PUBLICATIONS DE L’INSTITUT. MATHEMATIQUE
Nouvclle série, tome 27 (41) 1980, pp. 241—247

PARTIALLY ORDERED SETS AND SOME
FIXED POINT THEOREMS
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Abstract. In this paper we formulate and prove an elementary fixpoint theorem
which holds in arbitrary partially ordered sets. In the following section, we give various
applications (and extensions) of this results in the theory of simply ordered sets. With
such an extension, a very general fixed point theorem is obtained which includes a
recent result of the author, an also contains, as special cases, some results of A. Tarski,
D. Kurepa, Abian, Metcalf and Payne, Hoft, Smitson, Brown, and many others.

1. Introduction, results, and commentary

A number of papers giving fixed point theorems for decreasing, or in-
creasing functions on partially ordered sets have appeared in the last twenty
years. For example there is a Tarski’s classical result for increasing functions
on a lattice [9] and Davis subsequent proof of the converse [3]. Abian and
Brown extended Tarski’s theorem to more general partially ordered sets [2],
and in [8] Smitson further, extended the result of [2] and [3]. Ward [11] used
the fixed point property for increasing functions to characterize compactness
of the interval topology an semi-lattices, and Taskovié¢ [10] used the fixed
point property for increasing functions to characterize semi-completeness in
partially ordered sets. Abian [1] gave a sufficient condition for decreasing fun-
ctions on totally ordered sets to have fixed points, and then Metcalf and
Payne [6] and P. Kurepa [5] extended Abijan’s result to include functions
which were neither decreasing nor increasing. -

In the following, (P, <) will denote a nonempty partially ordered set P
with partial order <(. If f:P— P is any mapping of P into P, we desing by
I(P, ) the set of all invariant points of P relative to f; i. e. I(P, f): =
={x|xEPAfx=x}. For any f:P— P it is natural to consider the following sets

P ={x|xEPAx<fx}, P;: ={x|xEPAfx<x}.

An ordered set (P, <) is said to be right(left) conditionally complete
if every non void subset M of P which is bounded from above(below) deter-
mines its own supremum(infimum). Conditionally complete means to be both
left and right conditionally complete. One proves easily that right conditional
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completeness, left conditional completeness and conditional ~completenss are
three properties which are pairwise equivalent.

Up to now, all theorems contain as an assumptlon the following con-
dition: For the set I(P, f) to be nonempty, it is sufficient for f;P— P to be
monotone (increasing or decreasing) and P to be complete. Now we prove the
theorems which does not assume these conditions. Especially, when P is totally
ordered set in question, it is 1nterest1ng in some way a characterlsatlon of the
sets. Namely the following assertion is valid.

Theorem 1 (Taskovi¢ [10]) Let (P, <) be a totally ordered set by the
order relation <, and f.P — P a decreasing mapping. Then the following equivalen-

ce holds:
(¥ 1€ Py min {1, f (1)} <E<max {1, f (1)}

1 .
M & E=min P,V §=max P/

From this assertion as a direct consequence follows that:

1) The number of points ECP with characteristic (1) can be 0,1, or 2.
Besides that:

2) Every of these cases can be realized.

3) Especially if P in the meaning of order is every where dense set of po-
ints then the number of points with characteristic (1) is 0 or 1, and

4) if set P has characteristic of density (= that for every Dedekind’s cross
section lover class has maximum or upper class has minimum) the number of
points are 1 or 2.

- 5) If ECP is the fixed point of mapping f:P— P then & it is the point

with characteristic (1).

Further, we prove a very general fixed point theorem which generalizes
great number of known results.

Theorem 2. Let (P, <) be a partially ordered set and f a mapping
from P into P such that:

(A) The supremum of the set Pf exists. If we denote it by s=sup P/ then
FH=<s.

(B) f(s) is majorant for the set f(Pf).
Then:

(2.1.) The set I(P, f) is nonempty,

(2.2) Neither of the conditions (A), (B) can be deleted if (2.1) 1s to be valid,

(2.3) Dually, if the infimum of the set P, exists denoted by I,=inf P,
and if 1,<f(,), and if f(I,) is minorant for the set f(P); then the set
I(P, ) is a nonempty

- (2.4) There does not exist f:P— P for wich condztzon (B) is valid a well

as x<y = fy<fx(x, yEP’).

Theorem 3. Let (P, <) be a partially ordered set and f a mapping
from P into P such that (A) and:

(C) f (sup P)y=inf [ (P),

(D) x, yeP ANx<y = fy<Khx

(G) P/ is a totally ordered set.
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Then:
(3.1) The set I(P, f) is nonempty.

(3.2) Neither of the conditions (A), (C), (D), (G) can be deleted if (3.1}
is to be valid.

(3.3) Dually, if the infimum I, of the totally ordered set P exists and

if: L,<f(,), f(inf P;)=sup f@®), and x<y = Jy<fx(x, yCPy); then the
set I(P, f) is a nonempty set.

(3.4) There does not exist f:P—P for wich condition f (sup X)=inf &),
XCP, is valid a well as x<y = fx<fy(x, y&P).

Some remarks

1) The conditions (B) and (C) are not comparable, wich is illustrated by
the following examples for P=[0, 1] and f:[0, 1]—[0, 1], defined geometri-
cally by: :

1 !

7

0 ) 0 4 7
Fig. 1 ’ Fig. 2

In the fig. 1. the condition (C) is fullfiled and (B) not, in the fig. 2. the
opposite is valid. ' S

2) The condition (C) in theorem 3. can be weakened the relation
inff (P/)<f (sup P/), (see proof of theorem).

3) When the conditions (B) i. e. (C) in Theorem 2. i. e. Theorem 3.
are replaced by the condition: The set P/ has a maximum, then the set I (P, f)
is also nonempty. .

4) The conditions (B) and: the existence of the supremum of set (P/, <)
are not sufficient for the non-emptiness of the set I(P, f), (see. Fig. 1).

5) This trivial proposition is correct:

Proposition 1 .Let P be a nonempty left complete ordered set, f:P— P
and (Y x&P) f(x)<x. Then the set I1(P, ) is nonempty. The theorem obtained
by duallity is also valid. The weakening (N xEP) fx<x of the condition (3 x&
€P) fx<x relaxeted that the set Py &, but this is not sufficient for the no-
nemptiness of the set I(P, f). : :

In this meaning we can quate the following consequence, interesting for
the set P=R, : =[0, 00), where is the relation order =< usual number order <.

Proposition 2. (Taskovi¢ [10]) Let the mapping ¢:R, — R, have the
properties (YtCR )o@ (f)<t and limsup o (z)<t for t&R,. If the sequence (x,)
z->t40

of nonnegative real numbers satisfy the condition x,,,<o(x,), n=1, 2, ...,
then the sequence (x,) tends to zero. The velocity of this convergence is not ne-
cessarily geometrical. :
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6) Further let us quate one more theorem which direktly follows from
our theorem 2.

Proposition 3. (Corollary of Theorem 2.) Let (P, <) be a partially
ordered set and f a mapping from P into P such that:

(B) x, yEPAx<y = x<fy. 4

(F) The supremum of the set P exists, and if we denote it by sw=sup P
then s& P/,

Then:
(4.1) The set I(P, f) is nonempty.
(4.2) Neither of the conditions (E), (F) can be deleted if (4.1) is to be valid,

(4.3) Dually, if the infimum of the set P, denoted by I, =inf P, exists and
L,EP;, and if (E), then the set I1(P, f) is a nonempty.

Proof. Since f;P— P is an increasing mapping, the condition (B) is
satisfied, and also the condition (A) as element s=sup P/ exists and also
7 (s)<s. This proves the corollary (proposition 4.1). Now we prove that the con-
dition (E) and (F) cannot be removed. We show that by the following examples.

Example 1. Let P=[0,1), and define f:P—P by f(x)=(x+1)/2 for x&P. Then
condition (E) is satisfied, but condition (F) is not satisfied. Furthemore, f does not have a
fixed point.

Example 2. In the fig. 2 the condition (F) is fullfl]ed and (E) is not. Also, f does
not have a fixed point.

In an analogous way the dual results of proposmon 3 can be proved.

2. Some corollaries

Now we shall apply the previous results trough the following consequence.
They bring into connection the results (sufficient conditions) which were ob-
tained if the set I(P, f) is nonempty.

Corollary 2.1 (Tarski [9]) Let the lattice P be completely ordered and
f:P—>P an increasing mapping. Then the set 1(P, f) is nonempty.

Corollary 2.2 (Kurepa [4]) Let P be the ordered set and f:P — P in-
creasing mapping if P is left complete and if the set P, is nonempty then the
set I(P, f) is nonempty ordered and left complete.

Corollary 2.3 (Kurepa [5]) Let P be a nonempty right conditionally
complete ordered set and f a decreasing selfmapping of P such that for at least
one member x&P we have

x<fxvixx, i e. T(VxEP, x| [fx).

Let us assume that
1) f (sup) =inf f,
2) Eech point P, is comparable with each point of P/,
3) If s: =sup PFCP exists then f(s)<s.

Then the set I(P, ) is nonempty and f(s)=s=inf P;.
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In the following (P, <) will denote a nonempty partially ordered set P
with partial order ={. A subset 4 of P is a foset just in case A4 is totally
ordered, For x&P and ACP, define L(x)={y:y<x}, M(x)={y: x<y} and
MA)=U{M(x):xEA4}.

A partially ordered set (P, <) is a mod if and only if the following hold:

1) For all x, y&P sup {x, y} exist,

2) For all x&P, L (x) is a toset, _

3) Each nonempty subset of P which is bounded above (below) has a
supremum (infimum) in P,

4) If x<{y, then there is a z&EP such that x<<z<{y.

A function f:P— P is nonoscillatory from above if and only if for each
nonmaximal x and maximal toset ACM (x)\{x}, N{f(x, ul):ucA}={f(x)}
The function f is nonscillatory from below if and only if for each nonminimal
x, O{f (w, x])iu<x}={f ()} ,

Corollary 2.4. (Metcalf and Payne [6]) Let P be a totally ordered
mod. Suppose that f:P— P is a function satisfying:

) If x<y and f)S(X), then [f (), fICS ([, yD),

(2) The function f is either nonscillatory from above or from below.

(3) There exist a, b P such that a<b, a<f(a), and f(b)<b.

Then [ has a fixed point.

We next demonstrate that the following condition introduced by Abian
[1] is a form continuity. \

Abiar’s’ condition. Let f:P— P where P is a mod. If ACP is a toset,
then f(inf A)=sup f(4) and f(sup A)=inf f(4) whenever both sides of the,
equilaties exist.

Corollary 2.5. (Abian [1]) Let f:P— P where P is a totally ordered
mod. If f is decreasing and satisfies Abian’s condition, then f has a fixed point.

Corollary 2.6, (H. and M. Hoft [7]) Suppose the partially ordered
set P satisfies:

(a) For every order-preserving map f:P—> P there exists x&P such that x
and f(x) are comparable, i. e. either x=<f(x) or f(x)=<x.

(b) Every non-nempty chain of P has a supremum and an infimum.

Then P has the fixed point property, i. e. if every order-presenving map
f:P— P has a fixed point.

Remark. It is interesting that our theorem.can be applied in the case of finite par-
tially - ordered sets. Namely, using the theorem and Hoft’s [7] theorem on lexicografical repre-
sentation of partialy ordered sets, it can be shown that every increasing function partialey
ordering in Fig. 3 has a fix point property.

"Fig. 3
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3. Proofs of Theorems and corollaries

Proof of Theorem 1.2.1. The set P/ being, by assumption, nonempty the -
refore the point s=sup P/ exists. We have the following chain of relations:

s=sup PI< éup £ {f(sup Py sup P/=s,

and thus scI(P, f), i. e. set I(P, f) is a nonempty.

2.2. Now prove that the conditions (A) and (B) cannot be removed. We
show that by the following examples.

Example 3. Let P be the set [0,2] and define f:{0,2] = [0,2] by f(x)=1 for x&{0,1)
and f(x)=0 for x&[1,2], where P is a totally ordered set by ordinary ordering =. The con-
dition (A) is satisfied, but condition (B) is not satisfied. Furthermore, f does not have a fixed
point.

Example 4. Let P=[0,2], and define f:P — P by f(x)=2 for x&[0,1] and f(x)=1
for x&(1,2]. Then condition (B) is satisfied, but condition (A) is not satisfied. Furthermore, f
does not have a fixed point.

2.3. By dual consederations one proves the part of Theorem which con-
cerns the point s=sup P/. It sufficies to make the following substitions:

sup — inf, Pf— P, <{—>=.

2.4. Let f:P— P exist and satisfies (B) and assume that condition x-<(y
= fy<fx(x, y&P/) be satisf'ed. When f is an increasing mapping, the condition
sup f(X)<{f(sup X) is satisfied, what is a contradiction.

Proof of Theorem 3. 3.1. We have the following chain of relations:

_ s=sup P/<{inf f(P)=f(sup P)<sup P/ =s,
and other scI(P, f). ' '

: Example 5. Let P=[0,1], and define f:P — P by f(x)=(x+1)/2 for x£[0,1) and
f(@)=1/2. Then condition (C) is satisfied (f(sup Pf)=f(1)=1/2=inf f(Pf)), sondition (G)
is satisfied, and condition (A) is satisfied (f(sup P)=f(1)=1/2<1=sup Pf), but condition
(D) is not satisfied. Furthemore, £ does not have a fixed point. -

Example 6. Let the set P={a, b, c, d, ¢, g, g,(nEN)} be ordered by the relation
order < so that a<{c, a<{d, b<<e, b<{c, g<e, g<Xd, §<0, £, <8 &n+1&n MEN), when
the elements a, g, b are ancomparable and also the elements ¢, d, e are ancomparable; and
define f:P— P by: f(@)=d, f(D)=e, f(d)=f(e)=f(c)=g, (&) =& and f(g,)=8n+1 (MEN).

The condition (A) is satisfied (P={a, b}, f (sup Pf)=f(c)=g=<s=sup Pf=sup {b, a} =¢),
condition (C) is satisfed (f (sup Pf)=f(c)=g=1inf f (P)=inf{d; e}=g) and condition (D) is
satisfied, but condition (G) is not satisfied (a, b& P/ are ancomparable); and f:P - P has
not fixed point.

In an analogous we prove that the condition (A) and (C) cannot be
removed. ‘

Remark. One can prove in the same manner the part of this theorem
concerning for 3.2., 3.3. and 3.4. ‘

Proof of Corollary 21 Since f: P — P is an increasing mapping, the
condition (B) is satisfied, and also the condition (A) as element x=max P& P/
and also f(x)=Cx. This proves the corollary 1.
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In an analogous way the results of KUREPA [4], [5], ABIAN [1],
METCALF and PAYNE [6] and HOFT H., HOFT M. [7], follow as corol-
laries of our theorems 2 and 3. The proofs are more than obvious. We shall
prove only the corollary 6.

Proof of Corollary 2.6. Since f is an increasing mapping, the condition
(B) of Theorem 2. is satisfied. We shall prove the condition (A) of Theorem 2.
The system of chains L. for which tCL imlies ftcL and t<(ft contains the
nonempty chain T={f*(*)|k=0, 1, 2,...}, and therefore contains a maximal
chain M (Zorn’s Lemma). By assumption, x=sup MCP exists. Since M satisf-
ies condition t&L implies f(¢!)EL and t=<{f(¢) we have t=<f ()< f(x) for all
tEM, so shat x<(f(x); and x is not in M, then the chain M )T property
contains M, and satisfies rL implies ft&L and t=<{f (), in contradiction to
the maximality of M. Therefore, xC M and also fxE M, hence f(x)=<Cx. This
proves the corollary.

I am very thankful to prof. Adamovi¢ for their useful advices.
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