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OSCILLATION OF SOLUTIONS OF SECOND ORDER
DIFFERENCE EQUATIONS

B. Szmanda (Ponznan)

Abstract. An oscillation criterion is given for the second order nonlinear
equation A(r,_;Au, ,)+a,f(u,)=0, which generalizes McCarthy’s result.

In this note we are concerned. with the solutions of the second order
nonlinear difference equation

) ' A(r,_Au,_)+a,f(u)=0 n=1,2,...,

where A is the forward difference operator ie. Aw,=u,,,—u, {r.}o, {a.}&
are the real sequence, f:R— R.

By a solution of (1) we mean a real sequence {u}o (u, % 0), satisfying
equation (1) for n=1, 2,....

A solution {u,}¢ is called nonoscillatory if there exists 7,30, such that
for every n>n, either u,>0 or u<(0; otherwise it is said to be oscillatorv.

In' .the paper [3] P. J. McCarthy considered  the second order linear
difference equation o . ;
2) A, Au,_)+a,u,=0, n=1,2,...

and obtained the following resut:

Theorem. If r,>0, (n>0), {r,}; is a bounded sequence and 3, a, = w0,
then all non-trivial solutions of (2) are oscillatory.

The purpose of this note ‘is to prove a similar result for (1) which
when applied to (2) generalizes McCarthy’s result, namely we replace the

requirement that {r,}g is bounded by the weaker conditon 2 r;'=co. Our
Theorem below is the discrete analogue of the Bhatia theorem [1] for nonlinear
differential equations of second order and in particular Leighton’s theorem [2].
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Other oscillation criteria for nonlinear difference equations of the form

(1), where the coefficient {a,}o is assumed to be eventually nonnegative, are
contained in [4].

Theorem. Let the following conditions are valid:
1° f:R— R is nondecreasing, sf (s)>0 for s#£0,
2° r,>0, (n0), D ry'=00,
3° 2a,~ o,

then every solution of (1) is oscillatory.

Proof. Suppose there exists a nonoscillatory solution {u,} of (1) and
let #,>0 for n>=n,—1>0. For nz=n, we set

- rn—lAun—l o
S (u,_y)

Then from equation (1) we obtain

Tn

Fp1 A ’:‘;—1 Af(un—1)
fl_)fe)

We note by 1° that the second term on the right is nonnegative for n>n,, hence

Aqn__' —y—

@ ' AG<—ap nzm.
Summing up both sides of (3) from n, to n we get
u .
Gns1qm— D, G—> — 0 as n-—>o0.
: i=ns ‘ :
Thus ¢,<O0 for n>>n,>n, which implies that Au, is negative for large n.
From 3° it follows there exists n;>n,, such that :
n .
4) > a,=0 for n>ny.
i=ny
Summing up both sides of (1) from n; to n we have
‘ n " ;
> Ao Ay )=~ 3 afw),
i=ny i=n3
and according to summation by parts formula we may write

Bty Aty = ) S at'S AfG) 3 g

- i=ng i=ny ’ Kmxy
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Since u,,,<u, for n>n,—1, then by 1° and (4) it follows that

Fa Aty gy Aty 4 <0,
which implies

(5) Au,,gr,,s_lAu,,s_lr;l for n>n,,

From (5), using 2°, we conclude that u,— — o0 as n— oo, but this contradic_ts
the fact that {u,} is eventually positive. A similar argument can be used in
the case of an eventually negative solution. Thus the proof is complete.
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