.1 one proves that the second case is not possible.

Consequently, there exists a stationary S,CS,, such that x50=x2, for
every 3, y&S.

Let us now define /:S,—x. Let §&.S,. Then either there is a y&S’ such
that y,°=f, or y= +oo. Let I(8)=y in the first case and /(8)=0 in the se-
cond case. As above we know that either there exists a stationary S,CS, and
Y,<<x, a such that I (S,)={y,} or there exists a stationary (in 2,*)S, CS,,
such that /]S," is one-to-one. We claim that the last case is not possible.

Suppose the contrary, i.e. that such an S, exists. Let §, y&S,” and
fs=<f, Since H(b))C H(b,) and S,’CS,, we infer from (2) that y,9<(y.%. Sin-
ce [(8)#I(y) one has y,°=f,5#f1ey=2 thus fi5<fi» What proves that
L(S,) is similar ta a subset of L(S'). By Lemma 1.3 {38, |[I(Q)<A,*} is
non-stationary in A,*. But even the set {3&S,"|/(8)>3,+*} cannot be statio-
nary in A,*, teciuse { f;| &S, &I (8)>1,*} is similar to {f;)|3ES, &I (3)>1,*}
and because /" (S,’)\B is non-stationary in B for every B>A,* (see Cor. 1.2
and Lemma 1.4).

Consequently there exists a stationary S,CS,, such that y0= »,% for
every 3. YES,

- Repeating this procedure 27 times we get a stationary (in A,%)S,,C
Sy C - - - C5,CS,, such that x/=x/ and y/=yp/ for every i<n and
3, YES,, This means that H (b;)=H (b,), for every §, y<S,, what contradicts
the assumption that H is strictly increasing.

Next lemmas follow from the Lemma 4.2 in a similar way as we dedu-
ced Lemmas 2.2. and 2.3. from Lemma 2.1,

Lemma 4.3. Let %, A, a<<cf(x) and S, S'Cx be as in Lemma 4.2. If
there exists homomorphism H from B(S) onto B(S'), then (S’ —S)N\,* is non-
-stationary in A,*, for every a<cf ().

Lemma 4.4. Let x and A, a<<cf(x) as above. Let SCx has the proper-
ty that for every non-empty a=B(S) there exists an a<<cf(x), such that {3&
eS| fi&alN\\* is stationary in N\, *. Then there is no non-trivial strictly incre-
asing mapping from B(S) into B(S).

Let >N, be a regular cardinal. Let E()) denote the following state-
ment: There is an SC{A<8|¢f (8)=0w} stationary in A such that SN« is not.
stationary in «, for every a<<iA.
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Since [, implies E(A+) (see, e. g. [KM]), in virtue of [J] p;‘ ‘,"‘2h86", " WE
infer that E(A*) holds if A+ is not Mahlo in L. :

Theorem 4.5. Assume E(M*) for every A. Let w be an arbitrary cardi-
nal >¥N,. Then there exists a family B,, «<<2* of interval BA’s such that:

() B, is very strongly rigid BA of power %, for every a<<2*.

(i) If H:B,—~ Bg is either strictly increasing or homomorphism onto, then

w=0 and H=ids,.

Proof: Let x>, In virtue of Theorem 2.5 we may assume that x is
singular. Fix a strictly increasing sequence A,, a<<cf(x) of cardinals with sup-
remum %, such that A,>c¢f (x), for every a<<cf (x).

, +
By assumption, for every a<lcf(x), we can find a sequence S, B<2>‘°‘
of stationary in A,* subset of {82, <8<, *&cf(3)=w}, such that S,y is

non-stationary in vy, for every y<\A,* and so that S,, —S,g is stationary in A,*
N .
for every B, B’<27‘°‘ » B#P. Assume that L(S,;) has no end-points and that

_|..
in L(S,g) every interval is stationary, for every a<cf(x) and B<2 ba
+
Let pcII{2*« |a<cf (0)}. Then we set S,=\U{S,,@|a<cf (O}

+ -
Then B(S),), p& H{27‘°° |a<<cf(x)} is a requested family of BA’s as fol-
lows from Lemmas 4.2—4.4 and Prop. 0.1.

5. Ontorigid BA’s exist in every uncountable cardinality

Let x>\ be regular cardinals. For every 8<%, ¢f(3)=xA let us fix a
strictly increasing continuous mapping f;: A+ 1 — x, such that f, (A\)=38. To every
non-empty set SC{8<x|cf(8)=2} we associate the set L(S)={f;|8cS} or-
dered lexicographically as well as the BA B(S) of all finite union of intervals
from L (S) of the form [x, ).

We shall always assume that the above mapping 3 — f; has the following
property:

™ [{fobo|a<h, £ (@) <B, S<x and ¢f (3)=2}|<x,

for every B<Cx.
Proofs of next two lemmas are almost identical to the proofs of Lemmas
1.2 and 1.3, respectively.

Lemma 5.1. Let >\ be regular cardinals and let SC{3<x|cf (3)=ow}.
Let S'={3CS| there exists a <<\ such that {yES|f,<<f, and filaC f,} is non-
-stationary in x}. Then S’ is non-stationary in x.

Lemma 5.2. Let x>} be regular cardinals and let S, S’ C{3<x»|cf (8)=A}.
If L(S) is order-isomorphic to a subset of L(S’), then S—S' is non-stationary
in . ]

Proofs of next two lemmas are almost identical to the proofs of Lemmas
2.1 and 2.3, respectively. .

18*
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Lemma 5.3. Let x>\ be regular cardinals and let S, S’ C{S <x|cf (8)=12}.
If there exists a strictly increasing mapping from B(S) into B(S’), then S-S
is non-stationary in .

Lemma 5.4. Let x>X be regular cardinals and let SC{S<x|cf (3)=2}
be a stationary in x, such that every interval of L(S) be stationary. Then  there
is no non-trivial strictly increasing mapping from B(S) into B(S).

Now we are ready for the proof of the main theorem of this section.

Theorem 5.5. For every uncountable cardinal x, there exists a family
B,, a<<2* such that:

(V‘i)’ B, is onto-rigid BA of power x, for every o<<2*.

(i) If H:B,— B, is onto homomorphism, then o.=p and H = idp,.

Proof: Let >N, In virtue of the Theorems 2.5 and 4.1 we may
assume that » is a strongly limit singular cardinal. Therefore we can consider
strictly increasing sequences x»,, a<Cc¢f(x) and A, a<c¢f(x) of regular cardinals
with supremum x, so that (2*)* =x,<<},, for every a<<B<c¢f (%).

Let us fix a<<cf(x). Let R, &<x, be a sequence of disjoint stationary
in %, subsets of {§<<x,|cf(3)=1,}. To every 3§, »,” <8<x,, ¢f(8)=2%, we asso-
ciate a strictly increasing continuous mapping f;:A,+ 1 — x,, such that fy(3,)=73.
In virtue of the relation between 2, and x, it is obvious that we can assume
that {SER,. |f;Dg} is stationary in x, for every strictly increasing and conti-
nuous g:B—%, B<A, and for every £<x,. Let us notify that the condition (*)
is satisfied also. ‘

Let X,Cx, and X,# @ and let S,= U{R,:|£<X,}. The Stone space
L(S,) of the BA B(S,) is obtained from the Dedekind’s completion of the
linearly ordered set L(S,) by doubling every nonend-point from L (S,).

Let x&L(S,); then the left x~ (x, L(S,)) and the right x* (x, L(S,)) cha-
racter of x in L(S,) are defined as usually. A simple consideration of the
lexicographical ordering of L(S,) shows that if some point x<L(S,) has left
(right) character <, then its right (left) character necessarily equals either A,
or x, Also, one checks easily that the set of all points xCL(S,) for which
0<y~ (x, L(S))<x* (x, L(Sy)) or 0<y* (x. L(S))<y~ (x, L(S,) is den.e in
L(S,). " '

Let L=%{L(S,)|«<<cf(x)} be the sum of L(S,)’s over ¢f(x) and B(L)
be the interval algebra on L. Then B(L) is BA of power x; its Stone
space L is obtained from the Dedekind’s completion of L by doubling every
nonend-point of L. We shall consider L (S,) as a convex subset of L, for every
a<<cf (n). -

Let us prove that B(L) is onto-rigid B4; the remainder of the theorem
is proved as in other cases in this paper.

Assume the contrary, i.e. that there exists a nontrivial homomorphism
H from B(L) onto B(L). S'nce by Lemma 5.4 B(S,), «a<<¢f (%) are onto-rigid
BA’s we infer easily that there are B<<a<l¢f(x) and non void a, b&B(L),
aCL(S,), bCL(S,), such that H(a)=b (there we identify B(L) with BA of
all clopen subsets of L). Let H..L— L be one-to-one continuous function which
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is dual to H. Let xcb and Jet 0<y~ (x, L)<y* (x, L). Let H(x)=y(Ea).
Since H is one-to-one and continuous one checks easily that {3~ (x, L),
1t (x, f,)}={x“(y,1), 1+ (7, L)} hence %~ (», L), x*(» Z)<x3<7\“. But this
contradicts the quoted property of the Stone space Z(Sa). This finishes the
proof.

Let 4 be a o-complete BA. A is said to be o-hyper-rigid (see [Bo 3D
whenever for every c-complete algebra B, every o-complete homomorphisms F
and G from A into B, such that F is one-to-one and G is onto we have A= G.

Let »x>N, be a regular cardinal-such that 3™ <, for every A<<x. For
every 3<<x, ¢f (8)=0, we select again fy:w,+1->x in the above way. Let
SC{8<|cf (3) = w,} be stationary set in » such that every interval in L(S) is sta-
tionary (observe that (*) holds). Let B°(S) be the s-completion of the BA B(S)
and let L°(S) be the o-completion of L(S). The algebra B°(S) has a nice rep-
resentation as a subalgebra of the algebra of all regular open subsets of L° (S)
(see [Bo 3]). Using the analog of the Lemma 5.3 for algebras of the form
B°(S) we can prove thet B°(S) is o-hyper-rigid BA of power x.
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