OSCILLATION OF SOLUTIONS OF SECOND ORDER DIFFERENCE EQUATIONS

B. Szmanda (Ponznań)

Abstract. An oscillation criterion is given for the second order nonlinear equation $\Delta(r_{n-1} \Delta u_{n-1}) + a_n f(u_n) = 0$, which generalizes McCarthy's result.

In this note we are concerned with the solutions of the second order nonlinear difference equation

(1)
$$\Delta (r_{n-1} \Delta u_{n-1}) + a_n f(u_n) = 0 \quad n = 1, 2, \ldots,$$

where Δ is the forward difference operator i.e. $\Delta u_n = u_{n+1} - u_n$, $\{r_n\}_0^{\infty}$, $\{a_n\}_0^{\infty}$ are the real sequence, $f: R \to R$.

By a solution of (1) we mean a real sequence $\{u_n\}_0^{\infty}$ $(u_n \neq 0)$, satisfying equation (1) for $n = 1, 2, \ldots$

A solution $\{u_n\}_0^{\infty}$ is called nonoscillatory if there exists $n_0 \ge 0$, such that for every $n \ge n_0$ either $u_n > 0$ or u < 0; otherwise it is said to be oscillatory.

In the paper [3] P. J. McCarthy considered the second order linear difference equation

(2)
$$\Delta (r_{n-1} \Delta u_{n-1}) + a_n u_n = 0, \quad n = 1, 2, ...$$

and obtained the following resut:

Theorem. If $r_n > 0$, $(n \ge 0)$, $\{r_n\}_0^{\infty}$ is a bounded sequence and $\sum_{n=0}^{\infty} a_n = \infty$, then all non-trivial solutions of (2) are oscillatory.

The purpose of this note is to prove a similar result for (1) which when applied to (2) generalizes McCarthy's result, namely we replace the

requirement that $\{r_n\}_0^{\infty}$ is bounded by the weaker conditon $\sum r_n^{-1} = \infty$. Our Theorem below is the discrete analogue of the Bhatia theorem [1] for nonlinear differential equations of second order and in particular Leighton's theorem [2].

Other oscillation criteria for nonlinear difference equations of the form (1), where the coefficient $\{a_n\}_0^{\infty}$ is assumed to be eventually nonnegative, are contained in [4].

Theorem. Let the following conditions are valid:

1° $f: R \to R$ is nondecreasing, sf(s) > 0 for $s \neq 0$,

2°
$$r_n > 0$$
, $(n \ge 0)$, $\sum_{n=0}^{\infty} r_n^{-1} = \infty$,
3° $\sum_{n=0}^{\infty} a_n = \infty$,

then every solution of (1) is oscillatory.

Proof. Suppose there exists a nonoscillatory solution $\{u_n\}$ of (1) and let $u_n > 0$ for $n \ge n_1 - 1 \ge 0$. For $n \ge n_1$ we set

$$q_n = \frac{r_{n-1} \Delta u_{n-1}}{f(u_{n-1})}$$
.

Then from equation (1) we obtain

$$\Delta q_{n} = -a_{n} - \frac{r_{n-1} \Delta u_{n-1} \Delta f(u_{n-1})}{f(u_{n-1}) f(u_{n})}.$$

We note by 1° that the second term on the right is nonnegative for $n \ge n_1$, hence

$$\Delta q_n \leqslant -a_n, \quad n \geqslant n_1.$$

Summing up both sides of (3) from n_1 to n we get

$$q_{n+1} \leqslant q_{n_1} - \sum_{i=n_1}^n a_i \to -\infty$$
 as $n \to \infty$.

Thus $q_n < 0$ for $n \ge n_2 \ge n_1$ which implies that Δu_n is negative for large n. From 3° it follows there exists $n_3 \ge n_2$, such that

(4)
$$\sum_{i=n_1}^n a_i \geqslant 0 \text{ for } n \geqslant n_3.$$

Summing up both sides of (1) from n_3 to n we have

$$\sum_{i=n_1}^n \Delta(r_{i-1} \Delta u_{i-1}) = -\sum_{i=n_2}^n a_i f(u_i),$$

and according to summation by parts formula we may write

$$r_n \Delta u_n - r_{n_3-1} \Delta u_{n_3-1} = -f(u_n) \sum_{i=n_3} a_i + \sum_{i=n_3}^{n-1} \Delta f(u_i) \sum_{k=n_3}^{i} a_k.$$

Since $u_{n+1} < u_n$ for $n \ge n_2 - 1$, then by 1° and (4) it follows that

$$r_n \Delta u_n \leqslant r_{n_3-1} \Delta u_{n_3-1} < 0,$$

which implies

$$\Delta u_n \leqslant r_{n_3-1} \Delta u_{n_3-1} r_n^{-1} \text{ for } n \geqslant n_3,$$

From (5), using 2°, we conclude that $u_n \to -\infty$ as $n \to \infty$, but this contradicts the fact that $\{u_n\}$ is eventually positive. A similar argument can be used in the case of an eventually negative solution. Thus the proof is complete.

REFERENCES

[1] N. P. Bhatia, Some oscillation theorems for second order differential equations, J. Math. Anal. Appl. 15 (1966), 442—446.

[2] W. Leighton, On self-adjoint differential equations of second order, J. London Math. Soc. 27 (1952), 37-47.

[3] P. J. McCarthy, Note on the oscillation of solutions of second order linear difference equations, Portugal. Math. 18 (1959), 203-205.

[4] B. Szmanda, Oscillation criteria for second order nonlinear difference equations (to appear).

Institute of Mathematics Technical University Poznań