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Abstract. The purpose of the present paper is to prove one therem
in which we have omitted the assumption of the completeness of the space
from each. We have obtained.the same conclusion as in Banach’s theorem
but with different sufficient’ conditions. TIn this paper fixed point theorems
have been established for the mapping which are contractive over two
consecutive elements of an - orbit. The similar theorem is obtained for
Banach spaces. Also, we prove a fixed point theorems of localization type.

1. Introduction and some results

. In recent years a number of generalizations of the wellknown Banach
contraction principle have appeared in the literature where the authors have
introduced mappings of contractive type ‘and studied the existence of their
fixed ponts. A comparative study of these generalizations has, been made
more recently by Rhoades [13] and Taskovi¢ [14].

Let T:X— X be a mapping of a metric space (X, p) into itself. For xE X,
let us denote the subset {x, Tx, ..., T*x}, k=1,2,...,0of X by O (x, k) and the
diameter of O (x, k) by 3[O (x, k)]. For x, y& X we put I(X, T): ={x&EX|Tx=x}
3[0(x, 0)]: =diam {x, Tx, T?x, ...}, $[O(x, y, 00)]: =diam {x, y, Tx, Ty, T2 %,
T?y,...}. A space X is said to be T-orbitally complete iff every Cauchy sequence
which is contained in O (x, ) for some x&X converges in X (cf. [14]).

In [14] we introduced . the concept of a generalized g-contraction T of a
metric space X into itself i.e. of a mapping T:X— X such that for all x, yEX

o [Tx, Tyl<o(p[x, ¥, olx, Tx], o[y, Ty, oly, Tx], o[x, Ty

where the existing mapping o (R%)® — R%.: =[0, + o) is increasing and has
the property (VtcR, :=(0, + o)) limsupeo(z,..., 2)<t.
: : v z—t4-0

On the other hand in [15] we introduced the concept of a - diametral
¢-contraction T of a metric space X into itself i.e. of a mapping T:X— X such
that for every x, y<X,

A eITx, Tyl=e B[O (x, y, 0)]), 8[0(x, ©)]ER,,
where the existing mapping <p:R(_),_—+R3_ has the properties
- (VIER) (p()<tAlimsupg (2)<?).
: z2—140
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It may be noted that generalized ¢-contraction implies diametral ¢-contrac-
tive mappings.

And finally, at the next step we prove a very general fixed point theorem
which generalizes a great number of known results (see. [15]).

Theorem 1. Let T be a diametral o-contraction on a metric space X
and let X be T-orbitally complete. Then for each xEX, the sequence {T"x}
converges to a unique fixed point & of T. The velocity of this convergence is not
necessarily geometrical. . ’

The proof of this theorem is based upon the fundamental lemma,
proved in [14].

Lemma 1. Let the mapping ¢ . R ,—R , have the properties(N tER ) o (1) <t
and limsup @ (z)<<t for t&R,. If the sequence (x,) of nonnegative real numbers

z—>t--0
satisfy the condition x,,,<¢(x,), n=1,2,...; then the sequence (x,) tends to
zero. The velocity of this convergence is not necessarily geometrical.

Proof of Lemma 1. Since (x,) is a nonincreasing sequence in R, there
is a =0 such that x,— ¢t (n—o0). We claim that ¢=0. If #>0, then

t=limsup x,,, <limsup ¢ (x,) =limsup ¢ (2)<?,
n—>00 z—t4+0 .

n—>o
which is a contradiction. Consequently 7=0, and lim x,=0.

Proof of Theorem 1. For x,=x&X, let x,=T"x, (n=0, 1,
2,..). It is easy to werify that the sequence {x,} satisfies condition
S[0 (%ppqr ©)]=¢ (B[O (x,, 0)]), =0, 1, 2,... and hence applying Lemma 1.
to the sequence {3[O(x,, c0)]} we obtain lim 8[O(x, ©0)]=0. This implies
that {T"x} is a Cauchy sequence in X, and hence, by T- —orbitally completeness,
there is a £€X such that x,=T"x— £ (n—>o0). Put x,=T"£(n=0,1,2,...).
Since {y,} is a bounded sequence of nonnegative reals, for some g,z0,
3[0 (%, Y» )] — &, (n—>00). Similarly we have ¢,=0. Thus §=limy, and by
our Lemma 1. we have 3[0 (€, ©)]=0 and it means that £ is a fixed point
of T. From (4) we have that £€ X is unique.

We are now able to prove the theorem in which the completeness of the
space is replaced by its boundedness. ,

7 Theorem 2. Let T be a diametral ¢-contraction on a metric space X
and let X be bounded, Then: :

(a) The equality
IX, T)=T(A)=A4: = NnenT"(X),
holds;

(b) The set 1(X, T) is either empty or contains exactly one element, i.e. T
either has no fixed points or has exactly one fixed point.
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Proof. Since the inclusions I(X, TYCT(4)CA are true in the case of
the mapping of the nonempty set X into itself, it sufficies to prove the inverse
inclusions. Let 4# @ and x, yE 4, then for each n&N there exist elements
Xp ¥,€ X such that x=T"(x,), y=T"(y,) and

diam 4 < p [x, Y=o [T"x,, T"y,]<@(3[0(T" !X, T"!x,, ©)]),
other . we have
diam A4 <3[0 (T"x,, T"y,, ©)]=e@[0 (T 'x,, T 'y, o)),

and applying the Lemma 1. to the sequence {3[0(T"x,, T"y,, )}, we
obtain J[x, y]=0 when n—co, i.e. diam 4=0. Consequently if 4=+ & then 4
contains exactly one element, i.e. A={a}. Since I(X, T)CT(4A)CA we have
T(a)c{a} ie. T(a)=a. Therefore A={a}(C A and this together with the above
inclusions gives I(X, T)=T(4)=A={a}. When A= g the equality I(X, T)=
T(4)=A= gz follows immediatelly from I(X, T)CT(4)CA.

Remark. In general we remark that the following relation hold
I(X, T)CT(A)CA. None of the previous inclusions can be replaced by the
equality, and the first one even not if it is assumed that T is a diametral
p-contraction of complete metric space X.

Example 1, Let X=R be the set of real numbers R with usual metric and assume
T(x)=x/3(x&X), Then T is a diametral g-contraction of complete metric space X, In that
case I(X, T)={0} and T(X)=X, thus T"(X)=X®EN), This impliecs 4=X, what leads
eventually to T (4)=T(X)=X. This example shows that first inclusion cannot be replaced by
equality if T is-a diametral ¢@-contraction of a complete metric space X, Let

X= Upen {60 1sv=n}U{a, b,

and assume T: X—X, T(af,”):T(aS’_’ﬁl), ov=1,...,n—1;n=2,3,...), T(aﬁt”))=a(n= 1,2,..)
T(@=T(b)=b. In that case A={a, b} and T(4)={b}.

Remark. This idea of theorem is due to D. Adamovié.

2. Some localizations

In 'paper [15] we introduced the concept of a locally ¢-contraction T of
a metric space X into itself i.e. of a mapping T:X — X such that for every x< X,

B) o[Tx, TFx] <9 (B[O (x, K)]), k=2,3,...
where the existing mapping @:Ri — R(i has the properties

(VICR,) (e (1)<t Alimsup o (2)<?)
2140 -

It may be noted that g-contraction implies locally ¢-contraction but not
conversely.

Now, we can formulate a corrssponding statemznt for [ ocally ¢-contrac-
tive mappings.
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Theorem 3. (Taskovié [15]) Let T be a orbitally continuity locally
@-contraction on a metric space X. Then ; : '

@) {T"x} is a Cauchy sequence for each x&X with bounded T-orbit,
that is, with 8]0 (x, ©)|ER,, ‘

®) If set S.={tcR,|[t—o(@t)=plx, Tx], xE X} is bounded, then
3[0 (x, 0)]CR,, !

(©) If xEX, 8[0(x, ©)]ER, and the closure of O(x, ) is complete,
then the sequence {T"x} converges to a fixed point & of T.

Some remarks

1) Orbital and localization theorems of the class of fixed points contractions
mapping does’nt say anything about the uniqueness of the fixed point. One
example is sufficient to prove this. ‘

Example 2. Let T:R?>—R? be defined as follows T(x; »=(x, xy), &0, 1).
Then the point (x, 0) is a fixed point of the mapping T:R?>— R%

2) Note that ong cannot delete a condition of orbital continuity of T in
the Theorem 3., even T satisfied the stronger conditions of (B) "

p[Tx, T* x]=ep[x, Tx], xEX,
for some «a<[0, 1). The folowing example shows it.

Example 3. Let X={0,2-7}, n=1,2,...; T2 "H=2"""1 T(0)=1 For x=2—*#
is p[Tx, T2x]=p[2~7"1, 27772]=2"8"2=2"1p[2"", 2=n-1=2"1p[x, Tx]; and for x=0
plTx, T*x]=p[1,2711=2"1p[0,1]1=2"1px, Tx]. Then T satisfied stronger conditions with
a=2"1, but has not a fixed point

The assumption of continuity can be avoided if an additional assumption
for the mapping is made. However, the unicity cannot be obtained.

Theorem 4. Let T be a mapping of a metric space X into itself and
let X be T-orbitally complete. Let for every x&X and i, j&{0, 1,..., n}

© o[Tix, Tx]=@ (O (x, W), nEN, and 3[0(x, ©)]ER,.
where the existing mapping cp:R(.)F——>R3_ has the properties

(V:CR,) (p()<tAlim s%p<p(2)<t)
Z—>t+

Then T has a fixed point £EX.

Proof. Let x=x, be an arbitrary element of X, and let x,=T " x (nEN).
The sequence {3[O (x, n)]} is a convergent (i.e. increasing and bounded in R,).
Let t=1im $[O (x, n)]. Therefore, from (C) we have

t=limsup 8 [0 (x; n)] <lim supg (3 [0 (x, n)]) = lim s%p p(z)<t,
i+

n—0 n—0
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Before going to the theorems, we first recollect the folowing defini-
tions. A mapping T of a bounded subset K of a normed space X into itself
is said to have property B, on K if for every closed convex subset F of K,
mapped into itself by T and containing more than one element, there exist
an xCF and a positwe integer k such that ||x—T*x||<sup{|y—T*y|l.yEF}.

If T is a mapping of K into itself such that for each x€ K, lim,, 3 [O (T" x,0)]<
<3[0(x, )] when 3[O(x, ©)]>0, then T is said to have diminishing orbital
diameters over K (see [2]).

It has been shown in [14] that if K has normal structure then a mapping 7,
having property gzgs-contraction on K into itself must have property B, on K
but not conversely. '

Here we obtain some fixed point theorems for mappings having property
@gas-contraction by using certain additional hypotheses. Then we compare the
notions of diminishing orbital diameters, normal structure, and property B,
(see [14]).

We are now in a position to formulate our theorem.

Teheorem 5. (Taskovié [14]). Let X be a normed space and let T be
a mapping of X into itself hawing the property of ¢gpg-contraction over X.
Then if T has diminishing orbital diameters over X, T has the property By over X.

Theorem 6. Let T be a maping of K into itself. having property
generalized oppg-contraction over K. Then the following statements sare equivalent:

(8) T has property B, over K.

(b) For every nonempty bounded closed convex T-invariant subset F of K
which contains more than one element there exisis x&F such that ‘

sup {|| x—T"x||:rEN}<sup{||z— Iy |y, zEF}
Proof of Theorem 5. we have in paper [14].

Proof of Theorem 6. To show that (a) implies (b) it is sufficient to
see that if x be the element such that || x— T*x|<sup{||y—T*y||:y& F} then
the element Tx¢F would satisfy the hipothesis of (b) because || Tx —T"(Tx) || =
<||x—Tx|| by the nature of T. .

We now show that (b) implies (a). If possible let (a) be not true. Then
there exist a nonempty bounded closed convex subset F of K which is
T-invariant and contains more than one element such that, for every xC&F,
| x—T¢x||=sup {|ly—T*y||:y € F}=0, say. Now consider F’ = Clconv (TF).
For any two elements z, w&F', it can be easily seen that |z~ Twil<r=
—||x—Tkx]||. Also since F’ is T-invariant and is contained in F, it follows
that, for every zEF, sup{|z—T"z||:rCN}=sup{||z~Twl:z, wEF'} and
this is in contradiction with (b). Hence the theorem.

_ Throughout this paper, unless otherwise mentioned, X is a reflexive
Banach space and K a nonempty bounded closed convex subset of X, And
finally, at the next step we prove a very general fixed point theorem.



Some results in the fixed point theory, II 255

Theorem 7. Let X be a reflexive Banach space and K be a nonempty
bounded closed convex subset of X. Let T be a continuous mapping of K into X
such that generalized ¢pps-contraction of K and T is maps the boundary of K
into K. If F be a closed convex subset of K which contains more than one
element and if G be a subset of F such that TGCF then there exists x&G
such -that || x—T*x||<sup{||y—T*y||:y EG}, kEN; then set I(K,T) is
nonempty.

A theorem similar to Theorem 7. for mapping of taipy (K) may be
seen in [6].

Proof. Let I' be the family of all closed convex subsets F of K such
that FNK+ @ and T:FNK— F obviously FET. If {F,} be any descending
chain of subsets of I' then the weak compactness of each F,\K implies
that FNK, where F=\F,, is nonempty. Also T:F\K— F because T.F,.N
MK — F for each «. Hence by Zorn’s lemma there exists a minimal element S
in I, S being minimal with respect to being closed, convex end such that
SNK# @ and T:SNK—S. We may assume dgK+ @ for otherwise SCK
and T:SNK—S implies T:S->S and if S contains only one element, the
theorem is obvious. If not, by property theorem there exists xS such
that (1):{|x—T*x||=r<sup{|y—T*y|:yCS}. Let P={xES:||x—T¢x| <r}.
If x&P, then since |[Tx—T*+'x|<q (diam {x, Tx, T%x, T*+'x}) we have
| Tx—T%+!x||<r which implies T(PYCP. Let P,=Cl(conv(TP)). If zEP,,
then any one of the following three cases may arise: (a) z&TP and since
TPCP, hence Tz&P,. (b) z=X1«; Tz, 0,20, Zio;=1 and z,EP,

2= %2 | = | S Tz T2 || Sl | T2, T2 =
=Xl o (diam {z, Tz, T 'z, Tz =Sl o, r<v,

which implies zEP and hence TzCTPCP,. (c) z is a limit point of P, in
which case by the continuity of T it follows that z&P and hence Tz&P,.

Thus P, is a closed, convex subset of S which is invariant ynder T and,
for every element z& P, [[z—T*z||<r, which implies by (1) that P, is a
proper subset of S. This contradicts the minimality of S. Hence S contains
only one element. This element is the fixed point of T, and I(K, T) is
nonempty.

One can prove in the same menner the part of this theorem concerning
now I.0¢K— K and S K contains more than one eclement, we will show
that we arrive at a contradiction. If S{NK contains only one element £, then
the nonemptiness of dg KCSMK implies that z&dgK and T:04K— SNK
implies that T& =& which proves the theorem.

Kakutani [12] have shown that if a commutative family of continuous
linear transformations of a linear topological space into itself leaves some
nonempty compact convex subset invariant, then the family has a common
fixed point in this invariant subset. The question naturally arises as to whether
this is true if one considers a commutative family of continuous not necessarily
linear transformations. We shall show that it is true in a rather special, but
non-trivial, case, thus giving some hope that further investigation of the
general question will yield positive results. The main result of this chapter is
the following.
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In [15] we introducd the concept of a diametral contraction T of a
Banach space X into itself i.e. of a mapping T.X — X such that for every x, y = X,

| Tx~Ty || <o @up{l|x—y || :yEX)),
where the existing mapping ch:Rﬂ,-»R(i with the property @ (t)<t for tER,

Theorem 8. Let B be a Banach space and let X be a nonempty compact
convex subset of B. If F is a nonempty commutative family of dismetral
cotractive mappings of X into itself, then the family ¥ has a common fixed
point £ in X.

Proof of theorem we give in [15]. In this paper we proof one fundamental
Proposition.

Remarks. If the norm for B is strictly convex, then the above theorem is almost
trivial since in this case each contraction mapping has a fixed-point set which is nonempty,
compact, and convex. In the general case, however, the fixed-point set of a diametral
contraction mapping is not convex. An example illustrating this fact is constructed as follows.
Let B be the space of all ordered pairs (a, b)) of real numbers, where if x=(a, b), then
| x||=may{ a], | b} Define X—={x:||x||<1} and T—X as follows: if x=(a, b), then
T(x)=(| b], b). It is easily shown that T is a diametral contraction mapping and that x=(1, 1)
and y=(1, —1) are fixed points for 7. However, 1/2 (x +¥)=(1, 0) is not a fixed point for T,

Now we use the following Proposition.

Proposition 1. (a) Let B be a Banach space and let M be a nonempty
compact subset of B and let K be the closed convex hull of M. Let d be
the diameter of M. If d>0, then there exists an element ucK such that
sup{|| x—u||: x&eM}<d. ‘

(b) Let X, be a nonempty convex subset of a Banach space and let T be
a diametral contraction mapping of X, into itself. If there is a compact set
MC X, such that M={T(x):xEM} and M has at least two points, then there
exists a nonempty closed convex set K, suc that T(x)EK,NX, for all x€K,NX,
and MNCK,# @ .*) ,

Proof (a). Since M is nonempty and compact, we may find x,, x,CM
such that || x,—x,||=d. Let M,CM be maximal so that M,D{x, x;} and
i x—y{=0 or d for all x, y<M,. Since M is compact and we are assuming
d>0, M, must be finite. Let us assume M, ={x,, X, ..., X,}. Now let us define

u=S (1+n)-1xck.

n
k=0

Since M is compact, we can find y,&EM such that |[y,—ul/=sup{]|x—
—~ul|:xEM}. Now

uyo—un.s.kioaJrn)-*nyo—xkusd

*) CK, is the complement of X,
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because || y,—x,|[<d for all k=0, 1,..., n. Therefore, if || y,~u||<d, then we
must have || y,—x,||=d>0 for all k=0, 1,..., n, which means that Yo&EM,
by definition of M,. But then we must have Yo=x, for some k=0, 1,...,n,
which is a contradiction. Therefore, ||y,~u]|=d.

Proof (b). If we take K as the closed convex hull of M, then by
(2) there exists an element u €K such that d, = sup {Ilx—ull:xeM}<d,
where d is the diameter of M. Since M has at least two points, we have d>0,
so.that our use of (a) is valid.

For each x&M let us define U(x)={y:||y—x|=d,}. Since ucU(x)
for each x& M, we have K =UsemUx)+ . It is clear that K, is closed and
convex. For any x&K,MX,. and any z& M we hawe xcU(2), ie || x—z|=d,.
Since M={T(y):y< M}, there must exist YEM such that z=T(y). Since T
is a diametral contraction mapping, we have

NT@ =2 =T -TW s Gup{|x~y|:y € M})
- sswp{lx—y|yEM)=4,

ie. T(x)&U(2). Since this is true for any zC M, we have T(x)EK, NX,.
We have shown that T (x)&K,NX, for all x&EK,NX,.

Since M is compact, there exist x,, x, EM such that | X—x, || =d>d,.
Thus, we see that x, does not belong to U(x) DKy, ie. x, EMNCK,# & .

REFERENCES

[1] Browder F. E., Nonexpansive nonlinear operators in a Banach space, Proc, Nat,
Acad. Sci. U.S.A,, 54 (1965).

[2] Belluce and W, A, Kirk., Fixed point theorems for families of contractions
mappings, Pacif. J. Math. 18 (1966), pp. 213—217.

[3] Gohde D., Zum princip der kontraktiven Abbildung, Math. Nachr. 30 (1965),
pp. 251—258.

(4] Goebel K., An elementary. proof of the fixed point theorem of Browder and
Kirk, Michigan Math. J. 16 (1969) 381--383.

[5] Edelstein M., On nonexpansive rhappings of Banach spaces, Proc, Cambrigde
Philos. Soc, 60 (1964), pp. 439—447. )

[6] Kannan R., Some results on fixed points — III and IV, Fund. Math. 74 1972),
181—187, and 70 (1971), pp. 169-—-177.

(7] Kirk W. A, A4 fixed point point theorem for mappings which do not increase
distances, Amer. Math. Montly, 72 (1965), pp. 1004—1006.

[81 Rous D. and Paolo Soardy, Alcune generalizazioni del Teorema di
Browder-Gohde-Kirk, Lincei-Rend. Sc. fis mat e nat., Vol 52 (1972), pp. 682—688.

[91 Smulian V., On the principle of inclusion in the space of. the type (B), Math.
Sb. 5 (47) 1939, pp. 327—328.

17 L’institut mathématique



258 M. R. Taskovi¢

[10] Reinermann, J. Fixpunktsdtze von Krasnoselki — Typ, Math. Z. 119 (1971),
D, 339—344. :

[11] Gatica, J. and W. A, Kirk;, Fixed point theorems for lipschitzian pseudo-
contractive mappings, Proc. Amer. Math. Soc, 36 (1972), pp. 111—115.

[12]1 Kakutani S., Two fixed-point theorems concerning bicomact convex sets, Proc.
Imp. Acad.

[13] Rhoadés B. E., comparison of various definitions of contractive mappings,
Trans. Amer. Math, Soc. 226. 1977, p. p. 257—290.

[14] Taskovié M., Reflexive Banach space and fixed point theorems and A
generalization of Banach’s contraction principle, Publ, Inst. Math. Beograd t. 20 (34), 1976,
pp. 243—247., and t. 23 (37), 1978, pp. 179—191.

[15] Taskovié M., Some theorems on fixed point and its aplications, Comm. Math.
Poznanj, Poland (to apper). )

Prirodno-matematicki fakuliet
11000 Beograd, Studenski trg 16
p. box 550

Yougoslavia



	249.tif
	250.tif
	251.tif
	252.tif
	254.tif
	255.tif
	256.tif
	257.tif
	258.tif

